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A generic stationary instability that arises in quasi-reversible systems is studied. It is char-
acterized by the confluence of three eigenvalues at the origin of complex plane with only one
eigenfunction. We characterize the dynamics through the normal form that exhibits in particular,
Shilnikov chaos, for which we give an analytical prediction. We construct a simple mechanical
system, Shilnikov particle, which exhibits this quasi-reversal instability and displays its chaotic
behavior.
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1. Introduction

The study of instabilities plays a central role in the
modern theory of dynamical systems, because the
understanding of this can allow us to have a quali-
tative theory of dynamical systems [Guckenheimer
& Holmes, 1983], that is, this study permits to
describe in a universal way phenomena which
belong to different fields [Coullet, 1985; Cross &
Hohenberg, 1993]. In one parameter families of
dissipative dynamical systems — in codimension
one — only two local bifurcations occur generi-
cally for equilibrium points: the saddle-node and
the Hopf bifurcations. The presence of symmetries
changes these scenarios: for instance, the reflection
symmetry transforms the saddle-node bifurcation
in the pitchfork bifurcation. In time reversible sys-
tems, i.e. systems which are invariant under a time
reversal transformation, linearization at a reversible
equilibrium stable state gives a matrix with purely
imaginary eigenvalues whose number is equal to the
dimension of the system. In this kind of system the
instabilities in one parameter families of equilibrium
points are: (a) The stationary instability denoted by

(02) in Arnold’s notation [Arnold, 1980], which we
use from now on, corresponding to a resonance at
zero frequency; and (b) The confusion of frequencies
(iΩ2) or 1:1 resonance [Rocard, 1943], which corre-
sponds to a resonance at a finite frequency. A nat-
ural way to observe these instabilities is to change
a control parameter. However, for time reversible
systems the observation of instabilities is generi-
cally through the change of the initial conditions,
because this changes the values of conserved quan-
tities and then the stability of relative equilibria.
Hence, the injection of energy in a time reversible
system is by means of a neutral mode related to a
conserved quantity.

In recent years, the consequences of weakly
breaking the symmetry of time reversal t → −t in
the bifurcation theory of time reversible systems —
quasi-reversible systems — have been considered
[Clerc et al., 1999a, 2000, 2001]. This circumstance
occurs frequently in macroscopic systems. In their
usual versions, the fundamental physical laws are
time reversible, but this symmetry disappears in
the macroscopic description due to separation of
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time scales that allows a description in terms of the
slowly varying macroscopic variables, which satisfy
a dissipative dynamics. The dissipation can vary
from weak perturbations — quasi-reversibility —
to strong dominant effects. Some well-known exam-
ples of quasi-reversible behaviors in mechanics, fluid
mechanics and optics are the motion of planets
in celestial mechanics, surface waves in water and
laser, respectively. The stationary quasi-reversible
instabilities in the presence of a neutral mode with
reflexion symmetry — (020) in Arnold’s notation —
have been studied in [Clerc et al., 1999a, 2001],
where it is shown that the asymptotic normal form
is equivalent to the set of the real Lorenz equa-
tions, which then turn out to be universal equations.
A simple mechanical pendulum — which we have
called the Lorenz pendulum — is shown to be an
example of this instability, and experimental results
agree with the theoretical predictions. A similar
dynamic instability is exhibited by the period dou-
bling bifurcation of a closed orbit in quasi-reversible
systems [Clerc et al., 2000]. The confusion of fre-
quencies in presence of a neutral mode- ((iΩ)20)) in
Arnold’s notation has also been studied by [Clerc
et al., 1999b] and it is shown that the asymptotic
normal form in this case is the well-known set of
Maxwell–Bloch equations which describe the laser
effect. A double pendulum with orthogonal oscilla-
tions — which we can call the Rocard pendulum —
was shown to obey the universal Maxwell–Bloch
equations by [Clerc & Marsden, 2001] and is then a
mechanical analogue of the laser. However, the sta-
tionary quasi-reversible instability in the presence
of a neutral mode without reflexion symmetry —
(03) instability — has not been studied. This is one
of the most generic instabilities and it studied here.
We call it Shilnikov bifurcation for reasons which
will become clear below.

