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Abstract

We consider the asymptotic behaviour of the solution of one di-

mensional stochastic differential equations and Lagevin equations in

periodic backgrounds with zero average. We prove that in several

such models, there is genrically a non vanishing asymptotic velocity,

despite of the fact that the average of the background is zero.

1 Introduction.

We consider the one dimensional diffusion problem

∂tu = ∂x

(

1

2
∂xu+ b(t, x)u

)

(1)
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where b is a regular function periodic of period T in the time variable t ∈ R+

and of period L in the space variable x ∈ R. This equation and related
equations discussed below appear in many natural questions like molecular
motors, population dynamics, pulsed dielectrophoresis, etc. See for example
[6], [5], [10] [13], [14] and references therein.

We assume that the initial condition u(0, x) is non negative and of integral
one with |x|u(0, x) integrable, and denote by u(x, t) the solution at time t.
Note that the integral of u with respect to x is invariant by time evolution,
the integral of xu(x, t) is finite.

One of the striking phenomenon is that even if the drift has zero average,
this system may show a non zero average speed. There are many results on
homogenization theory which can be applied to equation (1), see for example
[3], [11], and references therein.

These results say that the large time asymptotic is given by the solution
of a homogenized problem. It remains however to understand if this homog-
enized problem leads to a non zero asymptotic averaged velocity. For this
purpose we will consider the quantity

I(b) = lim
t→∞

1

t

∫

xu(t, x)dx (2)

which describes the asymptotic average displacement of the particle per unit
time (provided the limit exists).

Our first theorem states that the average asymptotic velocity is typically
non zero.

Theorem 1.1. The quantity I(b) is independent of the initial condition, and
the set of b ∈ C1 with space average and time average equal to zero where
I(b) 6= 0 is open and dense.

Remark 1.1. By assuming that the space average (which may depend on
time) and the time average (which may depend on space) are both zero we
restrict the problem to a smaller set of possible drifts. One can prove a
similar result with weaker constraints. Note also that it is well known that
if b does not depend on time, then I(b) = 0 (see for example [13]).

Remark 1.2. The theorem can be extended in various directions, for exam-
ple by using different topologies on b, by including a non-constant periodic
diffusion coefficient, or by considering almost periodic time dependence.

Another common model for molecular motor is the two states model which
describes the time evolution of two non negative function ρ1 and ρ2. In this
model, the “molecule” can be in two states: 1 or 2 which have different
interaction with the landscape described by the drift. We denote by ρ1(t, x)



the probability to find the molecule at site x ate time t in state 1, and
similarly for ρ2. We refer to [13] for more details. The evolution equations
are given by

∂tρ1 = ∂x

(

D∂xρ1 + b1(x)ρ1

)

− ν1ρ1 + ν2ρ2

∂tρ2 = ∂x

(

D∂xρ2 + b2(x)ρ2

)

+ ν1ρ1 − ν2ρ2
(3)

where D, ν1 and ν2 are positive constants, b1 and b2 are C1 periodic functions
of x of period L the last two with average zero.

The asymptotic average displacement per unit time of the particle is now
defined by

I
(

ν1, ν2, b1, b2
)

= lim
t→∞

1

t

∫

x
(

ρ1(t, x) + ρ2(t, x)
)

dx .

We have the equivalent of Theorem 1.1. As before, we assume that |x|(ρ1+ρ2)
is integrable.

Theorem 1.2. For any constants ν1 > 0 and ν2 > 0, I(ν1, ν2, b1, b2) is
independent of the initial condition, and the set of b1 and b2 ∈ C1 with space
average equal to zero where I(ν1, ν2, b1, b2) 6= 0 is open and dense.

Another model of a particle interacting with a thermal bath is given by
the Langevin equation

dx = v dt
dv = (−γ v + F (t, x)/m) dt+ σ dWt

(4)

where m is the mass of the particle, γ > 0 the friction coefficient, F (t, x)
the force, Wt the Brownian motion and σ =

√
2D where D is the diffusion

coefficient. We refer to [6] and [10] for more details.
For the time evolution of the probability density f(t, v, x) of the position

and velocity of the particle one gets the so called Kramers equation

∂tf = −v ∂xf + ∂v

[

(γv − F (t, x)/m)f
]

+
D

2
∂2

vf . (5)

We refer to [6] and references therein for more details on these equations.
By changing scales, we can assume that m = 1 and D = 1 and we will only
consider this situation below. Moreover we will assume as before that F (t, x)
is periodic of period T in time, L in space and with zero average in space
and time. We can now define the average asymptotic displacement per unit
time by

I(γ, F ) = lim
t→∞

1

t

∫ t

0

dτ

∫∫

v f(τ, v, x) dv dx . (6)



As for the previous models the average asymptotic velocity is typically
non zero. As usual, we denote by H1( dv dx) the Sobolev space of square
integrable functions of x and v with square integrable gradient.

Theorem 1.3. For γ > 0, I(γ, F ) is independent of the initial condition,
the set of F ∈ C1 with space average and time average equal to zero where
I(γ, F ) 6= 0 is open and dense.

One can also consider a situation where the particle can be in two states
which interact differently with the landscape. This leads to the following
system of Kramers equation.

∂tf1 = 1
2
∂2

vf1 − v∂xf1 + ∂v

[

(γv − F1(x))f1

]

− ν1f1 + ν2f2

∂tf2 = 1
2
∂2

vf2 − v∂xf2 + ∂v

[

(γv − F2(x))f2

]

+ ν1f1 − ν2f2 .
(7)

In this equation, F1 and F2 are two periodic functions representing the
different interaction forces between the two states of the particle and the
substrate. The positive constants ν1 and ν2 are the transition rates between
the two states. The non negative functions f1 and f2 are the probability
densities of being in state one and two respectively. The total probability
density of the particle is the function f1 +f2 which is normalised to one. The
asymptotic displacement per unit time for this model is given by

I(γ, F1, F2, ν1, ν2) = lim
t→∞

1

t

∫ t

0

ds

∫∫

v
(

f1(s, v, x) + f2(s, v, x)
)

dv dx , (8)

and we will prove the following result

Theorem 1.4. For γ > 0, ν1 > 0 and ν2 > 0, I(γ, F1, F2, ν1, ν2) is inde-
pendent of the initial condition, and the set of F1 and F2 ∈ C1 with space
average equal to zero where I(γ, F1, F2, ν1, ν2) 6= 0 is open and dense.

2 Elimination of the spatial average.

Before we start with the proof of the Theorems, we first show that the result
does not depend on the spatial average of the drift b.

