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SUMMARY

This paper presents a hybrid adaptive predictive control approach to incorporate future information
regarding unknown demand and expected traffic conditions, in the context of a dynamic pickup and
delivery problem with fixed fleet size. As the routing problem is dynamic, several stochastic effects have
to be considered within the analytical expression of the dispatcher assignment decision objective function.
This paper is focused on two issues: one is the extra cost associated with potential rerouting arising from
unknown requests in the future, and the other is the potential uncertainty in travel time coming from
non-recurrent traffic congestion from unexpected incidents.

These effects are incorporated explicitly in the objective function of the hybrid predictive controller.
In fact, the proposed predictive control strategy is based on a multivariable model that includes both
discrete/integer and continuous variables. The vehicle load and the sequence of stops correspond to the
discrete/integer variable, adding the vehicle position as an indicator of the traffic congestion conditions.
The strategy is analyzed under two scenarios. The first one considers a predictable congestion obtained
using historical data (off-line method) requiring a predictive model of velocities distributed over zones.
The second scenario that accepts unpredictable congestion events generates a more complex problem
that is managed by using both fault detection and isolation and fuzzy fault-tolerant control approaches.
Results validating these approaches are presented through a simulated numerical example. 
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1. INTRODUCTION AND BACKGROUND

The dynamic pickup and delivery problem (DPDP) can be formulated as a set of transportation
requests (characterized by pickup and delivery loads, time windows and spatial coordinates) served
by a fleet of vehicles located initially at several depots [1, 2]. The dynamic dimension appears
when a subset of the requests is not known in advance and most dispatch decisions have to be
taken in real time. The DPDP is of great interest for practitioners, mainly due to the fast growth in
communication and information technologies, as well as the current interest in real-time dispatching
and routing.

In the literature, dynamic vehicle routing problems (dynamic VRPs) are formulated assuming
that inputs may change or have to be updated during the execution of the solution algorithm.
Within this family of problems, the DPDP has been designed to solve the dynamic dial-a-ride
problem (DDRP), which has been intensely studied in the last 20 years [3–6]. The final output of
such a problem is a set of routes for all vehicles, which dynamically change over time. With regard
to real applications Madsen et al. [7] adapt the insertion heuristics by Jaw et al. [8] and solve
a real-life problem for moving elderly and handicapped people in Copenhagen, while Dial [9]
proposes a modern approach to many-to-few dial-a-ride transit operation autonomous dial-a-ride
transit (ADART), currently implemented in Corpus Christi, TX, U.S.A.

With regard to other interesting dynamic VRPs, let us start mentioning dynamic travelling
salesman problem (DTSP) introduced by Psaraftis [4]. This work motivates the Dynamic Traveling
Repairman Problem (DTRP), defined by Bertsimas and Van Ryzin [10] and next extended in
Bertsimas and Howell [11]. Lately Swihart and Papastavrou [12] and Thomas and White [13]
formulate and solve two variants of the DTRP. Kleywegt and Papastavrou [6, 14] and Papastavrou
et al. [15] study a problem called the Dynamic and Stochastic Knapsak Problem (DSKP), in which
demands for a given resource occur according to some stochastic process. Larsen [16] develops a
nice review of the different dynamic problems.

There are several key aspects for improving the efficiency of a real implementation behind a
DPDP instance. Fundamentally, it is crucial to utilize a correct definition of a decision objective
function for dispatching, including total travel and waiting times for users as well as a performance
measure for vehicles (proxy of operational costs). When the problem is dynamic, a proper objective
function must consider prediction of both future demand and expected waiting and travel times
experienced by customers in the system due to potential re-routing decisions decided in the future.
This last issue has been mostly underestimated in the dynamic vehicle routing literature, restricting
the development of algorithms to myopic models (current decisions not affected by unknown future
demand events).

Nevertheless, there exists some recent literature in the field of vehicle routing and dispatching
(of both freight and passengers) trying to exploit information about future events to improve
decision-making. Some examples are the works of Ichoua et al. [17] and Spivey and Powell
[18]. For such schemes, the reported solution approaches are diverse, with formulations based
on dynamic network models as in Powell [19], dynamic and stochastic programming schemes
developed by Godfrey and Powell [20] and Topaloglu and Powell [21], respectively. Besides,
Cortés [22] realizes that the problem could be modeled under a hybrid adaptive predictive control
(HAPC) scheme, considering that potential re-routing of vehicles could affect the current dispatch
decisions, through the extra cost of inserting real-time service requests into predefined vehicle
routes while vehicles are moving. Cortés et al. [23] write a formal formulation of the DPDP as an
HAPC, by stating the state-space variables and models. Based on such an approach, Sáez et al. [24]



develop a family of solution algorithms based on artificial intelligence for solving real-size
instances.

These approaches incorporate an important source of stochasticity in real-time routing decisions,
which is the extra cost over the system caused by unexpected vehicle re-routing coming from
serving future unknown requests arising in real time. However, there is another relevant source of
stochasticity that could affect dynamic routing decisions, mainly in the context of urban transport
systems. That is, the uncertainty behind the traffic network conditions, interfering the normal
operation of the routed vehicles. This new source of uncertainty has not been treated extensively
in the literature associated with dynamic routing problems, mainly because of the computational
complexity arising from the resulting formulations. Nevertheless, lately we found some interesting
research effort for adding traffic congestion into dynamic as well as probabilistic/stochastic VRP
that are worth to mention.