The aim of this article is then to describe
the generic (03) stationary instability of equilib-
rium points which arises in quasi-reversible sys-
tems. It is characterized by the confluence of three
eigenvalues at the origin of the complex plane
with only one eigenfunction. We characterize the
normal form of this bifurcation and its dynam-
ics. In particular, we describe the chaotic behav-
ior — homoclinic Shilnikov chaos — exhibited by
the normal form and we present analytic predic-
tions for the appearance of Shilnikov chaos. We
construct a simple mechanical system — which we
call the Shilnikov particle — composed by a ring
sliding on an inclined rotating rod which exhibits

this quasi-reversible instability and displays the
Shilnikov chaotic behavior.

The manuscript is organized as follows. In
Sec. 2, we characterize the unified description of
03-bifurcation for dissipative, time reversible and
quasi-reversible systems. In Sec. 3, we describe the
dynamics exhibited by the quasi-reversible normal
form. In particular, we characterize the different
steady states and bifurcation diagram exhibited by
the normal form. In Sec. 4, an analytical condition
for chaos is obtained by means of the Melnikov con-
dition. A simple mechanical system that exhibits
quasi-reversible (03) bifurcation is described in
Sec. 5 and finally in Sec. 6 we draw our conclusions.

2. Normal Form of the Shilnikov
Bifurcation

Stationary instabilities in strictly time reversible
systems are associated with resonances which occur
at zero frequency. This resonance takes place when
one modifies a parameter or a constant of motion
(neutral mode). The last mechanism is the physical
way to create an instability in a relative equilib-
rium, that is, this equilibrium is a fixed point of the
Routhian. The stationary quasi-reversible instabil-
ity of a relative equilibrium in the presence of a
neutral mode without reflection symmetry (03), is
characterized by the confluence of three eigenval-
ues at the origin of the complex plane with only
one eigenfunction. The reduced linear operator L is
then given by a simple Jordan block,

L =


0 1 0

0 0 1
0 0 0




and the homological operator that characterizes the
central manifold is [Arnold, 1980; Elphick et al.,
1987]

H(L) = L − LijA
j ∂

∂Ai
,

where A = {x, y, z} are the variables that character-
ize the central manifold [Elphick et al., 1987]. The
above operator characterizes the dynamics around
the bifurcation. It is simple to show that the other
critical variables associated with the pure imagi-
nary eigenvalues with finite frequencies can be elim-
inated when the dissipative irreversible unfolding
terms are considered. The relevant variables will
then be {x, y, z} and from the global characteriza-
tion of normal forms in [Elphick et al., 1987], we
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have the normal form that can be written as (min-
imal normal form)

ẋ = y + xf(x, 2zx − y2),
ẏ = z + yf(x, 2zx − y2) + xg(x, 2zx − y2),

ż = zf(x, 2zx − y2) + yg(x, 2zx − y2)
+ h(x, 2zx − y2),

where f, g and h are polynomial functions of their
arguments and functions of the small parameters
that characterize the dynamics around the bifurca-
tion. Due to the non-uniqueness of the solvability
condition applied to the homological operator, by
means of asymptotic polynomial changes of vari-
ables close to the identity, the above normal form
can be rewritten (Taken’s type normal form, see
[Arneodo et al., 1985]) as

...
x = h(x, 2ẍx − ẋ2) + ẋg(x, 2ẍx − ẋ2)

+ ẍf(x, 2zx − y2),

or in the form (Mechanical type normal form)

ẍ = z + xF (x, 2zx − ẋ2) + ẋG(x, 2zx − ẋ2),
ż = H(x, 2zx − ẋ2).

(1)

All the above models are equivalent through non-
singular asymptotic change of variables close to the
identity [Elphick et al., 1987]. However, the physi-
cal interpretation of the different terms is sensible
to the form of the equations. For simplicity reasons
henceforth, we shall consider the mechanical type
normal form (1) which is the more adequate for our
analysis below.

2.1. Time reversible limit

When these equations are invariant under the time
reversal transformation t → −t, x → x, z → z, the
above model reads

ẍ = z + xF (x, 2zx − ẋ2),

ż = 0,

where z is constant of motion, and the system is
described by a simple two-dimensional field. The
asymptotic dimensionless reversible normal form —
the normal form with the dominant terms — i.e.
obtained from the previous equations is

ẍ = z ± x2,

ż = 0,
(2)

The other higher order terms are neglected by
means of the scaling x ∼ z1/2, ∂t ∼ z1/2 and z � 1.