Proposition 2.1. Assume b has space time average zero, namely

1

TL

∫ T

0

∫ L

0

b(t, x) dt dx = 0 .



Then the drift b̃ given by

b̃(t, x) = b(t, x+ a(t)) − 1

L

∫ L

0

b(t, y)dy

where

a(t) = − 1

L

∫ t

0

ds

∫ L

0

b(s, y)dy .

is periodic of period T in time and of period L in x. This drift has zero space
average and leads to the same asymptotic displacement per unit time.

Proof. Note first that since the space time average of b is zero, the function
a is periodic of period T . Let u be a solution of (1), and define the function

v(t, x) = u(t, x+ a(t)) .

An easy computation leads to

∂tv = ∂x

(

1

2
∂xv + b̃(t, x)v

)

.

Since a(t) is periodic and bounded we have by a simple change of variable

lim
t→∞

1

t

∫

xu(t, x)dx = lim
t→∞

1

t

∫

x v(t, x)dx .

3 Proof of Theorems 1.1

We start by giving a more convenient expression for the asymptotic velocity
I(b). Using (2) and (1), and integrating by parts we get

I(b) = lim
t→∞

1

t

∫ t

0

ds

∫

x ∂su(s, x)dx = − lim
t→∞

1

t

∫ t

0

ds

∫

b(s, x) u(s, x)dx .

Since b is periodic in x, of period L, we can write

∫

b(s, x) u(s, x)dx =

∫ L

0

b(s, x) uper(s, x)dx

where
uper(s, x) =

∑

n

u(s, x+ nL)



is a periodic function of x of period L. Note that since b is periodic of period
L, uper satisfies also equation (1). We now have

I(b) = − lim
t→∞

1

t

∫ t

0

ds

∫ L

0

b(s, x) uper(s, x)dx . (9)

Since the system is non autonomous, although periodic in time, we can only
expect that when t tends to infinity, the function uper(t, x) tends to a periodic
function wb(t, x) of t and x. Let wb be the solution of equation (1) periodic
in space and time and with an integral (over [0, L]) equal to one. It can
be expected (see [13], [3], [11]) that the asymptotic average displacement is
given by

I(b) = − 1

T

∫ T

0

∫ L

0

b(t, x)wb(t, x)dtdx . (10)

In order to give a rigorous proof of existence of the function wb(t, x) and
of the above relation, we introduce a new time. We consider the operator L
given by

Lw = −∂sw + ∂x

(

1

2
∂xw + b(s, x)w

)

,

acting in a suitable domain dense in the space L1
per(ds dx) of integrable

functions which are periodic in s and x of periods T and L respectively .
This operator is the generator of the diffusion on the two dimensional torus
([0, T ] × [0, L] with the suitable identifications) associated to the stochastic
differential equation

{

ds = dt
dx = −b(s, x) dt+ dWt

(11)

where Wt is the standard Brownian motion (see [8]). We can now establish
the following result.

Proposition 3.1. The diffusion (11) has a unique invariant probability mea-
sure with density wb(s, x). This function is strictly positive. It is periodic of
period T in s and of period L in x and satisfies equation (1), and it is the
only such solution. The semi group with generator L associated to the dif-
fusion (11) is compact and strongly continuous. The peripheral spectrum of
its generator is composed of the simple eigenvalue zero (with eigenvector wb).
In particular, for any function v ∈ L1

per(ds dx), we have in the topology of
L1

per(ds dx)

lim
τ→∞

eτLv = wb

∫ T

0

∫ L

0

v(s, x) ds dx .



This kind of results is well known, we refer to [15] for an exposition and
further references. We can now establish the relation between (9), and (10).

Proposition 3.2. Let v0 ≥ 0 be a periodic function of period L in x of
integral one. Denote by v(t, x) the solution of (1) which is periodic of period
L in x with initial condition v0. Then

lim
t→∞

1

t

∫ t

0

ds

∫ L

0

b(s, x) v(s, x)dx = − 1

T

∫ T

0

∫ L

0

b(t, x)wb(t, x)dtdx .

Proof. In order to apply Proposition (3.1), we consider the operator L0 given
by

L0 = ∂x

(

1

2
∂xu+ b(s, x)u

)

,

and observe that if w ∈ L1
per(ds dx), we have

(

eτLw
)

(s, x) =
(

eτL0w(s− τ, · )
)

(x) , (12)

and in particular for any integer n, we get

(

enTLw
)

(s, x) =
(

enTL0w(s, · )
)

(x) ,

since w is of period T in s.
We now take for w the function w(s, x) = v(s, x) for 0 ≤ s < T . Although

this w may have a jump at s = T , we can consider it as a function in
L1

per(ds dx). We observe that if W (τ, s, x) is a solution of

∂τW = −∂sW + ∂x

(

1

2
∂xW + b(s, x)W

)

,

then for each fixed s0, the function hs0
(τ, x) = W (τ, s0 + τ, x) is a solution of

∂τhs0
= ∂x

(

1

2
∂xhs0

+ b(s0 + τ, x)hs0

)

.

Therefore, by the uniqueness of the solution of (1), we have for any t ≥ 0
(taking s0 = t− T [t/T ])

v(t, x) =
(

e[t/L]TLw
)

(t− [t/L]T, x) .

The proposition follows by applying Proposition 3.1.

The following proposition is the other main step in the proof of Theorem
1.1.



Proposition 3.3. The function b 7→ I(b) is (real) analytic in the Banach
space C1.

By this we mean (see [12]) that the function is C∞, and around any point
b ∈ C1 there is a small ball where the Taylor series converges to the function.

Proof. We will establish that the map b 7→ wb is real analytic in L1
per(ds dx).

For this purpose, we first establish that the operator A defined by

Av = ∂x(bv) = b ∂xv + ∂xb v

is relatively bounded with respect to

L̃ = −∂s +
1

2
∂2

x ,

and with relative bound zero (see [9] for the definition). This is obvious for
the operator of multiplication by ∂xb which is bounded, and since b is bounded
it is enough to derive the result for the operator ∂x. We will show that there
is a constant C > 0 such that for any λ > 0,

∥

∥∂xRλ

∥

∥

L1
per(ds dx)

< Cλ−1/2,

where Rλ is the resolvent of L̃. In other words, we will show that for any
λ > 0

∥

∥

∥

∥

∂x

∫ ∞

0

e−λτeτ L̃dτ

∥

∥

∥

∥

L1
per(ds dx)

<
C√
λ
. (13)

Analogously to formula (12) we have for any w ∈ L1
per(ds dx)

∂x

(

eτL′

w
)

(s, x) =

∫ L

0

∂xgτ(x, y)w(s− τ, y) dy ,

where gτ (x, y) is the heat kernel on the circle of length L. We now observe
that if n is an integer with |n| ≥ 2, we have (since x ∈ [0, L])

sup
y∈[0,L]

∫ L

0

∣

∣x− y − nL
∣

∣

τ 3/2
e−(x−y−nL)2/(2τ)dx ≤ O(1)

e−n2/(4τ)

τ
.