Berman and Simchi-Levi [25] consider a variant of the probabilistic traveling salesman problem
(PTSP), including a random subset of customers requiring service and random travel times as
well. With regard to stochastic VRP, Kao [26], Sniedovich [27], and Carraway et al. [28] solve
the stochastic TSP, considering arcs having independent and normally distributed travel times.
Laporte et al. [29] study the stochastic VRP with stochastic travel as well as service times. They
solve instances on networks with 10–20 nodes and 2–5 scenarios. Lambert et al. [30] solve an
optimization of collection routes through bank branches in a network with stochastic travel times.
Keyton and Morton [31] also solve stochastic VRPs on a network with random travel and service
times, by using a branch-and-cut scheme within a Monte Carlo sampling-based procedure. Most
of the work described above is based on static models that do not reoptimize routes after realizing
the random parameters.

With regard to VRPs including traffic conditions, we can mention the work by Hill and Benton
[32], defining the nodes of the road network with time-dependent piecewise constant speeds and
compute the travel time on a link from the average speed of the incident nodes. Malandraki and
Daskin [33] formulate a mixed integer program for the VRP with time windows (VRPTW) and
piecewise constant travel times, which is solved via heuristic methods.

To our knowledge, there are just a couple of examples of dynamic VRPs, in which routes can
be modified in real-time from updated information of travel time on links and some prediction of
the system based on updated data [34, 35]. The former considers a dynamic routing system that
dispatches a fleet of vehicles according to customer requests asking for service randomly over a
planning period. The authors propose a solution to such a problem, relying on online travel time
information from a traffic management center, formulating three routing procedures for event-
based dispatching. On the other hand, the latter examines the value of real-time traffic information
to optimal vehicle routing in a non-stationary stochastic network. The authors develop optimal
routing policies under time-varying traffic flows based on a Markov decision process formulation.

In this paper, an HAPC formulation for a DPDP is proposed, which combines both sources
of uncertainty when taking real-time vehicle routing decisions. On the one hand, the formulation
considers uncertainty from possible future demand influencing routes of current customers, which
follows the original scheme proposed by Sáez et al. [24]. Apart from that, the uncertainty regarding
traffic congestion conditions is also added into the scheme, under the premise that this disturbance
should also affect the preplanned vehicle routes dynamically based on traffic information around
them. The proposed approach allows modeling not only predictable congestion conditions but also
unpredictable situations, such as incidents occurring unexpectedly at any location on the traffic
network.



In the following section, we formally develop the HAPC formulation for the DPDP, including
prediction not only on demand but also on traffic conditions. The state-space equations are written,
and later a proper objective function for this problem is proposed. Then it is shown how the
formulation and its solution work for several simulation scenarios, under several demand and speed
conditions. The unpredictable events are detected with real-time data observed by the fleet, by
using a fault detection and isolation (FDI) scheme. Then, the model is corrected in order to avoid
the affected zones by the incident, through a fuzzy fault-tolerant control (FFTC) approach.

2. ANALYTICAL FORMULATION: HAPC APPROACH

In this section, the formulation of the DPDP under an HAPC scheme as proposed by Sáez et al.
[24] is extended to capture the network traffic conditions and provide a more realistic representation
of the transport system uncertainty. For doing that, it is necessary to define a set of state-space
variables, which is used in order to characterize the key elements of the system at certain instant
and are needed to provide a formal predictive control formulation to the DPDP problem.

In this case, three state-space variables are considered: departure time, vehicle load at stops and
position of the vehicles. The last variable (position of vehicles) is added in order to incorporate
the traffic conditions as a function of the network speed distribution. Regarding the objective
function, it includes both user and operational costs. The operational cost is approximated by the
total vehicle time traveled and the user cost considers both waiting and travel time. The fleet size is
assumed known, and the cost function does not include time windows on either pickup or delivery
points.

Next, in Section 2.1 the extended dynamic model for representing the DPDP is formulated.
Then, in Section 2.2, the corresponding objective function formulation is established, completing
the presentation with a description of the optimization method in Section 2.3.

2.1. Dynamic model formulation

Let us assume an influence urban area and a fleet of homogenous vehicles of size F . The fleet is
currently in operation traveling within the area according to predefined routing rules. When a new
call for service appears, a selected vehicle is then routed in order to insert the new request into its
predefined route. The procedure to find the optimal vehicle-request assignment requires a proper
objective function that depends on predictions of state-space variables as described hereafter.

As in Sáez et al. [24], the modeling approach is discrete in time and the time-steps are triggered
whenever a new relevant event happens, such as the occurrence of a real-time request for service
(namely �k). The index k represents the kth instant in the discrete sequence of events. Note that �k
is unknown, comes up in real time and can be characterized by two positions, indicating the pickup
and the delivery, the time of the call, a label for the request and by the number of passengers. In
expression (2), the specification of �k is exposed and later discussed.

At any instant k, each vehicle j has been assigned to follow a sequence of tasks that include
pickups and deliveries. Such a sequence can be represented by a function S j (k), in which the i th
row represents a specific i th stop along vehicle j’s route, and w j (k) is the number of scheduled
stops. The control or manipulated variable corresponds to the set of sequences u(k)= S(k)=
{S1(k), . . . , S j (k), . . . , SF (k)} associated with all the vehicles in the fleet. The proposed HAPC
dispatcher selects the optimal sequences based on the minimization of an ad hoc objective function



(as shown in Section 2.2 next). Thus, a sequence of stops assigned to vehicle j at time k, S j (k)
is given by

S j (k)=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

z0j (k) P0
j (k) r0j (k) �0

j (k)

z1j (k) P1
j (k) r1j (k) �1

j (k)

z2j (k) P2
j (k) r2j (k) �2

j (k)

...
...

