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Abstract: A (g, f )-factor of a graph is a subset F of E such that for all v ∈ V,
g(v) ≤ degF(v) ≤ f(v). Lovasz gave a necessary and sufficient condition for
the existence of a (g, f )-factor. We extend, to the case of edge-weighted
graphs, a result of Kano and Saito who showed that if g(v) < λdegE(v) <

f(v) for any λ ∈ [0, 1], then a (g, f )-factor always exist. In addition, we use
results of Anstee to provide new necessary and sufficient conditions for
the existence of a (g, f )-factor. © 2008 Wiley Periodicals, Inc. J Graph Theory 57: 265–274, 2008
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1. INTRODUCTION

A classic problem in graph theory and theoretical computer science is that of
finding subgraphs of a given graph with prescribed vertex degrees. Subgraphs
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of prescribed vertex degrees are commonly referred to as factors. Given a graph
G = (V, E) and two integer valued functions defined on V , g, and f , such that
g(v) ≤ f (v) for all v ∈ V , a (g, f )-factor of a graph G = (V, E) is a spanning
subgraph G′ = (V, F ) such that g(v) ≤ degF (v) ≤ f (v), for all v ∈ V . Here,
degF (v) denotes the number of edges in F incident to v.

Lovász [13] gave necessary and sufficient conditions for the existence of (g, f )-
factors, generalizing the classic results of Tutte [17,18]. In particular, he used this
characterization to prove that if G = (V, E) has maximum degree k, then E can be
partitioned into two subsets E1 and E2, where degEi

(v) ≤ ki, i = 1, 2, for any k1, k2

with k1 + k2 = k + 1. A special case was shown by Tutte [19], who proved that
a k-regular graph has a subgraph in which all vertices have degree r or r + 1, for
any r < k. Thomassen [16] extended the latter results by proving that if in a graph
every vertex has degree k or k + 1, then there is a subgraph in which every vertex
has degree r or r + 1, for any r < k. A “dual” result was obtained by Gupta [6]: If
G = (V, E) has minimum degree k and k1 + k2 = k − 1, then E can be partitioned
into E1 and E2 such that degEi

(v) ≥ ki for all v ∈ V . Interestingly Heinrich et al. [7]
gave a fairly simple necessary and sufficient condition for the existence of (g, f )-
factor, if g < f . This result was extended by Anstee [1,2], who showed that the
latter condition is equivalent to the existence of a fractional (g, f )-factor, which
turns out to be equivalent to the existence of a (g, f )-factor with a very special
structure. The reader is referred to [14] for an excellent recent survey.

An interesting special class of factors is what we call λ-factors: Given a graph
G = (V, E) and a real number 0 < λ < 1, a spanning subgraph G′ = (V, F ) is
a λ-factor of G if | degF (v) − λ degE(v)| ≤ 1, for all v ∈ V . Extending König’s
Theorem [12], Hoffman [10] showed that every bipartite graph has a λ-factor, for
each λ, with 0 < λ < 1. More precisely, he proved something slightly stronger: If
G = (V, E) is bipartite and 0 < λ < 1, then there is a subset F ⊆ E such that

�λ degE(v)� ≤ degF (v) ≤ �λ degE(v)	, for all v ∈ V. (1)

Schrijver noted that this result can be derived using network flows (see p. 361
in [15]). It is natural to ask whether the property just mentioned extends to general
graphs. Unfortunately, the answer is negative. To see this, consider an odd cycle
and take λ = 0.5. In this case Condition (1) asks for a perfect matching, which does
not exist. However, if Condition (1) is replaced by the slightly weaker condition
| degF (v) − λ degE(v)| ≤ 1, then the result holds for general multigraphs. As noted
by Kano and Saito [11], this result can be obtained using the characterizations in
[13]. Furthermore, Kano and Saito’s result generalizes a number of related results
[6,16,19].

A. Our Results

It is very often the case that graph theoretic concepts become useful in computer
science when edge weights are allowed. Therefore, in Section 2 we deal with λ-



factors of edge-weighted graphs. Our first main result of the article says that for
any edge-weighted graph there is a factor whose deviation at any vertex does not
surpass the maximum weight of an edge adjacent to such vertex. Certainly, the latter
result generalizes Kano and Saito’s. In Section 3, we go back to study factors of
graphs. Our second main result in the article is an alternative necessary and sufficient
condition for the existence of a (g, f )-factor. Additionally, we derive a simple linear
algebra technique that allows us to shorten some arguments and provide a simplified
proof of a result of Anstee [1] concerning fractional (g, f )-factors.

