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Abstract

We study the travelling wave problem

J � u − u − cu′ + f (u) = 0 in R, u(−∞) = 0, u(+∞) = 1

with an asymmetric kernel J and a monostable nonlinearity. We prove the existence of a minimal speed,
and under certain hypothesis the uniqueness of the profile for c �= 0. For c = 0 we show examples of
nonuniqueness.
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1. Introduction and main results

During the past ten years, much attention has been drawn to the study of the following nonlo-
cal equation

∂U

∂t
= J � U − U + f (U) in R

n × R
+, (1.1)

U(x,0) = U0(x), (1.2)
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where J is a probability density on R
N and f a given nonlinearity. Such kind of equations

appears in various applications ranging from population dynamics to Ising models as seen in [1,6,
12,13,15,16,19,23,24] among many references. Here we will only be concerned with probability
densities J which satisfy the following assumption:

J ∈ C
(
R

n
)
, J (z) � 0,

∫
Rn

J (z) dz = 1,

∫
Rn

|z|J (z) dz < ∞,

and nonlinearities f of monostable type, e.g.

(f1) f ∈ C1(R), which satisfies f (0) = f (1) = 0, f ′(1) < 0, f |(0,1) > 0

and f |R\[0,1] � 0.

Such nonlinearities are commonly used in population dynamics to describe the interaction (birth,
death, . . .) of a species in its environment as described in [14,17].

Our analysis in this paper will mainly focus on the travelling wave solutions of Eq. (1.1).
These particular type of solutions are of the form Ue(x, t) := u(x.e + ct) where e ∈ Sn−1 is a
given unit vector, the velocity c ∈ R and the scalar function u satisfy

J � u − u − cu′ + f (u) = 0 in R, (1.3)

u(−∞) = 0, (1.4)

u(+∞) = 1, (1.5)

where u(±∞) denotes the limit of u(x) as x → ±∞ and J is the real function defined as

J (s) :=
∫
Πs

J (y) dy,

where Πs = {y ∈ R
N : 〈y, e〉 = s}. Thus we shall assume that the kernel J satisfies

(j1) J ∈ C(R), J (z) � 0,

∫
R

J (z) dz = 1,

∫
R

|z|J (z) dz < ∞.

We will call a solution u ∈ L∞(R) to (1.3)–(1.5) a travelling wave or travelling front if it is
nondecreasing.

The first works to study travelling fronts in this setting are due to Schumacher [24] and in
related nonlocal problems by Weinberger [25,26] who constructed travelling fronts satisfying
some exponential decay for J symmetric and particular monostable nonlinearities, the so-called
KPP nonlinearity, e.g.

(f2) f is monostable and satisfies f (s) � f ′(0)s.

Then, Harris, Hudson and Zinner [18] and more recently Carr and Chmaj [4], Chen and Guo [5]
and Coville and Dupaigne [11] extended and completed the work of Schumacher to more general



monostable nonlinearities and dispersal kernels J satisfying what is called in the literature the
Mollison condition [21–23]:

(j2) ∃λ > 0 such that

∞∫
−∞

J (−z)eλz dz < +∞.

More precisely, they show that

Theorem 1.1. (See [4,5,11,18,24].) Let f be a monostable nonlinearity, J be a symmetric func-
tion satisfying (j1)–(j2). Then there exists a constant c∗ > 0 such that for all c � c∗, there exists
an increasing function u, such that (u, c) is a solution of (1.3)–(1.5) and for any c < c∗, there
exists no increasing solution of (1.3)–(1.5). Moreover, if in addition f ′(0) > 0, then any bounded
solution (u, c) of (1.3)–(1.5) is unique up to translation.

Furthermore, as in the classical case, when the nonlinearity is KPP the critical speed c∗ can
be precisely evaluated by means of a formula.

Theorem 1.2. (See [4,5,18,24,25].) Let f be a KPP nonlinearity and J be a symmetric function
satisfying (j1)–(j2). Then the critical speed c∗ is given by

c∗ = min
λ>0

1

λ

(∫
R

J (x)eλx dx + f ′(0) − 1

)
.