...
...

z
w j (k)
j (k) P

w j (k)
j (k) r

w j (k)
j (k) �

w j (k)
j (k)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(1)

In expression (1), zij (k) is a binary variable defined at instant k, which is equal to 1 if the stop

i is a pickup, 0 if the stop i is a delivery. Pi
j (k)∈ R2 is a two-dimensional vector that shows the

geographical position of stop i assigned to vehicle j in terms of spatial coordinates x and y, r ij (k)

is a tag to identify the passenger who is calling and �i
j (k) is the number of passengers to be

transported between the origin and destination associated with request r ij (k). The first row of the
sequence of stops in (1) represents the initial conditions, which correspond to the last stop already
visited by the corresponding vehicle j .

Figure 1 shows a sequence assigned to a vehicle j at time k (S j (k)), which is a picture of the
assigned vehicle tasks. T̂ i

j (k) represents the expected departure time of the vehicle j at stop i ,

L̂i
j (k) is the expected vehicle load when vehicle j leaves stop i .
X j (k,�(tk)) is the current position (coordinates) computed at instant time k that depends on the

traffic conditions �(t) in the way we will explain later. tk is a variable connecting the continuous
time (clock time) with the discrete model in time (index k). Note that X j (k,�(tk)) must be in
between P0

j (k) and P1
j (k). To simplify the notation, hereafter we will simply denote X j (k) to

represent X j (k,�(tk)). Note that the traffic conditions (�) affect the current position of each
vehicle X j (k,�(tk)), which is a measurable output of the system. The vehicle position is a random
variable, and X j (k,�(tk)) is a realization of such a variable.

Figure 1. Vehicle sequence representation.



These three types of variables (T̂ i
j (k), L̂

i
j (k), X j (k)) conform the state-space vector as described

next. Moreover, L0
j (k) and T 0

j (k) are the vehicle conditions when the last call request was satisfied

located at P0
j (k).

For simplicity, in this application a conceptual network with Euclidean norm as a distance
estimator is considered. Although the distance is computed through a fixed measure depending on
the coordinates of the initial and final conditions, the modeled travel times on segments experienced
by vehicles are not fixed, since the speed is variable.

Analytically for any vehicle j , the state-space model is given by

� j (k+1)=

⎡
⎢⎢⎢⎣
X̂ j (k+1)

T̂ j (k+1)

L̂ j (k+1)

⎤
⎥⎥⎥⎦=

⎡
⎢⎢⎢⎣

fX (X j (k,�(tk)), S j (k), v̂(t, p),�k)

fT (X j (k,�(tk)), T̂ j (k), S j (k), v̂(t, p),�k)

fL(L̂ j (k), S j (k),�k)

⎤
⎥⎥⎥⎦ (2)

where � j (k+1) is the vector of state-space variables defined for vehicle j at next instant k+1,
as function of the control action S j (k), the disturbances �(tk),�k , the speed model v̂(t, p)and the
state-space variables at instant k, (T̂ i

j (k), L̂
i
j (k), X j (k)).

The estimated departure time vector T̂ j (k)=[T 0
j (k) T̂ 1

j (k) · · · T̂
w j (k)
j (k)]T and the estimated

load vector L̂ j (k)=[L0
j (k) L̂1

j (k) · · · L̂
w j (k)
j (k)]T are both vectors of dimension w j (k)+1. Note

that only the first component of both the expected departure time and expected load vectors at
instant k is known, since the remaining components of both vectors are really expectations of
what is supposed to happen at the scheduled stops of each vehicle defined in each sequence,
which will depend on the expected disturbances along the vehicle routes. Thus, to compute the
estimated departure time at stops the predictive model is utilized starting from the current vehicle
position X j (k,�(tk)) (continuously being affected by the disturbance �). Besides, the expected
load as well as the expected departure time at future stops will also depend on the demand over
space and time, from where potential re-routings could affect the future load and departure times
at stops.

In addition, the demand is characterized by four attributes, namely �k =(Pk,rk,�k,�k), which
correspond to the last call and have all the information about the request (position, label, load and
time).

In the proposed approach, traffic congestion is modeled through the distribution of commercial
speed of the vehicles on both relevant dimensions: time and space, since traffic conditions of an
urban area normally change along the day, and are different depending on where each vehicle
is traveling. The real speed distribution is unknown v(t, p,�) and it depends on a stochastic
source that comes from the network traffic conditions �(t) (if the specification is additive, then
�(t) will be measured in speed units, as shown in the simulation test Section 4). Also a known
velocity distribution of the urban area during a typical period of recurrent congestion is assumed
available based on historical data, which is represented by a model of the speed v̂(t, p). All of
them are specified in terms of the continuous time t and the spatial coordinate p. The functions
fX , fT and fL in Equations (2) define the state-space model and are specified in Equations (3)–(6)
next.