From the explicit expression

gτ (x, y) =
∑

n

1√
2 π τ

e−(x−y−nL)2/(2τ)

it follows easily that

sup
y∈[0,L]

∫ L

0

∣

∣

∣
∂xgτ (x, y)

∣

∣

∣
dx ≤

∑

|n|≤1

sup
y∈[0,L]

∫ L

0

∣

∣x− y − nL
∣

∣

τ 3/2
√

2π
e−(x−y−nL)2/(2τ)dx



+O(1)
∑

|n|≥2

e−n2/(4τ)

τ
≤ O(1)√

τ
.

Therefore, we get

∥

∥

∥
∂x

(

eτL′

w
)
∥

∥

∥

L1
per(ds dx)

≤
O(1)‖w‖L1

per(ds dx)√
τ

.

Multiplying by e−λτ and integrating over τ we get the estimate (13) which
implies immediately that A is relatively bounded with respect to L′ with
relative bound zero. Since the eigenvalue 0 of L is simple and isolated,
the proposition follows from analytic perturbation theory for holomorphic
families of type (A) (see [9]).

In order to prove Theorem 1.1, we now establish that I is non trivial near
the origin.

Lemma 3.4. DI0 = 0 and

D2I0(B,B) =
∑

p,q

p qL3T 2

p2L4 + π2q4T 2

∣

∣Bp,q

∣

∣

2
.

Proof. The first statement is immediate from formula (10). For b = 0, we
have obviously w0 = 1/L. For b small we use Taylor expansion. We have for
b = ǫB

wb = w0 + ǫw1 + O(ǫ2) .

As we just explained, w0 = 1/L and we have for w1 the equation

∂tw
1 =

1

2
∂2

xw
1 +

1

L
∂xB .

Moreover, w1 must have space time average zero. This equation can be solved
using Fourier series in time and space. Namely if

w1(t, x) =
∑

p,q

e2πipt/T e2πiqx/Lw1
p,q ,

we obtain the equation

2πip

T
w1

p,q = −2π2q2

L2
w1

p,q +
2πiq

L2
Bp,q ,

or in other words for any (p, q) 6= (0, 0)

w1
p,q =

πiq/L2

πip/T + π2q2/L2
Bp,q .



Note in particular that the denominator does not vanish except for p = q = 0.
Using the Plancherel formula we can now estimate I(ǫB). We have

I(ǫB) =
ǫ2

T

∫

B(t, x)w1(t, x)dtdx+ O(1)ǫ3 .

Therefore

I(ǫB) = ǫ2
∑

p,q

q/L

p/T − iπq2/L2
Bp,qBp,q + O(ǫ3) .

Since B is real, we have Bp,q = B−p,−q and this can also be written

I(ǫB) = ǫ2
∑

p,q

p qL3T 2

p2L4 + π2q4T 2

∣

∣Bp,q

∣

∣

2
+ O(ǫ3) .

This finishes the proof of the Lemma.

To prove Theorem 1.1, we observe that since I is continuous, the subset
of C1 where it does not vanish is open. If this set is not dense, the zero
set of I contains a ball. However since I is real analytic and C1 is pathwise
connected we conclude that in that case I should vanish identically contra-
dicting Lemma 3.4. We refer to [12] for more properties of the zero set of
analytic functions in Banach spaces.

Remark 3.1. We observe that D2I is a non definite quadratic form. This
leaves the possibility of having non zero drifts b (with space and time average
equal to zero) satisfying I(b) = 0. Let b1 and b2 be such that I(b1) > 0 and
I(b2) < 0. Such b1 and b2 exist, one can for example take them of small
enough norm and use Lemma 3.4. Moreover one can assume that b2 /∈ Rb1.
Otherwise, by the continuity of I, one can perturb slightly b2 such that this
relation does not hold anymore, but I(b2) is still negative. One now considers
the function ϕ(α) = I

(

(1−α)b1+αb2
)

. This function is continuous, it satisfies
ϕ(1) > 0 and ϕ(0) < 0, hence it should vanish at least at one point α0 ∈]0, 1[.
At this point we have b0 = (1 − α0)b1 + α0b2 6= 0 and I(b0) = 0, and b0 is a
non trivial periodic function with vanishing space average and time average.

4 Proof of Theorem 1.2.

In this section we discuss the model with two components (3). As before, we
arrive at the formula

I
(

ν1, ν2, b1, b2
)

= − lim
t→∞

1

t

∫ t

0

∫ L

0

(

b1(s, x) ρ1(s, x) + b2(s, x) ρ2(s, x)
)

ds dx ,



where ρ1 and ρ2 are solutions of (3) periodic in x of period L. We denote
by L1

per(dx) the space of integrable periodic functions of period L in x with
value in R2. The norm is the sum of the L1 norms of the components.

Proposition 4.1. The semi-group defined by (3) is compact in L1
per(dx). It

is positivity preserving, and its peripheral spectrum is the simple eigenvalue
one. The corresponding eigenvector can be chosen positive with dense support
and normalised, it depends analytically on b1, and b2.

Proof. We introduce the three generators

L
(

ρ1

ρ2

)

=

(

∂x

(

D∂xρ1 + b1(x)ρ1

)

− ν1ρ1 + ν2ρ2

∂x

(

D∂xρ2 + b2(x)ρ2

)

+ ν1ρ1 − ν2ρ2

)

,

L0

(

ρ1

ρ2

)

=

(

D∂2
xρ1

D∂2
xρ2

)

and L1

(

ρ1

ρ2

)

=

(

∂x

(

D∂xρ1 + b1(x)ρ1

)

∂x

(

D∂xρ2 + b2(x)ρ2

)

)

.

This operator L0 is the infinitesimal generator of a strongly continuous
bounded and compact semi-group in L1

per(dx). It is easy to verify that the
operator A = L−L0 is L0 relatively compact and L0 relatively bounded with
relative bound zero (see [9]). Therefore L is also the infinitesimal generator
a strongly continuous and compact semi-group in L1

per(dx), and similarly for
L1.

The semi-group etL is positivity improving (see [2]). Indeed, let M be the
matrix

M =

(

−ν1 ν2

ν1 −ν2

)

.