In Theorems 1.1 and 1.2 the dispersal kernel J is assumed to be symmetric. This corresponds
to the situation where the dispersion of the species is isotropic. Since the dispersal of an individ-
ual can be influenced in many ways (wind, landscape, . . .), it is natural to ask what happens when
the kernel J is nonsymmetric. In this direction, we have the following result:

Theorem 1.3. Let f be a monostable nonlinearity satisfying (f1) and J be a dispersal kernel
satisfying (j1). Assume further that there exists (w,κ) with w ∈ C(R) a super-solution of (1.3)–
(1.5) in the sense:

J � w − w − κw′ + f (w) � 0 in R,

w(−∞) � 0,

w(+∞) � 1 (1.6)

and such that w(x0) < 1 for some x0 ∈ R. Then there exists a critical speed c∗ � κ , such that for
all c � c∗ there exists a nondecreasing solution (u, c) to (1.3)–(1.5) and for c < c∗ there exists
no nondecreasing travelling wave with speed c.

We emphasize that in the above theorem we do not require monotonicity of the super-
solution w. The first consequence of Theorem 1.3 is to relate the existence of a minimal speed c∗
and the existence of a travelling front for any speed c � c∗ to the existence of a super-solution.
In other words, we have the following necessary and sufficient condition:



Corollary 1.4. Let f and J be such that (f1) and (j1) hold. Then there exists a nondecreasing
solution with minimal speed (u, c∗) of (1.3)–(1.5) if and only if there exists a super-solution
(w,κ) of (1.3)–(1.5).

The existence of a super-solution in Theorem 1.3 is automatic under extra assumptions on J .
For instance, we have

Theorem 1.5. Let f be a monostable nonlinearity and J satisfy (j1) and Mollison’s condi-
tion (j2). Then there exists a critical speed c∗ such that for all c � c∗ there exists a nondecreasing
function u such that (u, c) is a solution of (1.3)–(1.5), while there is no nondecreasing travelling
wave with speed c < c∗.

Next we examine the validity of Theorem 1.2 for nonsymmetric J . Let c1 denote the following
quantity

c1 := inf
λ>0

1

λ

(∫
R

J (−x)eλx dx + f ′(0) − 1

)
.

For c � c1 we denote λ(c) the unique minimal λ > 0 such that

−cλ +
∫
R

J (−x)eλx dx + f ′(0) − 1 = 0.

We generalize a result of Carr and Chmaj [4] to the case when J is nonsymmetric.

Theorem 1.6. Let f be a monostable nonlinearity satisfying (f1), f ′(0) > 0, f ∈ C1,γ near 0
and there are m � 1, δ > 0, A > 0 such that

∣∣u − f (u)
∣∣ � Aum for all 0 � u < δ. (1.7)

Let J be a dispersal kernel satisfying (j1), J ∈ C1 and is compactly supported. Then c1 � c∗.
Moreover, if u is a solution of (1.3), (1.4), 0 � u � 1, u �≡ 0 then, when c = c1

0 < lim
x→−∞

u(x)

|x|eλ(c∗)x < ∞, (1.8)

and when c > c1

0 < lim
x→−∞

u(x)

eλ(c)x
< ∞. (1.9)

In Theorem 1.6 we do not need to assume that the solution u to (1.3), (1.4) is monotone.

Corollary 1.7. If f and J satisfy the hypotheses of Theorem 1.6 and f satisfies also (f2) then

c∗ = c1.



Observe that when J is symmetric, by Jensen’s inequality c1 > 0. On the other hand, it is
not difficult to construct examples of nonsymmetric J such that c1 � 0. This fact should not
be surprising. Indeed, let us recall a connection between the nonlocal problem (1.1) and a local
version which arises by considering a family of kernels that approaches a Dirac mass, that is,
Jε(x) = 1

ε
J ( x

ε
) with ε > 0. Assuming that u is smooth and J decays fast enough, expanding

Jε � u − u in powers of ε we see that

Jε � u(x) − u(x) = 1

ε

∫
R

J

(
x − y

ε

)(
u(y) − u(x)

)
dy =

∫
R

J (−z)
(
u(x + εz) − u(x)

)
dz

= εβu′(x) + ε2αu′′(x) + o
(
ε2) (1.10)

as ε → 0, where

α = 1

2

∫
R

J (z)z2 dz and β =
∫
R

J (−z)z dz.

Thus there is a formal analogy between J � u − u and βu′(x) + εαu′′(x). When J is symmetric
then β = 0 and the results for travelling waves of (1.3)–(1.5) are similar to those for travelling
wave solutions of

α̃u′′ − cu′ + f (u) = 0 in R, du(−∞) = 0, u(+∞) = 1, (1.11)

where α̃ > 0. For (1.11) there exists a minimal speed c∗ > 0 such that travelling front solutions
exist if and only if c � c∗ (see [20]). For general asymmetric J we see from (1.10) that a better
analogue than (1.11) for (1.3)–(1.5) is the problem

α̃u′′ − (c − β̃)u′ + f (u) = 0 in R, u(−∞) = 0, u(+∞) = 1

for some α̃ � 0 and β̃ ∈ R. This equation is the same as (1.11) with a shift in the speed, that
is, the minimal speed is c∗ + β̃ where c∗ is the old minimal speed in (1.11). This new minimal
speed can be either positive or negative depending on the size and sign of β̃ , which is related to
the asymmetry of J .