All results in the article hold for multigraphs. For simplicity in the notation we
have chosen to present them in the more restricted framework of graphs without
multiple edges.

B. Preliminaries

Throughout this article G = (V, E) denotes a graph. If H is a subgraph of G, E(H)
and V (H) denote its edge set and vertex set, respectively. Moreover, for F ⊆ E

and A ⊆ V , EF (A) is the set of edges in F with both ends in A. We denote by
δ(A) the set of edges with exactly one end in A. Also, δ(v) denotes the set of edges
adjacent to v, while if A ⊂ V , δA(v) = {vu ∈ E : u ∈ A}. For a vector x ∈ R

M

and N ⊆ M, x(N) = ∑
e∈N xe. Similarly, for a function f : V → N and A ⊆ V ,

f (A) = ∑
v∈A f (v). As usual, for F ⊂ E, degF (v) denotes the number of edges

in F incident to v and deg is the integer valued function assigning to each vertex
its degree. Although we defined a factor as a spanning subgraph (V, F ) of G, we
will usually refer to a factor as just the edge set F or its corresponding incidence
vector x ∈ {0, 1}E. On the other hand, we say that a vector x ∈ [0, 1]E such that for
every v ∈ V , x(δ(v)) ∈ [g(v), f (v)] is a fractional (g, f )-factor of G. A half-integral
(g, f )-factor of G is a fractional (g, f )-factor in the set {0, 1/2, 1}E. If T ⊆ V , T̄ will
denote the complement of T with respect to V . Finally, |x|+ = max{0, x} denotes
the positive part of x.

The following simple lemma will be a useful tool in what follows. For a graph
G = (V, E), let AG ∈ R

|V | × R
|E| denote its incidence matrix and let ker(A) be the

null space of a matrix A.

Lemma 1. For any graph G, ker(AG) = {0} if and only if each connected
component of G is a tree or contains a single cycle, which is odd.

Proof. It is well known that dim(ker(AG)) = |E| − |V | + |C0|, where C0 is the
set of bipartite connected components of G (see e.g. [5]). We have that

|E| ≥
∑
C∈C0

(|C| − 1) +
∑
C �∈C0

|C| = |V | − |C0|.

Clearly, ker(AG) = {0} if and only if the previous inequality holds with equality.
This happens if and only if each bipartite component is a tree and each nonbipartite
component contains exactly one cycle. As the latter are nonbipartite, such a cycle
is odd.



2. λ-FACTORS OF EDGE-WEIGHTED GRAPHS

In this section, we extend the concept of λ-factor to graphs having weights on
edges. Our main result essentially says that this more general object always exists.
However, the techniques from [11] do not seem to apply in this setting. Specifically
our result is the following.

Theorem 2. Let G = (V, E) be a graph, let w : E → [0, ∞) and let λ ∈ (0, 1).
Then, there exists F ⊆ E such that∣∣∣∣∣∣

∑
e∈δ(v)∩F

we − λ
∑
e∈δ(v)

we

∣∣∣∣∣∣ ≤ max{we : e ∈ δ(v)}, for all v ∈ V.

Note that for w = 1, we recover Kano and Saito’s result about λ-factors. We
prove this result at the end of this section; the following lemma will be crucial for
the proof.

Lemma 3. Let G = (V, E) be a graph and let l, u : E → R be such that le ≤ 0 ≤
ue for all e ∈ E. Then, there exists x ∈ ∏

e∈E{le, ue} such that∣∣∣∣∣∣
∑
e∈δ(v)

xe

∣∣∣∣∣∣ ≤ M(v), for all v ∈ V,

where M(v) := max{ue − le : e ∈ δ(v)}.
Proof. Consider the set � of all vectors x ∈ ∏

e∈E[le, ue] satisfying the
following two conditions.

(i) |x(δ(v))| ≤ M(v) for all v ∈ V .
(ii) For every connected component α of the graph Gx = (V, Ex) := (V, {e ∈

E : xe ∈ (le, ue)}), there exists r ∈ V (α) such that x(δ(v)) = 0, for each v ∈
V (α) − {r}. In this case, we say that α is x-rooted at r and that r is a x-root
of α.

Clearly, � �= ∅ since 0 ∈ R
E satisfies the conditions. Thus, let x ∈ � be such

that |Ex| is minimum. We first observe that ker(AGx
) = {0}. Indeed, assume for a

contradiction that there exists y ∈ R
Ex with at least one nonzero coordinate which

satisfies AGx
y = 0. Then, if ŷe = ye for e ∈ Ex and ŷe = 0 for e ∈ E − Ex, for any

real ε and for all v ∈ V , x(δ(v)) + εŷ(δ(v)) = x(δ(v)). Thus, one can choose ε so
that x′ = x + εŷ belongs to � and |Ex′ | < |Ex|. Therefore, Lemma 1 implies that
if α is a connected component of Gx, it contains at most one cycle (which has to be
of odd length).