It is easy to verify for example by direct computation, that the matrix et M

has strictly positive entries for any t > 0. Moreover, for any t ≥ 0, we have
et M ≥ e−t(ν1+ν2)Id, where the inequality holds for each entry. It immediately
follows from the Trotter product formula (see [2] ) that for each x and y in
the circle, and any t > 0, we have

etL(x, y) ≥ e−t(ν1+ν2)etL1(x, y) ,

again in the sense that the inequality holds between all the entries. Since for
each x, y and t > 0 the diagonal elements of etL1(x, y) are strictly positive
(see for example [15]), we conclude that the matrix valued kernel etL(x, y)
has non negative entries and strictly positive entries on the diagonal.

Since the sum of the integrals of the two components of an element of
L1

per(dx) is preserved by the semi-group etL, it follows that this semi group



has norm one in L1
per(dx). It then follows by classical arguments that 0 is a

simple isolated eigenvalue of the generator and there is no other eigenvalue
with vanishing real part.

The analyticity follows from the uniqueness and simplicity of the eigen-
value 0 as in the proof of proposition (3.3).

We denote by w1 and w2 the two (non negative) components of the sta-
tionary solution of the system (3) which are periodic of period L and nor-
malised by

∫ L

0

[

w1(x) + w2(x)
]

dx = 1 .

Note that w1 and w2 depend on the constants ν1, ν2, and the functions b1,
and b2.

It follows immediately from Proposition 4.1 that the average asymptotic
velocity is given by

I(ν1, ν2, b1, b2) =

∫ L

0

[

b1(x)w1(x) + b2(x)w2(x)
]

dx . (14)

Since the function I(ν1, ν2, b1, b2) is analytic in
(

b1, b2
)

, to prove that it is
non trivial, we look at the successive differentials at the origin.

Proposition 4.2. DI0 = 0 and for any (b1, b2), D
2I0

(

(b1, b2), (b1, b2)
)

= 0.

Proof. The first result is trivial. For the second result one uses perturbation
theory as before in the Fourier decomposition. We get with σ = 4π2D/L2

(

−σn2 − ν1 ν2

ν1 −σn2 − ν2

) (

w1
1(n)

w2
1(n)

)

= − 2π i n

L(ν1 + ν2)

(

ν2b1(n)
ν1b2(n)

)

Some easy computations using Plancherel identity lead to

D2I0
(

(b1, b2), (b1, b2)
)

= −
∑

n

2π i n

L(ν1 + ν2)
(

(σn2 + ν1)(σn2 + ν2) − ν1ν2

)

×
[

(σn2 + ν1)ν2b̄1(n)b1(n) + (σn2 + ν2)ν1b̄2(n)b2(n)

+ν1ν2

(

b̄2(n)b1(n) + b̄1(n)b2(n)
)

]

= 0

since b1 and b2 are real (b̄1(n) = b1(−n)).



This result suggests to look at the third differential at the origin which
turns out to be a rather involved cubic expression. In order to show that
the function I is non trivial, it is enough to find a particular pair

(

b1, b2
)

such that D3I0
(

(b1, b2), (b1, b2), (b1, b2)
)

6= 0. This was done using a symbolic
manipulation program (Maxima). We found that for L = 2π, D = 1, b1(x) =
cos(2x) and b2(x) = cos(x), one gets

D3I0
(

(b1, b2), (b1, b2), (b1, b2)
)

= − ν1ν2(ν2 − 2ν1 + 1)

4(ν2 + ν1)(ν2 + ν1 + 1)2(ν2 + ν1 + 4)
.

Theorem 1.2 follows as before.

4.1 Proof of Theorem 1.3

As in the previous section, we can introduce the periodised function (in x)

f̆(t, v, x) =
∑

n

f(t, v, x+ nL) .

This function is periodic of period L and satisfies also equation (5). We get
also I(γ, F ) by replacing f by f̆(t, v, x) in equation (6) and integrating only
on one period. From now on we will work with this periodised function and
denote it by f by abuse of notation.

We now introduce a stochastic differential equation on [0, T ]× [0, L]×R
with periodic boundary conditions in the first two variables s and x. This
differential equation is given by







ds = dt
dx = v dt
dv = −γvdt+ F (s, x)dt+ dWt .

(15)

To this diffusion is associated the infinitesimal generator L given by

Lw = −∂sw − v ∂xw + ∂v

[

(γv − F (t, x))w
]

+
1

2
∂2

vw .

We denote by B the space L2(eγv2

ds dv dx) of functions periodic in s of
period T and periodic in x of period L. Using an L2 space instead of an L1

space is useful in proving analyticity.
We can now establish the following result.

Proposition 4.3. The diffusion semi-group defined by (15) in B is compact
and the kernel has dense support. It is mixing and has a unique invariant
probability measure (in B) with density f̃(s, v, x). This function is strictly



positive, satisfies equation (5), and it is the only such solution. In particular,
for any function w ∈ B, we have in the topology of B

lim
τ→∞

eτLw = f̃

∫ T

0

∫ L

0

∫

w(s, v, x) ds dv dx .

The function f̃ is real analytic in F ∈ C1.

Proof. Instead of working in the space B , we can work in the space L2(ds dv dx)
by using the isomorphism given by the multiplication by function eγv2/2. In
that space we obtain the new generator L′

F given by

L′
Fg = −∂sg − v ∂xg − F∂vg + Fγvg − γ2v2

2
g +

γ

2
g +

1

2
∂2

vg .

Using integration by parts, it is easy to verify that

ℜ
∫

ḡ
(

L′
F g

)

ds dv dx =

∫
(

γ

2
|g|2 + γF v |g|2 − γ2

2
v2|g|2 − 1

2

∫

∣

∣∂vg
∣

∣

2
)

ds dv dx

≤
(γ

2
+

∥

∥F
∥

∥

2

∞

)

∫

|g|2 ds dv dx−
∫

(

γ2

4
v2|g|2 +

1

2

∣

∣∂vg
∣

∣

2
)

ds dv dx . (16)

We see immediately that −L′
F is quasi accretive (see [9] for the definition

and properties of the semi-groups generated by these operators).
Let gt = etL′

F g0, using several integrations by parts one gets easily

∂t

∫

∣

∣gt

∣

∣

2
ds dv dx = 2γ

∫

F v
∣

∣gt

∣

∣

2
ds dv dx− γ2

∫

v2
∣

∣gt

∣

∣

2
ds dv dx

+γ

∫

∣

∣gt

∣

∣

2
ds dv dx−

∫

∣

∣∂vgt

∣

∣

2
ds dv dx

≤ −γ
2

2

∫

v2
∣

∣gt

∣

∣

2
ds dv dx+

(

γ + 4γ2
∥

∥F
∥

∥

2

∞

)

∫

∣

∣gt

∣

∣

2
ds dv dx .