Regarding the uniqueness of the profile of the travelling waves we prove:

Theorem 1.8. Assume f and J satisfy the hypotheses of Theorem 1.6 and J satisfies:

∃a < 0 < b such that J (a) > 0, J (b) > 0. (1.12)

Then for c �= 0 the solution of the problem (1.3)–(1.5) is unique up to translation.

We notice if c �= 0 then any solution to (1.3) is continuous. In the case c = 0, the same ar-
gument used to prove Theorem 1.8 gives uniqueness for continuous solutions of (1.3)–(1.5)
provided that this problem admits a continuous solution (see Remark 6.4). In the case c = 0
one sufficient condition for a solution 0 � u � 1 to (1.3) to be continuous is that

u − f (u) is strictly increasing in [0,1].



In Proposition 6.7 we give examples of f and nonsymmetric J such that no solution of (1.3)–
(1.5) is continuous, and this problem admits infinitely many solutions.

Our results also have implications in the study of solutions to

J � u − u + f (u) = 0 (1.13)

which corresponds to (1.3) with velocity c = 0. In [10] it was shown that if f (u)/u is decreasing
and J is symmetric then any nontrivial bounded solution of (1.13) is identically 1. The symmetry
of J was important in the argument and it was conjectured that if the kernel J is not even (1.13)
may have more than one solution. For this discussion we shall assume that f and J satisfy the
hypotheses of Theorem 1.6 and f also satisfies (f2). We observe that when the dispersal kernel
is not even, the critical velocity c∗ can be nonpositive. If c∗ � 0 we obtain that Eq. (1.13) has a
nonconstant positive solution satisfying (1.4)–(1.5). Similarly, Eq. (1.13) has positive solutions
satisfying

lim
x→−∞u(x) = 1, lim

x→+∞u(x) = 0, u is nonincreasing

if and only if c∗ � 0 where

c∗ = min
λ>0

1

λ

(∫
R

J (x)eλx dx + f ′(0) − 1

)
.

Observe that by Jensen’s inequality we have c∗ > 0 or c∗ > 0. In summary, besides u ≡ 0 and
u ≡ 1 Eq. (1.13) has travelling wave solutions if c∗ � 0 or c∗ � 0. One may wonder whether
other types of solutions may exist, maybe not monotone or with other behavior at ±∞. Under
some additional conditions on f we have a complete classification result for (1.13), in the sense
that we do not require the boundary conditions at ±∞, continuity nor the monotonicity of the
solutions. This result can be shown by slightly modifying the arguments for Theorem 2.1 in [4].

Theorem 1.9. Suppose f and J satisfy the hypotheses of Theorem 1.6, J satisfies (1.12) and
f ′(r) � f ′(0) for r ∈ (0,1). Then any solution 0 � u � 1 of problem (1.13) is one of the follow-
ing: (1) u ≡ 0 or u ≡ 1, (2) a nondecreasing travelling wave, or (3) a nonincreasing travelling
wave. Moreover in cases (2) and (3) the profile is unique up to translation.

Regarding Mollison’s condition (j2) let us mention that recently Kot and Medlock in [21] have
shown that for a one-dimensional problem when the dispersal kernel J is even with a fat tails
and f (s) := s(1− s), the solutions of the initial value problem (1.1) do not behave like travelling
waves with constant speed but rather like what they called accelerating waves. Moreover, they
predict the apparition of accelerating waves for (1.1). More precisely, supported by numerical
evidence and analytical proof, they conjecture that (1.1) admits travelling wave solutions if and
only if for some λ > 0

+∞∫
J (z)eλz dz < +∞.
−∞



It appears from our analysis on nonsymmetric dispersal kernels, that the existence of travelling
waves with constant speed is more related to

+∞∫
0

J (z)eλz dz < +∞ for some λ > 0

if we look at fronts propagating from the left to the right and

+∞∫
0

J (−z)eλz dz < +∞ for some λ > 0

if we look at fronts propagating from the right to the left. As a consequence, for asymmetric
kernels, it may happen that in one direction, the solution behave like a front with finite speed and
in the other like an accelerating wave.