First, the dynamic model for the position associated with vehicle j is given by

X̂ j (k+1)= X j (k)+
∫ tk+�

tk
v̂(t, p(t))

(P0
j (k)−P1

j (k))

‖P0
j (k)−P1

j (k)‖2
dt (3)

where tk�t�tk+�. So, the model requires a variable stepsize (�), defined by the interval between
the occurrence of a probable future call asking for service (tk+�) and the occurrence of the
previous call tk . � is calculated as a tuning parameter for the HAPC by using a sensitivity analysis
described in [24]. Note that P0

j (k)−P1
j (k) provides the information with regard to the direction

of the vehicle j speed. If P1
j (k) is reached in t< tk+�, an adaptive mechanism uploads P0

j (k) and

P1
j (k) since these variables represent the last visited stop and the next scheduled stop respectively,

at every instant t .
Besides, the departure time vector depends on the vehicle speed and can be computed as follows:

T̂ j (k+1)=
[
T 0
j (k) tk+�1j (k) tk+

2∑
s=1

�sj (k) · · · tk+
w j (k)∑
s=1

�sj (k)

]T

(4)

where

�1j (k)=
∫ P1

j (k)

X j (k,�(t))

1

v̂(t j (�),�)
d�, �ij (k)=

∫ Pi
j (k)

Pi−1
j (k)

1

v̂(t j (�),�)
d�, i=2, . . . ,w j (k) (5)

�ij (k) is an estimate of the time interval between stop i−1 and stop i in the sequence of vehicle j ,
at time k. When i=1, the reference for computing the arrival time is the current position of
the vehicle instead of the previous stop. t j (�) is the continuous time at which vehicle j reaches
position �. In (5), the integration is performed along the line between two consecutives stops.

Finally, the dynamics embedded in the vehicle load vector depends exclusively on the current
sequence and the previous load variable at instant k. Analytically,

L̂ j (k+1) =
[
L0
j (k) L0

j (k)+(2z1j (k)−1)�1
j L0

j (k)+
2∑

s=1
(2zsj (k)−1)�s

j · · ·

L0
j (k)

w j (k)∑
s=1

(2zsj (k)−1)�s
j

]T

(6)

with zsj and �s
j defined in expression (1).

Vehicle sequences as well as state-space variables have to satisfy a set of constraints that depend
on the real conditions of the modeled DPDP. Specifically, precedence, capacity and consistency
constraints are added into the dynamic model to generate only feasible sequences.

2.2. Objective function

The request-vehicle assignment is decided by the dispatcher (controller) based on a proper objective
function that depends on predictions of the state-space variables and consequently, on the future
control actions applied to the system. The objective function is specified in terms of both the total
expected waiting and travel time for passengers. The idle travel time (vehicles moving around



without passengers) is also included in the formulation in order to consider a proxy for the
operational cost in the decision.

The major issue in the definition of the objective function is to define a reasonable prediction
horizon N , which depends on the studied problem. A prediction at one-step ahead is equiva-
lent to performing a myopic assignment, since only the new request (arising at k) is consid-
ered when taking the routing decision. When a predictive horizon greater than 1 is assumed,
the decision maker (controller) adds the predictive feature into the formulation, since decisions
taken at k will depend not only on the new request at k but also on possible events (new
service requests unknown at the decision instant k) occurring at future instants (k+1,k+2, . . .).
These new requests are estimated by using fuzzy clustering based on historical demand data.
A set of consecutive expected calls {�hk+1,�

h
k+2, . . . ,�

h
k+N−1} define a trip pattern h (note the

superscript h in the call representation above to join a pattern with the calls associated with
it). Thus, the central dispatcher (controller) computes the following set of sequences S(k)∪⋃H

h=1 {S(k+1)|�hk+1
, . . . , S(k+N−1)|�hk+N−1

}, which corresponds to the decisions for the entire

control horizon N and for each pattern h. Then, the dispatcher applies just the next step sequence
S(k) based on receding horizon control. It is important to note that S(k) includes the new request
to be assigned (�k), which is known (deterministic) at the decision time. The quality of the
dispatcher routing decisions will depend on how well the system predicts the impact of re-routing
passengers due to unknown insertions as well as traffic congestion. Note that deterministic deci-
sions are continuously made by the dispatcher based on the information of each call that enters
the system along with a forecast of a future decision corresponding to each possible pattern
(scenario).

The objective function for a generic prediction horizon, N , can be written as follows:

Min
S(k)∪⋃H

h=1{S(k+1)|
�hk+1

,...,S(k+N−1)|
�hk+N−1

}

F∑
j=1

H∑
h=1

ph ·C j (k+N )|h (7)

C j (k+N )|h =
w j (k+N )∑

i=1

⎛
⎜⎜⎝(L̂i−1

j (k+N )+1)(T̂ i
j (k+N )− T̂ i−1

j (k+N ))︸ ︷︷ ︸
J travel time

+ zij (k+N−1)�(T̂ i
j (k+N )−T 0

j (k+N ))︸ ︷︷ ︸
J waiting time

⎞
⎟⎟⎠

∣∣∣∣∣∣∣∣
h

(8)

where C j (k+N )|h in (8) is the cost function of vehicle j at instant k+N , provided that the trip
pattern h, characterized by {�hk+1,�

h
k+2, . . . ,�

h
k+N−1}, occurs. Such a cost also depends directly

on the set of sequences to be applied, namely {S(k), S(k+1)|�hk+1
, . . . , S(k+N−1)|�hk+N−1

}, which
are the optimization variables. H is the number of trip patterns considered, ph is the probability
of occurrence of the hth trip pattern (future demand). w j (k+N ) is the number of stops estimated
for vehicle j at instant k+N .
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Figure 2. Closed-loop diagram of a hybrid adaptive predictive approach for DPDP.