This set of equations describes a saddle-node bifur-
cation in the presence of a conservative quantitative
z. Depending on the initial condition one can rule
the value of z. Due to the transformation x → −x,
and z → −z, we will consider without loss of gen-
erality henceforth the minus sign in the quadratic
nonlinear term. Hence, for negative z the system
does not have fixed points and any initial condi-
tion gives rise to a trajectory that moves to infin-
ity. For positive z, the system has two fixed points
{(√z, z), (−√

z, z)}, one is a center and the other
is a hyperbolic point, respectively. Hence, the fixed
point (

√
z, z) exhibits a stationary instability in the

presence of a neutral mode when z = 0, which is
characterized by the confluence of three eigenval-
ues at the origin of the complex plane with only
one eigenfunction. Therefore for each z-plane in the
phase space we have a typical saddle-node phase
space diagram. In Fig. 1 this phase diagram is dis-
played. Note that this dynamical system has a fam-
ily of homoclinic curves, which is represented by a
hard curve in the z-plane and has the analytical
expression

xh(z, t) = −√
z

[
1 − 3 sec h2

(
4

√
z

4
(t − t0)

)]
. (3)

This solution will play a central role in the gen-
eration of complex behaviors like chaos, when one
considers the terms that break the time reversible
symmetry as we shall see below.

2.2. Quasi-reversible normal form

The inclusion of small terms of dissipation
and injection of energy — breaking the time

z-Plane

Fig. 1. Phase space diagram of time reversal normal form
(2). The dashed and continuous curves represent the stable
and unstable fixed points, respectively. The outer curve is for
the homoclinic solution.
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reversibility — in the unfolding of Eq. (2) gives

ẍ = z − x2 − µẋ,

ż = δ + νx + βx2,
(4)

where the other higher order terms are ruled out
through the scaling x ∼ z1/2, ∂t ∼ z1/4, µ ∼ z1/4,
δ ∼ z5/4, ν ∼ z3/4, β ∼ z1/4 and z � 1. The param-
eter µ, ν and δ account for the dissipation and injec-
tion of energy, respectively, and βx2 is a nonlinear
saturation term. Depending on the different combi-
nations of sign of {ν, β} the last two terms of the
z-equation are dissipation or injection of energy. A
similar model with an extra nonlinear dissipative
term has been studied in the context of the 03 dis-
sipative instability in the context of the thermally
excited nonlinear oscillator [Moore & Spiegel, 1966;
Baker et al., 1971; Marzec & Spiegel, 1980]. An
extra cubic nonlinearity has also been studied in
the same context [Pismen, 1987].

3. Bifurcation Diagram of the
Quasi-Reversible Normal Form

The quasi-reversible normal form (4) has the fixed
points

z = x2±,

x± =
−ν ±

√
ν2 − 4δβ

2β
,

where ν2 − 4δβ > 0. When this inequality is not
satisfied all the trajectories go to infinity, that is,
infinity is the only attractor. The two fixed points
(x+, x2

+) and (x−, x2−) appear by saddle-node bifur-
cation. In Fig. 2 we display the different bifurcation
diagrams of model (4), and the saddle-node bifur-
cation is represented by the point a. Close to this
bifurcation the fixed points (x+, x2

+) and (x−, x2−)
are stable and unstable, respectively. The stable
fixed point loses its stability by a Hopf–Andronov–
Poincaré bifurcation at the curve in the parameter
space defined by

ν = (µ + β)
ν −

√
ν2 − 4δβ
β

.

This instability is represented by the points b and c
in Fig. 2. As we see, this bifurcation may be super-
critical (point b) or subcritical (point c).

In order to study the dynamics around this
instability and based on the normal form theory
[Elphick et al., 1987], we introduce the following

a b e f
(a)

a c e fd
(b)

Fig. 2. Bifurcation diagrams of model (4): (a) saddle-node
bifurcation, (b) supercritical Hopf–Andornov–Poincaré bifur-
cation, (c) subcritical Hopf–Andornov–Poincaré bifurcation,
(d) saddle-node bifurcation of limit cycle, (e) periodic double
bifurcation, and (f) Shilnikov chaos.

asymptotic change of variables
x

ẋ
z


 = A




1
i
√

2x+

iµ
√

2x+


+A




1
−i

√
2x+

−iµ
√

2x+




+ a0

[
A2 − 2|A|2 − A2

3

]
1

i
√

2x+

iµ
√

2x+




+ a0

[
A2 − 2|A|2 − A2

3

]
1

−i
√

2x+

−iµ
√

2x+




+
[
dA2 + dA2 + e|A|2]