The outline of this paper is the following. In Section 2, we recall some results on front so-
lutions for ignition nonlinearities, then in Section 3 we construct increasing solution of for J

compactly supported. Section 4 is devoted to the proofs of Theorems 1.3 and 1.5. Section 5 con-
tains the proofs of Theorem 1.6 and Corollary 1.7. In Section 6 we prove the uniqueness of the
profile Theorem 1.8 and Theorem 1.9.

2. Approximation by ignition type nonlinearities

The proof of Theorem 1.3 essentially relies on some estimates and properties of the speed of
fronts for problem (1.1) with ignition type nonlinearities f . We say that f is of ignition type if
f ∈ C1([0,1]) and

(f3) there exists ρ ∈ (0,1) such that f |[0,ρ] ≡ 0, f |(ρ,1) > 0 and f (1) = 0.

Consider the following problem⎧⎨
⎩

J � u − u − cu′ + f (u) = 0 in R,

u(−∞) = 0,

u(+∞) = 1,

(2.1)

where c ∈ R and f is either an ignition nonlinearity or a monostable nonlinearity.
The main result in this section is the following:

Proposition 2.1. Let f be a monostable nonlinearity and assume that J is a nonnegative continu-
ous function of unit mass. Assume further that there exists (w,κ) a super-solution of (1.3)–(1.5).
Let (fk)k∈N be any sequence of ignition functions which converges pointwise to f and satisfies
∀k ∈ N, fk � fk+1 � f and let ck be the unique speed of fronts associated to (2.1). Then

lim
k→+∞ ck = c∗ (2.2)

exists and is independent of the sequence fk . Furthermore, c∗ � κ , there exists a nondecreasing
solution (u, c∗) of (1.3)–(1.5) and for c < c∗ there are no nondecreasing solutions to (1.3)–(1.5).



The fact that for (2.1) with ignition type nonlinearity there exists a unique speed of fronts
has been recently established by one of the authors in [7–9] and holds also for the following
perturbation of (2.1)

⎧⎨
⎩

εu′′ + J � u − u − cu′ + f (u) = 0 in R,

u(−∞) = 0,

u(+∞) = 1,

(2.3)

where ε � 0, c ∈ R.

Theorem 2.2. (See [9, Theorem 1.2] and [7, Theorem 3.2].) Let f be an ignition nonlinearity
and assume that J satisfies (j1). Then there exists a nondecreasing solution (u, c) of (2.3). Fur-
thermore the speed c is unique. Moreover, if (v, c′) is a super-solution of (2.3), then c � c′. The
inequality becomes strict when v is not a solution of (2.3).

We remark that in this results the super-solution v is not required to be monotone.

Corollary 2.3. Let f1 � f2, f1 �≡ f2 be two ignition nonlinearities and assume that J is a non-
negative continuous function of unit mass with finite first moment. Then c1 > c2 where c1 and c2
are the corresponding unique speeds given by Theorem 2.2.

We also recall some useful results on solutions of (2.3), which can be found in [9,11].

Lemma 2.4. (See [9, Lemma 2.1].) Suppose f satisfies (f1) and J satisfies (j1). Assume ε � 0,
c ∈ R and let 0 � u � 1 be an increasing solution of (2.3). Then

f
(
l±

) = 0,

where l± are the limits of u at ±∞.

Lemma 2.5. (See [9, Lemma 2.2].) Let f and J be as in Theorem 2.2. Then the following holds

μc2 − ν|c| � 0,

where the constants μ,ν are defined by

μ := inf{ρ,1 − ρ}, ν :=
∫
R

J (z)|z|dz.

Proof of Proposition 2.1. Let (fn)n∈N be a sequence of ignition functions which converges
pointwise to f and satisfies ∀n ∈ N, fn � fn+1 � f . Let (un, cn) denote the corresponding
solution given by Theorem 2.2. By Corollary 2.3, (cn)n∈N is an increasing sequence. Next, we
see that cn � κ . Since w satisfies

J � w − w − κw′ + fn(w) � 0 in R



by Theorem 2.2 we get

cn � κ.

Let us observe that we can normalize the sequence of solutions un by un(0) = 1
2 . Indeed,

when c∗ = 0 since cn < c∗ the solution un is smooth. Since any translation of un is a solution of
the problem and un(−∞) = 0, un(+∞) = 1 we can normalize it by un(0) = 1

2 . When c∗ �= 0,
since cn → c∗ the sequence un is smooth for all n sufficiently large. Thus the same normalization
can be also taken in this situation.