The future instants k+1, k+2, . . . , are generated by using a variable time step. Then, the
expected call associated with pattern h to happen n steps ahead is �hk+n =(Ph

k+n,r
h
k+n,�

h
k+n,�

h
k+n),

where �hk+n is the expected occurrence time of such a call in the future. Owing to the large
number of parameters, we simplify the computations by assuming �hk+n =�k+n ∀h. Besides,
�k+n =�k+n−1+�� with �� tuned through sensitivity analysis. Finally, � is a weight for
the waiting time to differentiate its contribution compared with that of travel time in the
objective function. The number of future demand patterns H and their probabilities of occur-
rence ph are parameters in the objective function, and they have to be computed based
on either real-time data historical data or a combination of both. In this case, Fuzzy clus-
tering is used to model the demand (�̂k+1) by considering only historical data (see [24] for
details).

In the case of the one-step ahead strategy (myopic), the new requirement is one and known,
and therefore its probability is equal to 1. In case of the two-step ahead prediction, the objective
function requires the estimation of probabilities that the new call entering the system two steps
ahead falls into each demand pattern. A distribution for the time interval between successive calls
is also assumed in order to compute time interval probabilities.

In summary, the closed-loop routing system is shown in Figure 2. The HAPC represented by
the dispatcher takes the routing decisions in real time based on the information it has from the
routing system (process) and the values for the attributes of the vehicle fleet and the transport
system (model). The demand (�) and the traffic conditions (�) are disturbances (stochasticity). An
adaptive mechanism for the proposed controller is added to the chart in Figure 2, representing the
necessity of adapting the size of the model when either a new request arrives or a request has been
satisfied. Moreover, the objective function is influenced by the prediction of the uncertain demand
and traffic conditions (�̂k+1 and v̂(t, p), respectively).

2.3. Optimization method

In this application, the optimization is performed over a reduced space of solutions that satisfy
the no-swapping constraint. For each vehicle, the ‘no-swapping’ simplification searches the best
insertion position, in which the candidate call (whether it is the current deterministic call or a



future call representative of certain future pattern) is inserted into a predefined sequence without
changing the previous order of the points defined in the vehicle route (sequence). The decision of
adopting this simplification was motivated from the results by Cortés [22], who showed empirically
through simulation that in most pickup and delivery problem configurations, the optimal solution
of inserting a new request does not alter the order of the previous sequences. Besides, there are
practical reasons for considering the no-swapping case taking into account that the optimization
is dynamic, and the previous information (previous sequences) is crucial to take fast decisions
constantly. Note that the ‘no-swapping’ constraint is added to simplify the NP-hard problem
embedded, and consequently to reduce the time spent by the algorithm when computing the cost
of each possible insertion.

The HAPC approach for the DPDP problem generates a highly non-linear optimization problem,
which is NP-Hard. Owing to this feature of the problem, it is not feasible to solve it by using
traditional algorithms for mixed-integer problems. In Sáez et al. [24], genetic algorithms (GA)
were proposed to find good-quality solutions for the DPDP problem.

In summary, GA is used as an efficient optimization solver for the DPDP problem, where the
optimization variables identify the stops that must be satisfied by the vehicle fleet. The individuals
are the feasible sequences, fulfilling the load, precedence and no swapping constraints defined in
Section 2.1. The gene of an individual considers the following components: the vehicle j used
for the new insertion and the sequence position of the new call (for both pickup and delivery)
within the previous sequence, assuming the no-swapping policy. Owing to the precedence and
no-swapping constraints, the previous sequence is held.

For more than one step ahead, GA is conducted for each scenario associated with a specific
demand pattern. Previously, the demand patterns are categorized by a fuzzy clustering technique,
as detailed in Sáez et al. [24]. As GA considers random generation of individuals, the genetic
operators (mutation or crossover) could provide infeasible solutions that have to be removed or
repaired (typically through the capacity constraint). The number of individuals for each population
has to be smaller than the total number of feasible combinations in order to avoid solving the
explicit enumeration method.

The complexity of the GA is proportional to the number of individuals for each iteration
(generation) multiplied by the number of generations. Both, the number of individuals and the
number of generations are parameters to be tuned by the GA designer. The individuals at each
iteration are randomly chosen by using genetic operators (mutation and crossover) and the number
of generations is stated as the GA stopping criterion. This procedure allows a considerable reduction
in computation time providing near optimal solutions.

3. FAULT DETECTION AND ISOLATION, FUZZY FAULT-TOLERANT CONTROL
(FDI-FFTC) SYSTEM FOR UNPREDICTABLE TRAFFIC

CONGESTION EVENTS

The approach described so far seems useful when a speed distribution is available and calibrated
in both relevant dimensions, time and space. For that, a statistical work has to be conducted
from historical data of the studied area, which allows us to have a good prediction of recurrent
(predictable) traffic conditions. However, in real transportation networks, the unpredictable conges-
tion events can also affect the expected vehicle travel times, resulting in bad quality routing with



the occurrence of a big incident close to the dispatch areas. In order to incorporate such an effect,
we propose an FDI method for detecting the unpredictable traffic jam and an FFTC to force the
vehicles avoiding the affected zones. Both systems will permit to reduce the effect of the incident
over the users waiting and travel times. The unpredictable events will be detected and modeled by
using real-time information from our vehicle fleet, noting that the method is easily extended to the
use of any other sources of online speed data. In the literature, there are some preliminary results
for fault detection problems and diagnosis in the transport infrastructure, like traffic monitoring
sensors and vehicle mechanical systems [36]. Related with anomalies, Aronson et al. [37] consider
the re-route problem as incident repair method for a multimodal transport system; the considered
incidents are changes in freight orders, traffic jams and vehicles faults. Weinstein [38] presents
a model oriented to objects to describe the planning of multiagent systems, which enables to
diagnose the anomalies executions.