To finish the proof it is enough to show that Ex = ∅. For sake of contradiction
let us assume that there is a connected component α of Gx, with |V (α)| ≥ 2 and
x-rooted at r ∈ V (α). First, note that r has to belong to a cycle in Ex. Otherwise we



can take an edge f = (r, r′) ∈ Ex and set x′
e = xe for edges different from f and

x′
f = lf if x(δ(r)) ≥ 0 or x′

f = uf if x(δ(r)) < 0. Clearly, x′ will satisfy (i) and (ii),
and |Ex′ | < |Ex|, contradicting the choice of x.

Hence, we can assume that there is a cycle C in Ex, of odd length, containing
r. Let e1, . . . , e2k+1 be the edges of C, where e1 and e2k+1 are the edges incident
to r. We will again define a vector x′ which contradicts the choice of x. For all
edges in e ∈ E − E(C) we set x′

e = xe. To see how to define the values x′
e for

e ∈ E(C) consider µ− := le1 + le2k+1 − xe1 − xe2k+1 and µ+ := ue1 + ue2k+1 − xe1

− xe2k+1 . Then, µ+ − µ− = ue1 + ue2k+1 − le1 − le2k+1 ≤ 2M(r) implying that either
µ+ + x(δ(r)) ≤ M(r) or µ− + x(δ(r)) ≥ −M(r). Thus, for e ∈ E(C) we set:

x′
e1

= le1, x
′
e2

= ue2, . . . , x
′
2k = u2k, x

′
e2k+1

= le2k+1, if µ− + x(δ(r)) ≥ −M(r),

x′
e1

= ue1, x
′
e2

= le2, . . . , x
′
2k = l2k, x

′
e2k+1

= ue2k+1, if µ+ + x(δ(r)) ≤ M(r).

With these definitions, x′
e = xe ∈ [le, ue], for every e ∈ E − E(C) and x′

e ∈
{le, ue} for every e ∈ E(C). Hence, x′ ∈ ∏

e∈E[le, ue] and |Ex′ | < |Ex|. To get a
contradiction, we show that x′ ∈ �. To see (i) first note that x′(δ(v)) = x(δ(v))
for all v ∈ V − V (C). Moreover, for every v ∈ V (C), v �= r, we have x′(δ(v)) =
x(δ(v)) + ue + le′ − xe − xe′ , where e and e′ are the edges incident with v in C. Since
x(δ(v)) = 0 and |ue + le′ − xe − xe′ | < M(v), it follows that |x′(δ(v))| < M(v).
Since µ+ > 0 and µ− < 0 we also conclude that |x′(δ(r))| ≤ M(r). Therefore, for
every v ∈ V , |x′(δ(v))| ≤ M(v). To see (ii), observe that if v and v′ are two vertices
of C they cannot belong to the same connected component of Gx′ , as otherwise
there would be an even length cycle in Gx. Thus, the vertices in C are the x′-roots
of the corresponding connected components of Gx′ .

Corollary 4. Let G = (V, E) be a graph and let l′, u′ : E → R. For every x ∈∏
[l′e, u

′
e] there exists z ∈ ∏{l′e, u′

e} such that

∀v ∈ V, |z(δ(v)) − x(δ(v))| ≤ max{u′
e − l′e : e ∈ δ(v)}.

Proof. Let le = l′e − xe and ue = u′
e − xe. From Lemma 3, there is x′

e ∈∏
e∈E{l′e − xe, u

′
e − xe} such that |x′(δ(v))| ≤ max{u′

e − l′e : e ∈ δ(v)}. Let z := x +
x′, then, for every edge e, ze ∈ {l′e, u′

e} and z(δ(v)) − x(δ(v)) = x′(δ(v)). Hence
|z(δ(v)) − x(δ(v))| ≤ max{u′

e − l′e : e ∈ δ(v)}.
Note that Corollary 4 is related to matrix rounding. Indeed, it implies that given

a matrix and an interval for each position, one can round each coefficient to one the
extremes of its corresponding interval, so that the row and column sums are almost
preserved. Furthermore, Corollary 4 extends a graph rounding result by Hell et al.
[9, Corollary 3.7] to the case of general bounds on the edges.