Since (un)n∈N is a uniformly bounded sequence of increasing functions, using Helly’s lemma
there exists a subsequence which converges pointwise to a nondecreasing function u. Moreover,
u satisfies in the distribution sense

J � u − u − c∗u′ + f (u) = 0 in R,

and by the monotonicity and the normalization of un

u(x) � 1

2
for all x � 0, u(x) � 1

2
for all x � 0. (2.4)

Observe that when c∗ �= 0, using C1
loc regularity, we get that u ∈ C1

loc and satisfies the above
equation in a strong sense. Otherwise, when c∗ = 0, a standard argument shows that u satisfies
almost everywhere the equation

J � u − u + f (u) = 0.

Observe that by (2.4) u is nontrivial. It remains to show that u satisfies the right boundary
conditions. Now, since u is nondecreasing and bounded, the following limits are well defined:

l− := lim
x→−∞u(x),

l+ := lim
x→+∞u(x).

We get l+ = 1 and l− = 0 using Lemma 2.4, the definition of f and the monotonicity of u.
To finish we need to prove that c∗ is independent of the sequence fn. So consider another

sequence f̃n of ignition functions such that f̃n � f̃n+1 � f and f̃n → f pointwise. Let (ũn, c̃n)

denote the front solution and speed of (2.1) with nonlinearity f̃n and let

c̃ = lim
n→∞ c̃n.

Since u = limn→∞ un satisfies

J � u − u − c∗u′ + f̃n(u) � 0

by Theorem 2.2 we have c̃n � c∗. Hence c̃ � c∗ and reversing the roles of fn and f̃n we get
c∗ � c̃.



Finally observe that for c < c∗ there is no monotone solution to (1.4)–(1.5). Otherwise this
solution would be a super-solution of (2.1) with fn instead of f . By Theorem 2.2 we would have
cn � c for all n, which is a contradiction. �
3. Construction of solutions of (1.3)–(1.5) when J is compactly supported

In this section we construct monotone solutions of (1.3)–(1.5) when J is compactly supported.
More precisely we prove the following

Proposition 3.1. Let f be a monostable nonlinearity and J be continuous compactly supported
which satisfies (j1). Assume further that there exists a ∈ R such that {a,−a} ⊂ supp(J ). Then
there exists a critical speed c∗, such that for all c � c∗ there exists a nondecreasing function u

such that (u, c) is a solution of (1.3)–(1.5). Moreover, there is no nondecreasing travelling wave
with speed c < c∗.

To prove the above result we proceed following the strategy developed in [11]. It is based on
the vanishing viscosity technique, a priori estimates, the construction of adequate super- and sub-
solutions and the characterization of the critical speed obtained in Section 2. Let us first briefly
explain how we proceed.

Step 1. For convenience, let us first rewrite problem (2.3) in the following way:⎧⎨
⎩
M[u] + f (u) = 0 in R,

u(−∞) = 0,

u(+∞) = 1,

(3.1)

where the operator M is defined for a given ε > 0, c ∈ R by

M[u] = M(ε, c)u = εu′′ + J � u − u − cu′. (3.2)

For problem (3.1), for small ε, we construct a super-solution which is independent of ε. More
precisely we show the following

Lemma 3.2. Let J and f be as in Proposition 3.1. Then there exist ε0 > 0 and (w,κ) such that
∀0 < ε � ε0, (w,κ) is a super-solution of (3.1).

Step 2. Using the above super-solution and a standard approximation scheme, for fixed 0 <

ε � ε0, we prove the following

Proposition 3.3. Fix 0 < ε � ε0 and let J and f be as in Proposition 3.1. Then there exists
c∗(ε) such that ∀c � c∗(ε), there exists an increasing function uε such that (uε, c) is a solution
of (3.1). Moreover c∗(ε) � κ where (w,κ) is the super-solution of Lemma 3.2.

Step 3. We study the singular limit ε → 0 and prove Proposition 3.1.
Some of the arguments developed in [11], on which this procedure is based, do not use the

symmetry of J . Hence in some cases we will skip details in our proofs, making appropriate
references to [11].

We divide this section in 3 subsections, each one devoted to one step.



3.1. Step 1. Existence of a super-solution

We start with the construction of a super-solution of (3.1) for speeds c � κ̄ for some κ̄ > 0
which is independent of ε for 0 < ε � 1.

Lemma 3.4. Assume J has compact support and let ε > 0. There exist a real number κ̄ > 0 and
an increasing function w̄ ∈ C2(R) such that, given any c � κ̄ and 0 < ε � 1

⎧⎨
⎩
M[w̄] + f (w̄) � 0 in R,

w̄(−∞) = 0,

w̄(+∞) = 1,

where M = M(ε, c) is defined by (3.2). Furthermore, w̄(0) = 1
2 .