We obtain immediately

∥

∥gt

∥

∥ ≤ e

(

γ/2+2γ2‖F‖2
∞

)

t
∥

∥g0

∥

∥ (17)

and
∫ t

0

dτ

∫

v2
∣

∣gτ

∣

∣

2
ds dv dx ≤ 2

γ2
e

(

γ+4γ2‖F‖2
∞

)

t
∥

∥g0

∥

∥

2
. (18)



Similarly, we get

∂t

∫

v2
∣

∣gt

∣

∣

2
ds dv dx

= 4

∫

F v
∣

∣gt

∣

∣

2
ds dv dx+ 2γ

∫

F v3
∣

∣gt

∣

∣

2
ds dv dx− γ2

∫

v4
∣

∣gt

∣

∣

2
ds dv dx

+γ

∫

v2
∣

∣gt

∣

∣

2
ds dv dx+ 2

∫

∣

∣gt

∣

∣

2
ds dv dx−

∫

v2
∣

∣∂vgt

∣

∣

2
ds dv dx

≤ C(γ, ‖F‖∞)

∫

∣

∣gt

∣

∣

2
ds dv dx (19)

where C(γ, ‖F‖∞) is a constant independent of gt. For t > 0 fixed, we deduce
from (18) that there exists ξ(t) ∈ [0, t[ such that

∫

v2
∣

∣gξ(t)

∣

∣

2
ds dv dx ≤ 2

γ2 t
e

(

γ+4γ2‖F‖2
∞

)

t
∥

∥g0

∥

∥

2
.

Using (4.1) and (17) we get (for any t > 0)

∫

v2
∣

∣gt

∣

∣

2
ds dv dx =

∫

v2
∣

∣gξ(t)

∣

∣

2
ds dv dx+

∫ t

ξ(t)

dτ ∂τ

∫

v2
∣

∣gτ

∣

∣

2
ds dv dx

≤
(

2

γ2 t
+ C t

)

e

(

γ+4γ2‖F‖2
∞

)

t
∥

∥g0

∥

∥

2
.

In other words, for any t > 0 the image of the unit ball by the semi-group
is equi-integrable at infinity in v. Compactness follows immediately using
hypoelliptic estimates (see [15]).

From the standard control arguments (see [15]) applied to the diffusion
(15), we obtain that the kernel of the semi-group has dense support. We now
observe that integration of a function against e−γv2

is preserved by the semi-
group evolution. This implies by standard arguments that the spectral radius
of the semi-group is one, the invariant density is unique, and exponential
mixing holds (see [15]). Finally, as in equation (4.1), for g in the domain of
L′ we have

ℜ
∫

ḡ
(

L′
F g

)

ds dv dx

≥
(γ

2
− 2

∥

∥F
∥

∥

2

∞

)

∫

|g|2 ds dv dx−
∫

(

γ2

2
v2|g|2 +

1

2

∣

∣∂vg
∣

∣

2
)

ds dv dx .

This implies for any λ > 0
∫

∣

∣∂vg − γvg
∣

∣

2
ds dv dx ≤ 1

λ

∥

∥L′g‖2
2 +

(

4 λ+ 3 γ + 4
∥

∥F
∥

∥

2

∞

)

‖g‖2 .



In other words, the operator F
(

∂v − γv
)

is relatively bounded with respect
to L′

0 with relative bound zero and this implies the analyticity (see [9]).

We can now complete the proof of Theorem 1.3.

Proof. (of Theorem 1.3).
Repeating the argument in the proof of Proposition 3.2, using Proposition

4.3 we get

lim
t→∞

1

t

∫ t

0

∫∫

v f(τ, v, x)dτ dv dx =
1

γT

∫ T

0

∫ L

0

∫

F (τ, x) f̃(τ, v, x)dτ dv dx ,

We can now use perturbation theory to compute the right hand side near
F = 0. For this purpose, it is convenient to fix a C1 function G periodic in
space and time and with zero average, and consider F = ǫG with ǫ small.
Since f̃ is analytic by Proposition 4.3, we can write

f̃ = f̃0 + ǫf̃1 + ǫ2f̃2 + O(1)ǫ3

where

f̃0 =
1

L

√

γ

π
e−γv2

and for n ≥ 1 the f̃n are functions of integral zero, periodic in time of period
T , defined recursively by

∂tf̃n + v∂xf̃n − ∂v

(

γvf̃n

)

− 1

2
∂2

v f̃n = −G(t, x)∂v f̃n−1 .

We get immediately

∫ T

0

∫ L

0

∫

G(τ, x) f̃0(τ, v, x)dτ dv dx = 0 ,

since f̃0 is independent of x and t and G has average zero. Therefore we now
have to look at the next order perturbation, namely the second order in ǫ for
the average velocity. In other words, we have

lim
t→∞

1

t

∫ t

0

∫ L

0

∫

v f(τ, v, x)dτ dv dx =

ǫ2

γT

∫ T

0

∫ L

0

∫

G(τ, x) f̃1(τ, v, x)dτ dv dx + O(1)ǫ3 . (20)

We first have to solve

∂tf̃1 + v∂xf̃1 − ∂v

(

γvf̃1

)

− 1

2
∂2

v f̃1 = −G(t, x)∂v f̃0



to get f̃1. For this purpose, we use Fourier transform in all variables (recall
that t and x are periodic variables). We will denote by f̂1,p,q(k) the Fourier
transform of f̃1 (and similarly for other functions), namely

f̃1(t, v, x) =
∑

p,q

e2π i p t/T e2π i q x/L

∫

ei k vf̂1,p,q(k) dk .

We get

(

2πip

T
+
k2

2

)

f̂1,p,q +

(

γk − 2πq

L

)

d

dk
f̂1,p,q = −i k Ĝp,q

2π L
e−k2/(4γ) . (21)

We now observe that equation (4.1), only involves the integral of f̃1 with
respect to v since G does not depend on v. Therefore we need only to
compute f̂1,p,q(0). Let hp,q(k) be the function

hp,q(k) = ek2/(4γ)eπ q k/(γ2L)

∣

∣

∣

∣

1 − γkL

2πq

∣

∣

∣

∣

2π2q2/(γ3L2)+2πip/(γT )−1

.

For −2π|q|/(γL) < k < 2π|q|/(γL), this function is a solution of

(

2πip

T
+
k2

2

)

hp,q(k) −
d

dk

[(

γk − 2πq

L

)

hp,q(k)

]

= 0 .