With the last corollary at hand, the proof of Theorem 2 becomes remarkably
simple. Indeed, let l′e = 0, u′

e = we and xe = λwe. From Corollary 4, there is z ∈∏
e∈E{0, we} such that |z(δ(v)) − λw(δ(v))| ≤ max{we : e ∈ δ(v)}. By definingF =

{e : ze = we} the result is obtained.



3. A NEW CHARACTERIZATION FOR THE EXISTENCE OF

(g, f )-FACTORS

In this section, we give a new necessary and sufficient condition for the existence of
(g, f )-factors. This condition find its roots in that of Heinrich et al. [7] and Anstee
[1]. Indeed, Heinrich et al. proved that if g < f or G is bipartite a (g, f )-factor
exists if and only if

∀A ⊆ V, 0 ≤ �(g, f, A), (2)

where �(g, f, A) := f (A) − ∑
v∈Ā |g(v) − degA(v)|+.

On the other hand, using the algorithmic approach in [2], Anstee [1] obtained
the following results.

Lemma 5 (Anstee [1]). Let G = (V, E) a graph and let f, g ∈ Z
V . Then G has a

fractional (g, f )-factor if and only if Condition (2) holds.

Theorem 6 (Anstee [1]). A graph G = (V, E) and f, g ∈ Z
V satisfy Condition (2)

if and only if there exists a half-integral (g, f )-factor x such that {e ∈ E : xe = 1/2}
is a vertex disjoint collection of odd cycles contained in the graph induced by
{v ∈ V : g(v) = f (v)}.

Although Condition (2) is not enough to ensure the existence of a (g, f )-factor,
Lemma 5 provides good intuition about how much more is needed. In fact, not too
much!

Let F ⊆ E and A ⊆ V , clearly 2|EF (A)| = (
∑

v∈A degF (v)) − |δ(A) ∩ F |.
Note that if F is a (g, f )-factor then,

∑
v∈A degF (v) ≤ f (A) and |δ(A) ∩ F | ≥∑

v∈Ā |g(v) − degĀ(v)|+. Therefore,

∀A ⊆ V, |EF (A)| ≤
1

2


f (A) −

∑
v∈Ā

|g(v) − degĀ(v)|+



 .

Observe that if F is a (g, f )-factor then its complement H := E − F is a
(degE −f, degE −g) factor. Hence,

∀B ⊆ V, |EH (B)| ≤
⌊

1

2
�(deg −f, deg −g, B)

⌋
.

Since |EF (A)| ≥ |EF (A ∩ B)|, |EH (B)| ≥ |EH (A ∩ B)|, and |EH (A ∩ B)| +
|EF (A ∩ B)| = |E(A ∩ B)| we obtain the following necessary condition:

∀A, B ⊆ V, |E(A ∩ B)| ≤
⌊

1

2
�(g, f, A)

⌋
+

⌊
1

2
�(deg −f, deg −g, B)

⌋
. (3)

In the sequel, we will prove that Condition (3) is also sufficient for the existence
of (g, f )-factors. Interestingly, Condition (3) is stronger than Condition (2), and



therefore implies the existence of (g, f )-factors in the cases covered by [7]. Indeed,
taking B = ∅ in Condition (3) we obtain �(deg −f, deg −g, B) = 0 = |E(A ∩ B)|.
Theorem 7. Let G = (V, E) be a graph and let f, g be integers value functions
on V . Then G admits a (g, f )-factor if and only if it satisfies (3).

Proof. We have already established the necessity. To prove the sufficiency let
x ∈ [0, 1]E be a half-integer (g, f )-factor (as in Theorem 5) minimizing |Ex|, where
Ex = {e ∈ E : 0 < xe < 1}. For sake of contradiction let us assume that x is not a
(g, f )-factor. Then there is an odd cycle C such that xe = 1

2 for every e ∈ E(C).
For i = 0, 1 let Ai be the set of vertices v for which there is an alternating path P

of length at least one from v to C such that the edge e of P incident to v satisfies
xe = i (here alternating means that if e and f are adjacent then either xe = 1 and
xf = 0 or xe = 0 and xf = 1).