The construction of the super-solution is an adaptation of the one proposed in [11]. The es-
sential difference lies in the computation of the super-solution in a neighborhood of −∞.

Proof. As in [11], fix positive constants N,λ, δ such that λ > δ.
Let w̄ ∈ C2(R) be a positive increasing function satisfying

– w̄(x) = eλx for x ∈ (−∞,−N ],
– w̄(x) � eλx on R,
– w̄(x) = 1 − e−δx for x ∈ [N,+∞),
– w̄(0) = 1

2 .

Let x0 = e−λN and x1 = 1 − e−δN . We have 0 < x0 < x1 < 1.
We now construct a positive function g defined on (0,1) which satisfies g(w̄) � f (w̄). Since

f is smooth near 0 and 1, we have for c large enough, say c � κ0,

λ(c − λ)s � f (s) for s ∈ [0, x0] (3.3)

and

δ(c − δ)(1 − s) � f (s) for s ∈ [x1,1]. (3.4)

Therefore we can achieve g(s) � f (s) for s in [0,1], with g defined by

g(s) =
⎧⎨
⎩

λ(κ0 − λ)s for 0 � s � x0,

l(s) for x0 < s < x1,

δ(κ0 − δ)(1 − s) for x1 � s � 1,

(3.5)

where l is any smooth positive function greater than f on [x0, x1] such that g is of class C1.
According to (3.5), for x � −N , i.e. for w � e−λN , we have

M[w̄] + g(w̄) = εw̄′′ + J � w̄ − w̄ − cw̄′ + g(w̄)

= ελ2eλx + J � w̄ − eλx − λceλx + λ(κ0 − λ)eλx



� ελ2eλx + J � eλx − eλx − λceλx + λ(κ0 − λ)eλx

� eλx

[∫
R

J (−z)eλz dz − 1 − λ(c − κ0) − λ2(1 − ε)

]

� 0,

for c large enough, say

c � κ1 =
∫

R
J (−z)eλz dz − 1 + λκ0 − λ2(1 − ε)

λ
.

In the open set (x1,+∞), the computation of the super-solution is identical to the one in [11].
So, we end up with

M[w̄] + g(w̄) � 0 in (x1,+∞)

for c large enough, say c � κ2.
Therefore, by taking c � sup{κ0, κ1, κ2}, we achieve

g(w̄) � f (w̄) and M[w̄] + g(w̄) � 0 for 0 � w̄ � e−λN and w̄ � 1 − e−δN .

For the remaining values of w̄, i.e. for x ∈ [−N,N ], w̄′ > 0 and we may increase c further if
necessary, to achieve

M[w̄] + g(w̄) � 0 in R.

The result follows for

κ̄(ε) := sup{κ0, κ1, κ2, κ3},

where

κ3 = sup
x∈[−N,N ]

{
ε|w̄′′| + |J � w̄ − w̄| + g(w̄)

w̄′

}
. �

Now, note that κ̄(ε) is a nondecreasing function of ε, therefore for all nonnegative ε � 1,
(w̄, κ̄) with κ̄ = κ̄(1), will be a super-solution of (3.1), which ends Step 1.

Remark 3.5. The above construction of a super-solution also works if we only assume that for
some positive λ, the following holds

+∞∫
0

J (−z)eλz dz < +∞.



3.2. Step 2. Construction of a solution when ε > 0

To prove Proposition 3.3 we follow the strategy used in [11] relying on the following approx-
imation scheme.

We first prove existence and uniqueness of a monotone solution for⎧⎨
⎩
S[u] + f (u) = −hr(x) in ω,

u(−r) = θ,

u(+∞) = 1,

(3.6)

where ε > 0, r ∈ R, c ∈ R and θ ∈ (0,1) are given, and

ω = (−r,+∞), (3.7)

S[u] = S(ε, r, c)[u] = εu′′ +
+∞∫
−r

J (x − y)u(y) dy − u − cu′, (3.8)

hr(x) = θ

−r∫
−∞

J (x − y)dy. (3.9)

More precisely, we show

Proposition 3.6. Assume f and J are as in Proposition 3.1. For any ε > 0, θ ∈ [0,1), r > 0 so
that suppJ ⊂ (−r,+∞) and c ∈ R there exists a unique positive increasing solution uc of (3.6).