 1

µ
2x+


+ h.o.t,
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with

a0 ≡

(
2
√

2x+ − βµ

√
2

x+

)
+ 2i(β + µ)

√
2x+(4µ2 + 8x+)

,

d ≡ (β + µ)(µ − 2i
√

2x+)
(µ2 + 2x+)(µ2 + 8x+)

,

e ≡ 2(β + µ)
µ(µ2 + 2x+)

,

in the quasi-reversible model (4). The amplitude A
satisfies

∂tA =

[
(µ + β)

ν −
√

ν2 − 4δβ
β

+ i
√

2x+

]
A

+ g|A|2A, (5)

where

g ≡ (−2(β + µ) + i(2
√

2x+ − βµ
√

2/x+))

× [�(−a02) + e + ao −a0/3 + d]
(2µ2 + 4x+)

,

where � stand for real part. If β ≈ −µ the
Hopf–Andronov–Poincaré bifurcation is supercrit-
ical (cf. Fig. 2(a)) or subcritical (cf. Fig. 2(b)),
when (2

√
2x+ − βµ

√
2/x+) is negative or positive,

respectively. In Fig. 2 we illustrate these two bifur-
cations. Hence from model (5), we deduce that the
Hopf–Andronov–Poincaré bifurcation gives rise to
the appearance of a limit cycle solution with fre-
quency

√
2x+. The typical limit cycle observed in

this system is shown in Fig. 3. In the subcritical
Hopf–Andronov–Poincaré bifurcation, the unstable
limit cycle disappears by a saddle-node bifurcation
that is represented by point d in Fig. 2(b).

Changing the parameters a the stable limit
cycle persists, and it moves in the direction of the
unstable fixed point (x+, x2

+). Hence, the limit cycle
may exhibit a homoclinic bifurcation [Andronov
et al., 1987]. In Fig. 4 we represent schematically
a homoclinic solution, where the hyperbolic fixed
point is represented by point O, which is the origin
of the coordinate system.

The dynamics close to a hyperbolic fixed
point is characterized by the eigenvalues {−λ− +
iω,−λ− − iω, λ+}. The eigenvectors associated to
−λ− ± iω and λ+ eigenvalues characterize the
stable and the unstable manifolds, respectively.
In Fig. 4, the unstable and stable manifolds of
the hyperbolic point O are represented by {v,w}-
plane and u-line, respectively. Hence, the dynamics
around homoclinic solutions is characterized, after
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Fig. 3. Limit cycle solution exhibits by model (4) by β =
−0.814, δ = 1.0, µ = 0.6, (a) ν = 0.31, and (b) ν = 0.295.

straightforward calculations, by the first return map
[Arneodo et al., 1985]

un+1 = kuσ
n sin[ω ln(un) + φ] + η, (6)

where un is the u-component of nth intercep-
tion of a given trajectory with the Π-plane, where
u-direction characterizes the unstable manifold of
the hyperbolic fixed point. The Π-plane is an arbi-
trary plane orthogonal to the unstable direction,
which is close to the hyperbolic point, that is, the
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Π

Fig. 4. Schematic representation of a homoclinic solution:
the O-point is the hyperbolic fixed point, where the unsta-
ble and stable manifolds are represented by u-direction and
{v, w}-directions, respectively. The Π-plane is parallel to
unstable manifold.

hyperbolic point does not belong to the Π-plane (cf.
Fig. 4). The {k, φ}-constant are parameters fixed
by the election of the Π-plane, η is the homoclinic
bifurcation parameter, that is, when η = 0 the sys-
tem presents a homoclinic solution. The parameter
σ ≡ λ−/λ+ characterizes the stability of the homo-
clinic curve, if σ < 1 (σ ≥ 1) the homoclinic solu-
tion is unstable (stable). Shilnikov has shown that
if a homoclinic solution has σ < 1 (unstable), then
there is chaotical dynamics close to it [Shilnikov,
1965, 1968].