In this work, the measurements of v(t, p,�) are available for each position p at every instant
time t . Besides, a recurrent model of the speed v̂(t, p) is assumed. The speed measurements
are compared with the results of the speed distribution model and used for the FDI method.
Analytically, the speed residual is given by e(t)= v̂(t, p)−v(t, p,�). Thus, the residual e(t) for a
reasonable period of time TT is analyzed in order to activate the FDI system. If the system detects
a fault during the entire period TT, the FDI system will be activated. During TT, the information
of the real velocity is recorded to modify the recurrent model of velocity v̂(t, p) used by the HAPC
control strategy in order to avoid the negative effects of the incident. This procedure corresponds
to the FFTC method.

After the FDI system is activated, a set of rules have to be defined in order to model the incident
impact. These rules generate the new recurrent model that includes the original recurrent model
v̂(t, p) and the fuzzy rules for the incident representation. The fuzzy approach is used in order
to capture the non-linear behavior of the incident impact. Moreover, these fuzzy rules permit to
distinguish different magnitudes and features of the incident.

First of all, the definition of the fuzzy rules requires to establish the velocity associated with each
type of incident, which is modeled by a Gaussian function (�,	,m). In the Gaussian model, � is
the location of the center of the incident, 	 is the affected zone radio and m represents the minimum
velocity located at the center where the incident is supposed to happen. These three parameters are
adjusted based on the type of the incident. The duration of Gaussian model is assumed constant.
The parameter 	 is assumed to be inversely proportional to the Euclidean distance associated with
the vehicle movement during TT, and � is associated with the linear trajectory traveled by the
vehicle. Analytically,

	= 1

‖PD−PF‖ , �= PD+
·(PF−PD), 0�
�1 (9)

where PD is the position of the vehicle where the fault is detected and PF the position of the same
vehicle after TT. Next, once the type of incident is established, the corresponding fuzzy rules are
defined based on the expected behavior of the system under incident conditions. These rules are
fed by two inputs: the speed residual e(t) and the increment of the residual along the trajectory
de(t)=e(t)−e(t−1). The rule outputs are the movement size 
 and the minimum velocity m for
each type of incident, the latter proportional to m∗ =max{de(t),de(t−1)}. The fuzzy rules and
their corresponding membership functions are defined in Figure 3.



Figure 3. Fuzzy rules and membership functions for the incident velocity model.
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Figure 4. FDI-FFTC system for the DDPP.

The proposed procedure FDI-FFTC method (as shown in Figure 4) consists of the following
steps:

1. When some vehicle detects the incident traffic jam for a certain period of time (FDI is
activated):

1.1. A new recurrent model is generated by considering both the v̂(t, p) and the proposed
fuzzy rules. The incident model based on fuzzy rules intends to represent the effects of
the unpredictable event.

1.2. The requests located somewhere inside the affected zone are re-assigned as new calls
for the dispatcher system based on HAPC, now considering the new recurrent model
according to the new traffic conditions detected. As re-routing decisions of the re-
assignment calls need to be fast, a one-step ahead HAPC is proposed (SF (k)).



1.3. After the re-routing, the new call requests are assigned by the HAPC strategy (S(k))
considering the same new recurrent model, and for the two-step ahead case.

2. Otherwise, when the FDI system does not detect the incident, the HAPC strategy described
in Section 2 is used directly (S(k)) for the two-step ahead case as well.

4. SIMULATION TESTS

In this section, some simulation tests are carried out in order to quantify the potential benefits of
such a methodology in the context of a DPDP. In the experiments a transportation fleet of nine
vehicles, with capacity for four passengers each is used. The simulation tests are implemented in
Matlab version 7.0.1 release 14 running on a Pentium R© D CPU 3.20GHz processor.

The future origin–destination trip patterns are unknown. However, historical demand obtained
from the average demand measured over a week before or so is available. This scenario is not
real. However, the demand patterns follow a heterogeneous distribution inspired on real data from
the Origin–Destination Survey in Santiago, Chile, 2001. An urban service area of approximately
81km2 is considered and all simulations are performed over two representative hours (14:00–
14:59,15:00–15:59) of a working day. We assume vehicles traveling straight between stops and
the embedded network following the speed distribution stated in the following equation:

v(t, p,�)=20+
(
5− t

12

)
·e− (px−4)2+(py−4)2

2 +
(

t

12
−5

)
·e− (px−7)2+(py−6)2

2 +�(t) (10)

where t (min) is the clock time, t=0 min corresponds to 14:00, and t=120 min to 16:00. p=
(px , py) (km) denotes a position in terms of the plane coordinates inside the urban area. �(t) is
the white noise that captures the stochasticity coming from traffic congestion.

The speed distribution shows how the congestion moves from one side of the urban area to
the other along the 2-h simulation. The historical data generated via simulation follow the trips’
patterns shown in Figure 5 with arrows. From historical data and a fuzzy zoning method proposed
by Sáez et al. [24], Figure 5 also shows the pickup and delivery coordinates and the probabilities
for most relevant trip patterns.