To prove this proposition we use a construction introduced by one of the authors [8,9] which
consists first to obtain a solution of the following problem:⎧⎨

⎩
L[u] + f (u) + hr + hR = 0 for x ∈ Ω,

u(−r) = θ,

u(+R) = 1,

(3.10)

where Ω = (−r,+R) and L= L(ε, J, r,R, c), hr and hR are defined by

L[u] = L(ε, J, r,R, c)[u] = εu′′ +
[ +R∫

−r

J (x − y)u(y) dy − u

]
− cu′,

hr(x) = θ

−r∫
−∞

J (x − y)dy,

hR(x) =
+∞∫

+R

J (x − y)dy. (3.11)

Namely, we have



Proposition 3.7. Assume f and J are as in Proposition 3.1. For any ε > 0, θ ∈ [0,1), r < R so
that suppJ ⊂ (−r,R) and c ∈ R there exists a unique positive increasing solution uc of (3.10).

Proof. The construction of a solution uses the super- and sub-solution iterative scheme presented
in [9]. To produce a solution, we just have to construct ordered sub- and super-solutions. An easy
computation shows that u = θ and ū = 1 are respectively a sub- and a super-solution of (3.10).
Indeed,

L[u] + f (u) + hr + hR =
R∫

−r

J (x − y)θ dy − θ + θ

−r∫
−∞

J (x − y)dy +
+∞∫
R

J (x − y)dy + f (θ)

= (1 − θ)

+∞∫
R

J (x − y)dy + f (θ) � 0

and

L[ū] + f (ū) + hr + hR =
R∫

−r

J (x − y)dy − 1 + θ

−r∫
−∞

J (x − y)dy +
+∞∫
R

J (x − y)dy + f (1)

= (θ − 1)

−r∫
−∞

J (x − y)dy � 0.

The uniqueness and the monotonicity of such solutions have been already established in [8], so
we refer to this reference for interested reader. �

We are now in a position to prove Proposition 3.6.

Proof of Proposition 3.6. Let us now construct a solution of (3.6). Fix ε > 0, c ∈ R and r > 0
such that supp(J ) ⊂ ω. Let (Rn)n∈N be a sequence of reals which converges to +∞. Since J

has compact support, without loosing generality we may also assume that supp(J ) ⊂ (−r,Rn)

for all n ∈ N. Let us denote (un, c) the corresponding solution given by Proposition 3.7. Clearly,
hRn → 0 pointwise, as n → ∞. Observe now that (un)n∈N is a uniformly bounded sequence of
increasing functions. Since ε > 0, using local C2,α estimates, up to a subsequence, un converges
in C

2,α
loc to a nondecreasing function u. Therefore u ∈ C2,α and satisfies

⎧⎪⎪⎨
⎪⎪⎩

εu′′ +
+∞∫
−r

J (x − y)u(y) dy − u − cu′ + f (u) + hr = 0 in ω,

u(−r) = θ.

(3.12)

To complete the construction of the solution, we prove that u(+∞) = 1. Indeed, since u is
uniformly bounded and nondecreasing, u achieves its limit at +∞. Using Lemma 2.4 yields
u(+∞) = 1. �



Proof of Proposition 3.3. By Lemma 3.4 there exist κ̄ and a function w̄ which is a super-solution
to (3.1) for any c � κ̄ and any 0 < ε � 1. If c � κ̄ , following the approach in [11], we can take
the limit as r → ∞ in the problem (3.6) to obtain a solution of (3.1).

Finally one can also verify, see [11], that there exists a monotone solution uε with the follow-
ing speed

c∗(ε) := inf
{
c

∣∣ (3.1) admits a monotone solution with speed c
}
.

The proof of these claims are straightforward adaptations of [11], since in this reference the
author makes no use of the symmetry of J for this part of the proof, and essentially relies on
the maximum principle and Helly’s theorem. We point the interested reader to [11] for the de-
tails. �
Remark 3.8. Note that from the previous comments we get the following uniform estimates

∀0 < ε � ε0, c∗(ε) � κ̄ .

3.3. Step 3. Proof of Proposition 3.1

We essentially use the ideas introduced in [11].
First, we remark that since J has a compact support, using the super-solution of Step 1, we

get from Proposition 2.1 a monotone solution (u, c∗) of (1.3)–(1.5). Furthermore, there exists no
monotone solution of (1.3)–(1.5) with speed c < c∗ and we have the following characterization:

lim
k→∞ ck = c∗,

where ck is the unique speed of fronts associated with an arbitrary sequence of ignition functions
(fk)k∈N which converges pointwise to f and satisfies ∀k ∈ N, fk � fk+1 � f .

Also observe that from Remark 3.8 we have a uniform bound from above on c∗(ε).

Lemma 3.9. For all ε � ε0 we have c∗(ε) � κ̄ .