For q > 0, multiplying (21) by hp,q(k) and integrating over k from 0 to
2πq/(γL), we get

f̂1,p,q(0) = Ĝp,qΓp,q

where

Γp,q = − i

4π2q

∫ 2πq/(γL)

0

eπ q k/(γ2L)

∣

∣

∣

∣

1 − γkL

2πq

∣

∣

∣

∣

2π2q2/(γ3L2)+2πip/(γT )−1

k dk .

Note that since q 6= 0, the integral is convergent. For q < 0, one gets a
similar result, namely

Γp,q =
i

4π2q

∫ 0

2πq/(γL)

eπ q k/(γ2L)

∣

∣

∣

∣

1 − γkL

2πq

∣

∣

∣

∣

2π2q2/(γ3L2)+2πip/(γT )−1

k dk ,

and it is easy to verify that Γp,q = Γ−p,−q. We now have

∫ T

0

∫ L

0

∫

G(τ, x) f̃1(τ, v, x)dτ dv dx =
∑

p,q

Ĝp,q Γp,q Ĝp,q .



Since G(t, x) is real, we have Ĝp,q = Ĝ−p,−q, and therefore

∫ T

0

∫ L

0

∫

G(τ, x) f̃1(τ, v, x)dτ dv dx =
∑

p,q

∣

∣Ĝp,q

∣

∣

2 Γp,q + Γ−p,−q

2
.

We observe that for q > 0,

Γp,q + Γ−p,−q

2
=

1

4π2q

∫ 2πq/(γL)

0

eπ q k/(γ2L)

∣

∣

∣

∣

1 − γkL

2πq

∣

∣

∣

∣

2π2q2/(γ3L2)−1

× sin
(

(2πp/(γT )) log(1 − γkL/(2πq))
)

k dk ,

=
q

γ2L

∫ 1

0

e2π2q2u/(γ3L2)(1 − u)2π2q2/(γ3L2)−1 sin
(

(2πp/(γT )) log(1 − u)
)

u du .

Note that this quantity is equal to zero for p = 0, and it is odd in p. It can
be expressed in terms of degenerate hypergeometric functions. We now have
to prove that for p 6= 0, this quantity is not zero, at least for one pair of
integers (p, q). For this purpose, we will consider q large. To alleviate the
notation, we consider the asymptotic behavior for α > 0 large and β ∈ R

fixed of the integral

J(α) =

∫ 1

0

eαu(1 − u)α−1(1 − u)iβu du .

Using steepest descent at the critical point u = 0 (see [7]), one gets

ℑJ(α) = − β

(2α)3/2
√
π

+
O(1)

α2
.

We apply this result with α = 2π2q2/(γ3L2) and β = 2πp/(γT ), and conclude
that for q large enough,

(

Γp,q + Γ−p,−q

)

/2 6= 0 as required.

The proof of Theorem 1.3 is finished as before.

4.2 Proof of Theorem 1.4

The scheme of the proof is similar to the proofs of the previous Theorems.
We only sketch the argument except for some particular points. We assume
γ > 0, ν1 > 0 and ν2 > 0. One starts by reducing the problem to a periodic
boundary condition in x. The key result is the analog of Proposition 4.1.



Proposition 4.4. The semi-group defined by (7) is compact in L2
(

eγv2

dv dx
)

(the x variable being on the circle of length L). It is positivity preserving
positivity improving on the diagonal. Its peripheral spectrum is the simple
eigenvalue one. The corresponding eigenvector (f̃1, f̃2) can be chosen positive
with dense domain and normalised (f̃1 + f̃2 of integral one). The functions
f̃1 and f̃2 depend analytically on F1, and F2.

Proof. The proof is very similar to the proof of Proposition 4.1 and we only
sketch the details for the different points.

It follows as before from the evolution equation that

I
(

γ, F1, F2, ν1, ν2

)

=

∫

(

f̃1F1 + f̃2F2

)

dv dx .

For fixed γ > 0, ν1 > 0 and ν2 > 0, this quantity is real analytic in (F1, F2),
and to check that it is non trivial we investigate its behaviour near the
origin. For this purpose, we set (F1, F2) = ǫ(G1, G2) with G1 and G2 two
C1 functions, periodic of period L and with zero average. We now develop
I
(

γ, ǫG1, ǫG2, ν1, ν2

)

in series of ǫ. As for model (3), the terms of order ǫ and
of order ǫ2 vanish. One then has to find a pair (G1, G2) such that the term
of order ǫ3 does not vanish. The computations are rather tedious and will be
detailed in the appendix.

A Proof of Theorem 1.4.

We define the vectors

~f =

(

f̃1

f̃2

)

and ~F =

(

F1

F2

)

.

We then have

I
(

γ, F1, F2, ν1, ν2

)

=

∫∫

~F • ~f dv dx .

The equation for the stationary solution of (7) can be written

1

2
∂2

v
~f − v∂x

~f + ∂v

[

γv ~f
]

+M ~f = B(x) ∂v
~f (22)

where as before

M =

(

−ν1 ν2

ν1 −ν2

)



and

B(x) =

(

F1(x) 0
0 F2(x)

)

.

Without loss of generality, we can rescale v and assume γ = 1, replacing ν1

and ν2 by ν1/γ and ν2/γ respectively, L by Lγ−3/2, F1 and F2 by F1/
√
γ and

F2/
√
γ respectively.

For reasons that will become obvious later on, it is more convenient to
consider instead of ~f the vector

~ψ = ev2/2 ~f .

Let L be the operator defined by

L h(v) = ∂2
vh(v) − v2h(v) + h ,

then the equation (22) for the stationary solution can be written

L ~ψ − 2v∂x
~ψ + 2M ~ψ = 2B(x)

(

∂v
~ψ − v ~ψ

)

, (23)

and we have

I
(

γ, F1, F2, ν1, ν2

)

=

∫∫

~F • ~ψ e−v2/2 dv dx , (24)

with ~ψ normalised by

∫∫

(

ψ1 + ψ2

)

e−v2/2 dv dx = 1 . (25)

For ~F = ǫ ~G we have the expansion

~ψ = ~ψ 0 + ǫ~ψ 1 + ǫ2 ~ψ 2 + O
(

ǫ3
)

(26)

where

~ψ 0(v, x) =
1

L
(

ν1 + ν2

)√
π

(

ν2

ν1

)

e−v2/2 ,

and the vectors ~ψ j are obtained recursively by solving

L ~ψ j+1 − 2v∂x
~ψ j+1 + 2M ~ψ j+1 = 2C(x)

(

∂v
~ψ j − v ~ψ j

)

,

where

C(x) =

(

G1(x) 0
0 G2(x)

)

.