For the simulation test, 120 calls were generated following the same behavior as that of the
historical data. Regarding the temporal dimension, we assume a negative exponential distribution
for time intervals between calls with rate of 0.9call/min. In terms of spatial distribution, pickup
and delivery points were generated randomly within each corresponding zone. A reasonable warm
up period was considered to avoid boundary distortions (10 calls at the beginning and 10 at the
end). Fifty replications of each experiment were conducted to obtain global statistics. With regard
to the objective function, a weight �=1 was used, which means that travel time is as important as
waiting time into the cost function expression. In order to analyze and evaluate the performance of
HAPC strategies, simulation tests were conducted for one- and two-step ahead algorithms under
the same conditions. Two-step ahead algorithm was performed considering the four trip patters
shown in Figure 5. We present the results of 50 replications with GA solver by using 20 individuals
and 20 generations.

Table I shows the effective waiting and travel times of passengers by using the HAPC based
on GA for one- and two-step ahead prediction, and for the two velocity estimations. A constant
estimation of velocity means that the expected departure time is computed based on the constant



Figure 5. Origin–destination trip patterns. Pickup and delivery coordinates and probabilities: fuzzy zoning.

Table I. Performance comparison for one- and two-step ahead algorithms. Constant velocity estimation.

Variable velocity estimation Constant velocity estimation

Waiting time (min) Travel time (min) Waiting time (min) Travel time (min)

Strategy Mean St. dev. Mean St. dev. Mean St. dev. Mean St. dev.

One step ahead 15.443 1.64 17.879 0.61 15.844 1.25 18.346 0.78
Two step ahead 13.618 1.90 16.939 0.65 14.077 1.78 17.002 0.74
Savings 2 step 1.82 0.94 1.76 1.34
Improvement (%) 11.81 5.26 11.15 7.32

speed. The second estimation (variable velocity) is more realistic since it is adapted to the network
velocity conditions through the recurrent model v̂(t, p). We observe that waiting time is significantly
reduced by using the two-step ahead method (12%) when compared against the myopic one-step
ahead method. In addition, an improvement in travel time is also observed.

Table II describes the operational costs for the entire vehicle fleet. In addition, total effective
costs are also reported in the table. We observe that vehicle operational costs and the total effective
costs are still reduced by running both the constant velocity (8.81%) and the variable velocity
(8.00%) methods.

From this example, we found an improvement of 3.26% in waiting time, and still one improve-
ment of 1.68% in total time, only due to the fact of including a more sophisticated prediction of
the velocity over the space and time, based on historical data (recurrent congestion).

From the results described above, we found that including a good estimation of the distribution
of the speed into the prediction always improves the routing decisions, just from recognizing the
variability of the speed (from historical data) as part of the prediction. Even though the improvement
of this modeling scheme above the improvement resulting from the demand prediction seems not
very impressive, we claim that the integrated approach should produce much better results as the
variability of the speed (not only in time but also in space) became larger.



Table II. Vehicle and passenger operational costs.

Variable velocity estimation Constant velocity estimation

Operational costs Effective total costs Operational costs Effective total costs
(min) (min) (min) (min)

Strategy Mean St. dev. Mean St. dev. Mean St. dev. Mean St. dev.

One step ahead 143.68 7.3172 3809.1 183.23 145.13 7.84 3906.0 189.51
Two step ahead 142.95 8.7826 3504.3 256.51 143.21 7.83 3562.0 258.02
Savings 2 step 0.73 304.82 1.91 344.07
Improvement (%) 0.51 8.00 1.32 8.81

Apart from the basic formulation, we developed a methodology (Section 3) to deal with unpre-
dictable congestion, under the same HAPC formulation developed for recurrent congestion in
Section 2. By following the same line of reasoning as in the previous paragraph, in this case we
will try to measure the impact of applying this approach to a scenario in which suddenly a big
incident occurs, generating for a while a big congestion around the affected area. The system
should react in real time to the occurrence of such an incident and take proper routing decisions
taking into account such a change. We intuitively expect considerable cost savings in this case, as
shown next.

4.1. Fault detection simulation test

In order to test the fault detection proposal a reduced fleet of four vehicles is used. For the
simulation test, 75 calls were generated over the whole simulation period of 2 h. In Figure 6,
the speed distribution defined in Equation (10) is shown for four instant times. Figure 7 shows
the recurrent model v̂(t, p) considered for the HAPC before the incident. At 15:00, an incident
happens (as shown in Figure 8) and thus, the fault detection module becomes active by checking
the detection rules described in Section 3.

Table III reports the waiting time, travel time, total time, operational cost and effective total cost
for two cases. The former (Case 1) considers the HAPC controller by using the speed distribution
from the initial recurrent model, without incorporating the incident that start getting reflected in
the real speed data taken online by the fleet of vehicles. The latter (Case 2) considers the HAPC
scheme together with the proposed FDI detection system. Thus, the HAPC approach considers
a more realistic recurrent model that provides the effect of the incident. In addition, we include
a third case as a benchmark, in which the HAPC is applied by assuming completely known the
distribution of the speed as a result of the incident occurrence (Case 3), and therefore, the routing
decisions are preformed based on a velocity model including the fault effect (Figure 8).