Numerically, we observe that the ratio λ−/λ+

of the eigenvalues for model (4) is lower than
one. Therefore, the homoclinic bifurcation gives
rise to unstable homoclinic curves. The first return
map for σ < 1 is depicted in Fig. 5 for differ-
ent values of η. The fixed points exhibited by this
map represent limit cycle solutions for the quasi-
reversible normal form (4). When η is changed,
these fixed points have the typical period-doubling
bifurcation of the logistic map that represents a
period-doubling bifurcation for the respective limit
cycle solution. In Fig. 3(b) we illustrate the typi-
cal limit cycle solution of model (4) just after the
period-doubling. If we continue changing η, the first
return map exhibits a cascade of bifurcations —
the period-doubling route [Coullet & Tresser, 1978;

0 0.05 0.1 0.15 0.2
-0.6

-0.4

-0.2

0

0.2

un

η=-0.1

(a)

0 0.05 0.1 0.15 0.2
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0.4

un

η=0.0

(b)

Fig. 5. Schematic representation of the first return map (6)
for different values of η: (a) η = −0.1, and (b) η = 0.0. The
stars stand for the equilibria points.

Feigenbaum, 1978] — that gives rise to chaotical
behavior. In Fig. 6 we show the strange attractor
exhibited by model (4). Close to the homoclinic
bifurcation — η = 0 — the first return map (6)
has an infinite number of equilibrium points and
each one presents the period doubling route when
η is modified. The first period doubling bifurca-
tion and the chaotical behavior are depicted by the
points e and f in the bifurcation diagram of Fig. 2.
Hence the dynamics around an unstable homoclinic
bifurcation is characterized by a cascade of period-
doubling bifurcations. The above dynamics is usu-
ally called Shilnikov scenario.

In brief, the dynamics of the quasi-reversible
normal form (4) is characterized by having the
infinite as attractor for a large domain of param-
eters. When the parameters are changed, two
equilibrium appear by saddle-node bifurcation.
If we continue modifying the parameters, the
stable fixed point becomes unstable through a



August 26, 2008 16:12 02144

0

1

2

-2
-1

0

1

2

0

1

2

3

0

1

2

-2
-1

0

1

2

Fig. 6. Strange attractor exhibits by model (4), ν = 1.0,
β = −1, δ = 1.0, and µ = 0.48.

Hopf–Andronov–Poincaré bifurcation giving rise to
limit cycle solutions. Increasing more the param-
eters, the limit cycle moves towards the hyper-
bolic fixed point giving rise to a homoclinic bifurca-
tion. As a consequence of this bifurcation, the limit
cycle presents successive period-doublings: Shinikov
scenario.

4. Analytical Condition for
Shilnikov Chaos

Although in dissipative dynamical system it is a
thorny task to explicitly obtain homoclinic or het-
eroclinic solutions, this is quite possible in time
reversible dynamical systems. Hence, in quasi-
reversible systems by means of a persistence or
Melmikov condition [Coullet & Elphick, 1987], one
can grasp the homoclinic and heteroclinic solutions
[Clerc et al., 1999, 2000, 2001]. The persistence of
the three-dimensional homoclinic solution guaran-
tees the existence of chaos when the Shilnikov con-
dition is satisfied (σ < 1).

In order to study the persistence of the pla-
nar homoclinic solution (3), we consider the follow-
ing change of variable in the quasi-reversible normal
form (4)

w ≡ z − µẋ,

x = x,

and the equations take the form

ẍ = w − x2,

ẇ = δ + vx + (β + µ)x2 − µw.
(7)

When β = −µ, ν = 0, and rewriting δ = µw0 — for
the sake of simplicity we assume that w0 > 0 — the
above model takes the form

ẍ = w − x2,

ẇ = −µ(w − w0).
(8)

this system has the fixed points {(√w0, w0),
(−√

w0, w0)}, where (
√

w0, w0) is an attractor and
(−√

w0, w0) is a hyperbolic point. The above model
has a planar homoclinic solution

xh(t, t0) =
√

w0

(
−1 + 3 sec h

[
4

√
w0

4
(t − t0)

])
,

w = w0.

When we consider the perturbation of the condi-
tion {β = −µ, and ν = 0}, the homoclinic becomes
three-dimensional. However, to have chaotic behav-
ior, we need that the attractive manifold has a focus
as the attractor — the eigenvalues related to the
hyperbolic fixed point are complex conjugate with
negative real part — and the ratio of the modulus
of real parts of eigenvalues related to unstable and
stable manifolds of hyperbolic fixed point is lower
than one.