Note that ~ψ 0 satisfies

L ~ψ 0 − 2v∂x
~ψ 0 + 2M ~ψ 0 = ~0

and the normalisation condition (25), while for j ≥ 1, ~ψ j should satisfy the
normalisation condition

∫∫

(

ψj
1 + ψj

2

)

e−v2/2 dv dx = 0 . (27)

Corresponding to the expansion (26), we have the expansion

I
(

1, ǫG1, ǫG2, ν1, ν2

)

=
3

∑

n=1

ǫnIn
(

G1, G2, ν1, ν2

)

+ O
(

ǫ4
)

,

where

In
(

G1, G2, ν1, ν2

)

=

∫∫

~G • ~ψ n−1 e−v2/2 dv dx .

We have immediately I1
(

G1, G2, ν1, ν2

)

= 0 since the averages of G1 and G2

over x vanish and ~ψ 0 does not depend on x. In order to compute I1, we need
to compute ~ψ 1 which solves

L ~ψ 1 − 2v∂x
~ψ 1 + 2M ~ψ 1 = v e−v2/2 ~H(x)

where

~H(x) = − 4

L
(

ν1 + ν2

)√
π

(

ν2G1(x)
ν1G2(x)

)

.

Since ~H is periodic of period L, we can decompose this equation in Fourier
series and get

L ~ψ 1(p) − 4π i p v

L
~ψ 1(p) + 2M ~ψ 1(p) = v e−v2/2 ~H(p) .

We now observe that

L − 4π i p v

L
+ 2M = e2π i p ∂v/L

(

L − 4π2p2

L2
+ 2M

)

e−2π i p ∂v/L .

This implies

~ψ 1(p) = e2π i p ∂v/L

(

L − 4π2p2

L2
+ 2M

)−1

e−2π i p ∂v/L
(

v e−v2/2 ~H(p)
)

. (28)



The spectrum of the self adjoint operator L in L2(dv) is well known (see for
example [1] or [4]). The eigenvalues are the numbers −2n with n ∈ N∗, and
the corresponding normalised eigenvectors are the functions

en(v) =
2−n/2

π1/4 (n!)1/2
Hn(v) e−v2/2 =

(−1)n 2−n/2

π1/4 (n!)1/2
ev2/2 dn

dvn
e−v2

,

where the Hn are the Hermite polynomials. We have

e−2π i p ∂v/L
(

v e−v2/2
)

=

(

v − 2π i p

L

)

e−v2/2e2π i p v/Le2 π2 p2/L2

,

and we decompose this function on the Hermite basis (en). It follows easily
using integration by parts that

∫

en(v)

(

v − 2π i p

L

)

e−v2/2e2π i p v/Le2 π2 p2/L2

dv

= (−1)n e2 π2 p2/L2 2−n/2

π1/4 (n!)1/2

∫
(

v − 2π i p

L

)

e2π i p v/L dn

dvn
e−v2

dv

= e2 π2 p2/L2 2−n/2

π1/4 (n!)1/2
×

∫

[

v

(

2π i p

L

)n

−
(

2π i p

L

)n+1

+ n

(

2π i p

L

)n−1
]

e−v2

e2π i p v/L dv

= eπ2 p2/L2 2−n/2π1/4

(n!)1/2

(

n+ 2π2p2/L2
)

(

2π i p

L

)n−1

.

This formula holds for any p 6= 0 and any n ≥ 0. For p = 0, the formula
holds for any n ≥ 1 (with the convention 00 = 1). Finally, for n = 0 and
p = 0 the result is zero. We now have after some simple linear algebra

(

L − 4π2p2

L2
+ 2M

)−1
(

en
~H(p)

)

(v) = en(v)

(

−2n− 4π2p2

L2
+ 2M

)−1

~H(p)

=
en(v)

2
(

n+ 2π2p2/L2
)(

n + ν1 + ν2 + 2π2p2/L2
)

×
(

−ν2 − n− 2π2p2/L2 −ν2

−ν1 −ν1 − n− 2π2p2/L2

)

~H(p) .

We can write using Fourier series

I2
(

G1, G2, ν1, ν2

)

=
∑

p

~G(p) •
∫

~ψ 1(v, p) e−v2/2 dv



=
∑

p

∑

n

~G(p) •
(

−ν2 − n− 2π2p2/L2 −ν2

−ν1 −ν1 − n− 2π2p2/L2

)

~H(p)

× 1

2
(

n + ν1 + ν2 + 2π2p2/L2
) eπ2 p2/L2 2−n/2π1/4

(n!)1/2

(

2π i p

L

)n−1

×
∫

(

e2π i p ∂v/Len

)

(v) e−v2/2 dv .

Since the operator i∂v is self adjoint, we get
∫

e−v2/2
(

e2π i p ∂v/Len

)

(v) dv =

∫

e2π i p ∂v/Le−v2/2 en(v) dv

=

∫

en(v) e−
(

v−2π i p/L
)2

/2 dv = e2 π2 p2/L2

∫

en(v) e−v2/2 e2 i v π p v/L dv .

By a computation similar to the above one, we get
∫

e2π i p v/Len(v) e−v2/2 dv = eπ2 p2/L2 2−n/2π1/4

(n!)1/2

(

2π i p

L

)n

.

After some simple algebra, we obtain

I2
(

G1, G2, 2ν1, 2ν2

)

=
2

L(ν1 + ν2)

∑

n, p, n+p2>0

e2 π2 p2/L2 2−n

n!

(

2π i p

L

)2n−1
R(p)

(

n+ ν1 + ν2 + 2π2p2/L2
)

where

R(p) = G1(p)G1(p)ν2

(

ν2 +n+2π2p2/L2
)

+G2(p)G2(p)ν1

(

ν1 +n+2π2p2/L2
)

+ν1ν2

(

G1(p)G2(p) +G2(p)G1(p)
)

.

Since G1 and G2 are real, we have G1(p) = G1(−p) and G2(p) = G2(−p).
This implies immediately thatR(p) is even in p and therefore I2

(

G1, G2, ν1, ν2

)

=
0. A similar computation (involving only p = 0) shows that the normalisa-
tion condition (27) holds. We now need to compute I3

(

G1, G2, ν1, ν2

)

, and
we recall that it is given by

I3
(

G1, G2, ν1, ν2

)

=
∑

p

~G(p) •
∫

~ψ 2(v, p) e−v2/2 dv (29)

where

~ψ 2(v, p) = e2π i p ∂v/L

(

L − 4π2p2

L2
+ 2M

)−1

e−2π i p ∂v/L
(

~J(v, p)
)

.



and where ~J(v, p) is the Fourier series of the vector

~J(v, x) = 2C(x)
(

∂v
~ψ 1(v, x) − v ~ψ 1(v, x)

)

.