The last row in Table III shows the additional improvement of Case 3 above Case 2 with respect
to Case 1, to have an idea of how far the solution is from the ideal situation (Case 3) in which
the incident (fault) is completely known at any time. As we can appreciate, the improvement in
this particular case is of the order of 4% (effective total cost) above the improvement of Case 1
over the model without including speed distribution in the prediction. We appreciate a relevant
improvement in terms of waiting time in case of using the FDI-FFTC method (16.45%), in this
case even better than having the information of the fault beforehand. More tests have to be run in
order to completely explain this last result. The intuition suggests that this apparent contradiction



Figure 6. Real speed distribution without incident.

can be explained from a trade-off between travel and waiting time, favoring the former in Case 3
due to the extra available information with regard to the fault location and impact. Case 2 anyway
performs quite well when compared against the benchmark (Case 3) in all cases, except in travel
time, in which the fault detection does not help. Finally, in Figure 9 the real situation is compared
with the new speed model, which adaptively updates the fault detector whenever the vehicles of
the fleet enter the fault impact zone and report its experienced speed. Thus, Figure 9(a) has to
be compared with Figure 9(b), while Figure 9(c) has to be compared with Figure 9(d), for the
real and modeled speed, respectively, at two instants. Results could improve considerably if more
speed measurement stations were added to the detection system (both fixed and mobile stations).

5. SYNTHESIS, CONCLUSION AND FURTHER RESEARCH

In this paper, we present an HAPC formulation for a DPDP that combines two sources of uncertainty
when taking real-time vehicle routing decisions. On the one hand, the formulation considers



Figure 7. Speed distribution for the initial recurrent model.

uncertainty from possible future demand influencing routes of current customers, which follows the
original scheme proposed by Sáez et al. [24], and on the other hand, the scheme also considers the
uncertainty behind the traffic congestion conditions. The predictive model is proposed in order to
modify the preplanned schedule of vehicle routes based on traffic information around their routes
as well as future insertions coming from unknown real-time service requests. In our approach,
traffic congestion is modeled through the distribution of commercial speed of the vehicles on
both relevant dimensions: time and space. The approach allows modeling not only predictable
congestion conditions but also unpredictable situations, such as incidents occurring unexpectedly
at any location on the traffic network. In the second case, we also utilize online (real-time) data
regarding speed conditions from the fleet of vehicles moving around serving the demand.

Results show the potential benefits of such an approach. We can immediately mention several
important contributions of this paper. First, the integrated HAPC allows systematizing the formu-
lation of the DPDP as a control problem, which open more possibilities for using sophisticated
techniques not only to characterize the dynamic problem properly but also to solve complex DPDP
configurations unable to be treated without such a framework. Second, as far as we know, in
the specialized literature there is no other DPDP formulation allowing prediction of both, future
demand as well as future traffic conditions. Third, we found very attractive (in terms of both



Figure 8. Real speed distribution with incident.

Table III. Performance comparison for fault detection method.

Waiting time Travel time Total time Operational cost Effective total cost
(min) (min) (min) (min) (min)

Mean Mean Mean Mean Mean

Case 1 9.5110 12.6994 22.2104 132.3360 687.3965
Case 2 7.9461 12.9906 20.9367 132.0360 659.7205
Improvment (%) 16.45 −2.3 5.73 0.2 4.01
Case 3 8.1758 11.8525 20.0283 131.9050 632.6113
� Improvment (%) −2.42 8.96 4.09 0.1 3.94

computation time and quality solutions) the use of solution methods coming from the artificial
intelligence literature (such as GA, Fuzzy logic and others) in the context of this problem. Addi-
tional tests have to be conducted to adjust the embedded parameters and to sophisticate the methods



Figure 9. Comparison between model and real speed distribution with incident.

in order to get better solutions under realistic scenarios. Fourth, we realize that the occurrence of an
incident can be treated under an FDI-FFTC scheme, allowing the reaction of the controller and the
adjustment of the speed distribution parameters to significantly improve the dispatch rules under
such a distorted scenario. The addition of the speed distribution into the model ensures a better
estimation of both waiting and travel times not only due to demand prediction but also because
of traffic congestion predictions, generating better real-time routing decisions, and consequently
better performance of the dispatch service. The more information we have the system, the better
performance can be obtained from the HAPC framework.

This paper represents a first step in the elaboration of a sophisticated HAPC approach to model
DPDP and use prediction in the current decisions. The next step is to consider a real network
configuration (with specific links and nodes) and replace the generic speed model in space by a
velocity distribution model at a link level. This extension requires the coding of a time-dependent
shortest path algorithm to compute optimal routes from point to point through the network, with link
travel times depending on the time at which vehicles reach the upstream node of such a link. The
coding can result harder; however, the general framework (Section 2) remains the same. We propose



the use of traffic microsimulation in order to have a better quantification of the performance of the
system in real time (simulation time). Better velocity models should result in better performance
of the HAPC scheme. In the case of unexpected incidents, we propose an FDI-FFTC method.
However, we recognize that the proposed rules can be further improved, sophisticating the way
in which the system reacts to the occurrence of the detected fault. One straight extension is to
somehow re-route those vehicles whose sequence path falls into the fault area, even though the
associated stops are not inside the affected zone. Besides, the present formulation can be extended
to the use of fixed stations monitoring traffic conditions at strategically chosen locations over the
urban area, in order to have more data available to better trigger the FDI detection.
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23. Cortés CE, Sáez D, Murcia F, Núñez A, Control Predictivo Hı́brido para un sistema personalizado de transporte
público puerta a puerta programado en tiempo real (in Spanish). Proceedings of the XII Chilean Conference in
Transport Engineering, Valparaı́so, Chile, October 2005; 375–388.
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