The hyperbolic fixed point (−√
w0, w0) of

the model (8) has three real eigenvalues { 4
√

4w0,
− 4
√

4w0,−µ}, the perturbation of the condition
{β = −µ, and ν = 0} in general produces
three new real eigenvalues. In order to satisfy the
Shilnikov condition, we have to consider µ = 4

√
4w0,

and thus the negative eigenvalues are degener-
ate. For a small perturbation the eigenvalue takes
approximative form

4
√

4w0 → 4
√

4w0 +
[(β + 4

√
4w0) 4

√
4w0 − ν]

8
√

w0
,

− 4
√

4w0 → − 4
√

4w0 ± i 2

√
(β + 4

√
4w0) 4

√
4w0 − ν

4
√

4w0
,

if (β + 4
√

4w0) 4
√

4w0 > ν, then the eigenvalues
become a pure real and two complex conjugates
with negative real part as it is depicted in Fig. 7.
Note that the ratio of the modulus of the real part
of the complex conjugate eigenvalues over the real
part of the pure real eigenvalue is lower than one.
Hence, if the planar homoclinic solution persists in
three-dimensions the system must exhibit chaotic
behavior. After a straightforward calculation, we
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Fig. 7. Spectrum motion of model (7).

can integrate w in model (7) and the system reads

ẍ = w0 − x2 + e−
4
√

4w0t

∫ t

−∞
dt′e

4
√

4w0t′

× (νx + (β + 4
√

4w0)x2), (9)

where the last term is taken as a perturbation. We
consider the following ansatz

x(t) = xh(t) + ζ(t, xh(t)), (10)

where ζ(t, xh(t)) is a small corrective function of
the order of the perturbation. Introducing the above
ansatz in Eq. (9) and linearizing in ζ, we obtain
the following condition for the persistence of the
homoclinic solution (Melnikov condition)

ν = −(β + 4
√

4w0)f(w0), (11)

where

f(w0) =

∫ ∞

−∞
dte−

2√4w0t∂txh(t)
∫ t

−∞
dt′e

2√4w0t′x2
h(t′)∫ ∞

−∞
dte−

2√4w0t∂txh(t)
∫ t

−∞
dt′e

2√4w0t′xh(t′)
.

In Fig. 8 we draw the function f(w0). A numerical
simulation of the model (4) using the above condi-
tion (11) is depicted in Fig. 6.

5. Mechanical Example of Shilnikov
Bifurcation: Shilnikov Particle

5.1. Reversible 03-bifurcation

Due to the universal nature of the instability under
study, we can make up a simple mechanical system
that exhibits the quasi-reversal 03-instability. We

0 0.25 0.5 0.75 1 1.25 1.5 1.75

0.4

0.6

0.8

1

1.2

1.4

f(w0)

w0

Fig. 8. Function f versus w0.

consider a system composed of a ring of mass m,
which slides over the rod OA without friction. This
rod together with the other vertical rod OB are a
rigid solid with a fixed angle α between the two
rods (see Fig. 9) and this system can rotate in the
vertical direction under the influence of the gravi-
tational field. The Lagrangian L that characterizes
this system is

L =
m

2
(ṙ2 + r2 sin2 α φ̇2) +

I

2
φ̇2 − mgr cos α,

where r stands for the distance between the ring
and the contact point between the rods (point O,
cf. Fig. 9), φ̇ is the azimuthal angular velocity of
the system, I is the vertical moment of inertia of
the two rods and g stands for the gravity. Note that
the azimuthal angle φ is a cyclic variable, then the
equation of motion reads

r̈ =
r sin2 αP 2

φ

(I + mr2 sin2 α)2
− g cos α, (12)

where Pφ ≡ (I + mr2 sin2 α)φ̇ is the azimuthal
angular momentum, which is a conserved quantity.
The terms on the right-hand side of Eq. (12) stand
for the centrifugal and gravitational forces, respec-
tively. The centrifugal force has only one maximum
as function of r at

r∗ =

√
I

3m sin2 α
.

Hence, for small centrifugal force, the system does
not have equilibria, and the ring moves to point O.
Contrary, for large centrifugal forces the system
has two equilibria, one stable and another unstable.
Therefore, there is a critical value of the azimuthal
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Fig. 9. Shilnikov particle: the system is composed of a
ring of mass m, which slides over the OB-rod without fric-
tion. This rod is soldered to another vertical OA-rod, between
these two rods there is an angle α and this system can rotate
in the vertical direction.

angular momentum for which the system exhibits a
saddle-node bifurcation

P ∗
φ =

[
16
√

3mI3

9
g cot α

]1/2

In Fig. 10 we show the centrifugal and gravitational
forces as function of r, the stable and unstable equi-
librium points are represented by the full and empty
circles, respectively. Note that the unstable fixed
point is closer to point O than the stable one.