Let A = A0 ∪ C and B = A1 ∪ C. Therefore the following properties hold: (i)
∀u ∈ A, x(δ(u)) = f (u); (ii) ∀u ∈ B, x(δ(u)) = g(u); (iii) ∀uv ∈ E, u ∈ A, v /∈ B

implies xuv = 0; (iv)∀uv ∈ E, u ∈ B, v /∈ A implies xuv = 1. Properties (i) and (ii)
follow from the choice of x (otherwise a half-integer factor x′ with |Ex′ | < |Ex|
exists). Also, for uv ∈ E if u ∈ A, v /∈ C and xuv = 1, then v ∈ A1. Similarly, if
u ∈ B, v /∈ C and xuv = 0, then v ∈ A0. This proves (iii) and (iv). Thus,

∑
v∈Ā

|g(v) − degĀ(v)|+ ≥
∑

v∈B−A

(g(v) − degĀ(v)),

=
∑

v∈B−A

(g(v) − x(δĀ(v))),

=
∑

v∈B−A

x(δA(v)),

=
∑
v∈B

x(δA(v)) −
∑

v∈A∩B

x(δA(v)),

=
∑
w∈A

x(δ(w)) − 2x(E(A ∩ B)),

= f (A) − 2x(E(A ∩ B)).

The first inequality is trivial. From Property (iv) we have that degĀ(v) = x(δĀ(v))
which justifies the second step. The third equality is direct from Property (ii). The
fourth equality is easy while the fifth follows from Property (iii). The sixth equality
comes from Property (i). Therefore �(g, f, A) ≤ 2x(E(A ∩ B)). As 2x(E(A ∩ B))
is odd we get

⌊
1

2
�(g, f, A)

⌋
< x(E(A ∩ B)).



Similarly, we can prove that⌊
1

2
�(deg −f, deg −g, B)

⌋
< y(E(A ∩ B)),

where ye = 1 − xe, for e ∈ E. We finally obtain⌊
1

2
�(deg −f, deg −g, B)

⌋
+

⌊
1

2
�(g, f, A)

⌋
< |E(A ∩ B)|.

Although our proof of the last theorem is algorithmic, we do not know whether
Condition (3) yields a faster algorithm to find a (g, f )-factor. Anstee [2] propose
an algorithm that find a (g, f )-factor in time O(|V |3). This running time was
improved to O(

√
f (V )|E|) by Gabow [4]. Later, Hell and Kirkpatrick [8] obtained

a O(
√

g(V )(|E| + g(V ) + p|E|) algorithm (p being the number of vertices with
g(v) = f (v)), for a more general problem.

To complete the picture we give an alternative short proof of Theorem 6 that
uses Lemma 1.

Proof of Theorem 6. The “only if” part of the result is direct from Lemma 5.
To see the “if” note that Lemma 5 implies that if G = (V, E) and f, g ∈ Z

V satisfy
Condition (2) then there exists a fractional (g, f )-factor of G. Let x be a fractional
(g, f )-factor minimizing the number of fractional edges, that is, minimizing the
size of Ex := {e ∈ E : 0 < xe < 1}.

Clearly we can assume x(δ(v)) is integer for all v ∈ V . Otherwise, we may
inductively find a path e1 . . . ek between two vertices with fractional x(δ(v)) such
that xei

is fractional along the whole path. Such a path can be perturbed to obtain a
fractional factor with either one less fractional edge or one more vertex with integral
x(δ(v)).

To conclude we use Lemma 1. LetGx = (V, Ex) and observe that ker(AGx
) = {0}.

Indeed, assume for a contradiction that there exist y ∈ R
Ex with at least one nonzero

coordinate which satisfies AGx
y = 0. Then, if ŷe = ye for e ∈ Ex and ŷe = 0 for

e ∈ E − Ex, for any real ε and for all v ∈ V , x(δ(v)) + εŷ(δ(v)) = x(δ(v)). Thus,
one can choose ε so that x′ = x + εŷ is a fractional factor with |Ex′ | < |Ex|. Lemma
1 implies that the connected components of Gx contain at most one cycle (which
has to be of odd length). Now, since x(δ(v)) is integer, a connected component of Gx

cannot contain vertices of degree 1. This implies that Gx consists of vertex disjoint
odd cycles, and again the integrality of x(δ(v)) implies that xe = 1/2 along all those
cycles. Finally, by minimality of |Ex|, it is straightforward to see that vertices v in
such cycles satisfy g(v) = f (v).

4. AN OPEN PROBLEM

Finally, we mention an interesting possible extension for the existence of λ-factors.
Let G = (V, E) be a graph and let λ1, . . . , λk ∈ (0, 1) be such that

∑k
i=1 λi = 1. Can



E be partitioned into F1, . . . , Fk such that for all v ∈ V : | degFi
(v) − λi degE(v)| ≤

1? Combining Kano and Saito’s result with ideas in the proof of Theorem 4 in [3],
we can show that the weaker condition | degFi

(v) − λi degE(v)| < 3 can indeed be
imposed.
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