As above, using that the operator i∂v is self adjoint, we get

I3
(

G1, G2, 2ν1, 2ν2

)

=
∑

p

∫
(

L − 4π2p2

L2
+ 2M t

)−1

e2π i p ∂v/L
(

e−v2/2 ~G(p)
)

• e−2π i p ∂v/L
(

~J(v, p)
)

dv .

We can now compute everything in terms of series of Hermite coefficients.
Denoting by C(p) the Fourier coefficients of the matrix C(x) we get

e−2π i p ∂v/L ~J(v, p) = 2
∑

q

C(p− q)e−2π i p ∂v/L
(

∂v
~ψ 1(v, q) − v ~ψ 1(v, q)

)

= 2
∑

q

C(p− q) e−2π i p ∂v/L

(

∂v − v
)

e2π i q ∂v/L

(

L − 4π2q2

L2
+ 2M

)−1

e−2π i q ∂v/L
(

v e−v2/2 ~H(q)
)

= 2
∑

q

C(p− q)e2π i (p−q) ∂v/L

(

∂v − v + 2π i q/L
)

(

L − 4π2q2

L2
+ 2M

)−1

e−2π i q ∂v/L
(

v e−v2/2 ~H(q)
)

.

We have already computed (for n ≥ 0 if p 6= 0 and for p = 0 if n > 0)

(

L − 4π2q2

L2
+ 2M

)−1

e−2π i q ∂v/L
(

v e−v2/2 ~H(q)
)

=
∑

n

eπ2 q2/L2 2−n/2π1/4

(n!)1/2

(

2π i q

L

)n−1
en(v)

2
(

n+ ν1 + ν2 + 2π2q2/L2
)

(

−ν2 − n− 2π2q2/L2 −ν2

−ν1 −ν1 − n− 2π2q2/L2

)

~H(q) (30)

By a similar computation left to the reader, we get

(

L − 4π2p2

L2
+ 2M t

)−1

e2π i p ∂v/L
(

e−v2/2 ~G(p)
)



=
∑

m

eπ2 p2/L2 2−m/2π1/4

(m!)1/2

(

−2π i p

L

)m

× em(v)

2
(

m+ 2π2p2/L2
)(

m+ ν1 + ν2 + 2π2p2/L2
)

(

−ν2 −m− 2π2p2/L2 −ν1

−ν2 −ν1 −m− 2π2p2/L2

)

~G(p) (31)

It finally remains to compute
∫

em(v)e−2π i (p−q) ∂v/L
(

∂v − v + 2π i q/L
)

en(v)dv

= −
√

2
√
n+ 1

∫

em(v)en+1

(

v − 2 π i (p− q)/L
)

dv

+
2π i q

L

∫

em(v)en

(

v − 2 π i (p− q)/L
)

dv ,

since
(

d

dv
− v

)

en(v) = −
√

2
√
n+ 1 en+1(v) .

We now compute the quantity

γn,m(r) =

∫

em(v)en

(

v − 2 π i r/L
)

dv

=
2−(n+m)/2e2 π2 r2/L2

√
π (n!m!)1/2

∫

e−v2

e2 π i r v/LHm(v) Hn

(

v − 2 π i r/L
)

dv

=
2−(n+m)/2eπ2 r2/L2

√
π (n!m!)1/2

∫

e−
(

v−π i r/L
)2

Hm(v) Hn

(

v − 2 π i r/L
)

dv

=
2−(n+m)/2eπ2 r2/L2

√
π (n!m!)1/2

∫

e−v2

Hm

(

v + π i r/L
)

Hn

(

v − π i r/L
)

dv .

When m ≤ n, we obtain

γn,m(r) =
(m!)1/22(n−m)/2eπ2 r2/L2

(n!)1/2

(

− i π r

L

)n−m

Ln−m
m

(

− 2π2 r2

L2

)

,

where Ls
r denotes a Laguerre polynomial (see [4], formula 7.377). Similarly,

when m ≥ n we get

γn,m(r) =
(n!)1/22(m−n)/2eπ2 r2/L2

(m!)1/2

(

i π r

L

)m−n

Lm−n
n

(

− 2π2 r2

L2

)

.



We can now use this result together with equations (A) and (A) into the
expression (29). We get

I3
(

G1, G2, ν1, ν2

)

=

− 1

L
(

ν1 + ν2

)

∑

n,m,p,q

(

2π i q

L
γn,m(p− q) −

√
2
√
n + 1γn+1,m(p− q)

)

eπ2 q2/L2 2−n/2π1/4

(n!)1/2

(

2π i q

L

)n−1

eπ2 p2/L2 2−m/2π1/4

(m!)1/2

(

2π i p

L

)m

× S(p, q)
(

m+ 2π2p2/L2
)(

m+ ν1 + ν2 + 2π2p2/L2
)(

n+ ν1 + ν2 + 2π2q2/L2
)

where

S(p, q) =

((

ν2 +m+ 2π2p2/L2 ν1

ν2 ν1 +m+ 2π2p2/L2

)

~G(p)

)

•

((

G1(p− q) 0
0 G2(p− q)

) (

ν2 + n + 2π2q2/L2 ν2

ν1 ν1 + n+ 2π2q2/L2

)

×
(

ν2G1(q)
ν1G2(q)

))

.

A numerical simulation using for G1 and G2 real Fourier polynomials of
order two and random coefficients give a nonzero result for I3

(

G1, G2, 1, 2
)

and L = 10.
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Notes], 107. North-Holland Publishing Co., Amsterdam, 1986.

[13] P.Reimann. Brownian motors: noisy transport far from equilibrium.
Physics Report 361, 57-265 (2002).

[14] H.Qian. The Mathematical Theory of Molecular Motors. Movement
and Chemomechanical Energy Transduction. Journal of Mathematical
Chemistry, 27, 219-234 (2000).

[15] L.Rey-Bellet. Ergodic properties of Markov processes. In Open Quantum

Systems II. The Markovian approach. Lecture Notes in Mathematics
1881, Springer, Berlin, 2006.


	Introduction.
	Elimination of the spatial average.
	Proof of Theorems ??
	Proof of Theorem ??.
	Proof of Theorem ??
	Proof of Theorem ??

	Proof of Theorem ??.