Close to the saddle-node bifurcation, we can
introduce the following ansatz

r = r∗ + ρ0x,

Pφ = P ∗
φ + z0z,

(13)

where ρ0 ≡ 1/(6P ∗
φ sin3 α/(I + mr∗2 sin2 α)3

−12m2r∗2 sin4 α/(I + mr∗2 sin2 α)4) and z0 ≡
ρ0(I + mr∗2 sin2 α)4/r∗2 sin α, in Eq. (12). The
system is described to dominant order by (reversible
03-normal form)

ẍ = z − x2,

ż = 0.

r

Gravitational

Centrifugal

Forces

r*
Fig. 10. Schematic representation of gravitational and cen-
trifugal forces as a function of r. The horizontal and
curved lines represent the gravitational and centrifugal forces,
respectively. The full and empty circles give account of the
stable and unstable equilibria.

Hence, the mechanical system exhibits a saddle-
node bifurcation driven by the conservative quan-
tity, that is, the model presents a 03 instability.

5.2. Quasi-reversible instability

In order to realize physically the previous system,
we must consider the dissipative effects related to
the macroscopic nature of the system and consider
injection of energy in order to balance the dissipa-
tion. The system is then described by

r̈ =
r sin2 αP 2

φ

(I + mr2 sin2 α)2
− g cos α − µṙ,

Ṗφ = −γ

(
Pφ

(I + mr2 sin2 α)
− ω0

+ δ′
P 2

φ

(I + mr2 sin2 α)2

)
− (ν ′ + β′r2 sinα)Pφ

(I + mr2 sin2 α)
,

(14)

where the injection of energy is through a motor
with constant angular velocity — ω0 is the angu-
lar velocity imposed by the motor — applied in
the support of the vertical rod OB. The term pro-
portional to γ accounts for the motor, and now
Pφ is promoted to a dynamical variable. We have
modeled the torque in the azimuthal direction as
a polynomial function of the angular velocity with
the attractor in ω0, that is, γ(δ′φ̇2 + φ̇ − ω0) is
the torque generated by the motor. Dissipation will
occur through: (a) friction in the rotation of the rod
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Fig. 11. Strange attractor exhibits by the mechanical sys-
tem Shilnikov particle, model (14), by g = 9.8, α = 0.619,
I = 2.6, m = 50, ω0 = 5.3, µ = 2.92, ν′ = 4.3, β′ = 0.6,
γ = 350.

OB around its axis, this dissipation is modeled by
the term proportional to ν ′; (b) wet friction between
the ring and the rod OA, this loss of energy is mod-
eled by the term proportional to µ, (c) motion of
the ring in the fluid surrounding it (e.g. the atmo-
sphere), this effect is described by the term propor-
tional to β′. This parameter is related to the lateral
section of the ring.

Using the ansatz (13), we obtain Eq. (4), with
the parameters

µ = µ,

δ =
γω0

z0
− 1

z0
4
√

33I5m3
(gγ

4
√

35I3m5 cot α

+ I
√

g cot a(3m(γ + ν ′) + Iβ′ csc α)),

ν =
ρ0

2z0
4
√

mI7
(6gγ

4
√

I3m5 cos α

+ 33/4I
√

g cot α(m(γ + ν ′) sin α − Iβ′)),

β =
3δ′γgρ2

0 sin(2α)
8z0

√
3m3

I3
.

Numerical simulation of the mechanical system
exhibits a similar bifurcation diagram with (2). In
Fig. 11 we present the typical limit cycle and chaotic
dynamics exhibited by the model.

6. Discussion and Conclusion

The understanding of bifurcations is a corner-
stone to develop a qualitative theory of differen-
tial equations. Depending on the symmetry, the
systems exhibit different type of bifurcations. The
time reversible system exhibits complex dynamics
like chaos, however the inclusion of small dissipa-
tion and injection of energy drastically changes the
dynamical behaviors. We have studied the 03 sta-
tionary instability which arises in quasi-reversible
systems, which is characterized by the confluence
of three eigenvalues at the origin of the complex
plane with only one eigenfunction. By means of
normal form theory, we have characterized this
bifurcation and its dynamics. A simple mechanical
system — Shilnikov particle — that exhibits this
quasi-reversible instability has been proposed, and
displays Shilnikov chaotic dynamics.
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