For any speed c � κ̄ > 0, there exists a monotone solution (uε, c) of (3.1) for any ε � ε0. Nor-
malizing the functions by uε(0) = 1

2 and letting ε → 0, using Helly’s theorem, a priori bounds
and some regularity we end up with a solution (u, c) of (1.3)–(1.5). Repeating this limiting
process for any speed c � κ̄ , we end up with a monotone solution of (1.3)–(1.5) for any speed
c � κ̄ .

Define now the following critical speed

c∗∗ = inf
{
c

∣∣ ∀c′ � c (1.3)–(1.5) has a positive monotone solution of speed c′}.
Remark 3.10. Observe that from the uniform bounds we easily see that

c∗∗ � lim inf
ε→0

c∗(ε). (3.13)



Obviously, we have c∗ � c∗∗ � κ̄ . To complete the proof of Proposition 3.1, we are then led to
prove that c∗∗ = c∗. To prove this equality, we use some properties of the speed of the following
approximated problem

⎧⎨
⎩

εu′′ + J � u − u − cu′ + f ηθ (u) = 0 in R,

u(−∞) = 0,

u(+∞) = 1,

(3.14)

where θ > 0, ηθ (u) = η(u/θ) and η ∈ C∞(R) is such that

0 � η � 1, η′ � 0, η(s) = 0 for s � 1, η(s) = 1 for s � 2.

Then ηθ has the following properties:

– ηθ ∈ C∞(R),
– 0 � ηθ � 1,
– ηθ (s) ≡ 0 for s � θ and ηθ (s) ≡ 1 for s � 2θ ,
– if 0 < θ1 � θ2 then ηθ1

� ηθ2
.

For (3.14), we have the following results:

Lemma 3.11. Let cθ be the unique speed of front solutions to (2.1) and nonlinearity f ηθ . Let
cθ
ε , c∗(ε) be respectively the unique (minimal) speed solution of (3.1) with the nonlinearity f ηθ

and f . Then the following holds:

(a) For fixed θ > 0, limε→0 cθ
ε = cθ .

(b) For fixed ε so that ε0 � ε > 0, limθ→0 cθ
ε = c∗(ε).

Proof. The first limit, as ε → 0 when θ > 0 is fixed, has been already obtained in [9], so we
refer to this reference for a detailed proof. The second limit, for fixed ε > 0, is obtained using a
similar argument as in the proof of Proposition 2.1 to obtain the characterization of c∗. �
Proof of Proposition 3.1. Assume by contradiction that c∗ < c∗∗. Then choose c such that
c∗ < c < c∗∗. By (3.13) we may fix ε0 > 0 small such that

c < c∗(ε) ∀ε ∈ (0, ε0). (3.15)

Now consider any sequence θ̄n → 0. Since cθ̄n < c, using Lemma 3.11(a) there exists 0 <

εn < ε0, εn → 0, such that

cθ̄n
εn

< c. (3.16)

Then, using the continuity of the map θ �→ cθ
εn

, (3.16), (3.15) and Lemma 3.11(b) we conclude
that there exists 0 < θn < θ̄n such that

c = cθn
ε .

n



Note that θn → 0. Let un be the associated solution to (3.1) with ε = εn, speed c and nonlin-
earity f ηθn . We normalize un by un(0) = 1/2. Using Helly’s theorem we get a solution ū of
(1.3)–(1.5) with speed c. This contradicts the definition of c∗∗. �
4. Construction of solution in the general case: Proofs of Theorems 1.3 and 1.5

Theorem 1.5 is a direct consequence of Theorem 1.3. Indeed, since J satisfies the Mollison
condition, the construction in Section 3 (Step 1, Section 3.1) of a smooth super-solution (w,κ)

with w(0) = 1
2 holds. Therefore, Theorem 1.5 is a direct application of Theorem 1.3.

In the rest of the section we prove Theorem 1.3, that is, we construct solutions of (1.3)–
(1.5) only assuming that there exists a super-solution (w,κ) of (1.3)–(1.5). The construction
uses a standard procedure of approximation of J by kernels Jn with compact support and the
characterization of the minimal speed c∗ obtained in Section 2.

Let us describe briefly our proof. From Proposition 2.1, there exists a monotone solution
(u, c∗) of (1.3)–(1.5) with critical speed. Then we construct monotone solution of (1.3)–(1.5)
for any c > c∗, c �= 0, using a sequence (Jn)n∈N of approximated kernels and the same type
of arguments developed in Step 3 of the above section. Let us first construct the approximated
kernel and get some uniform lower bounds for c∗

n.

4.1. The approximated kernel and related problems

First, let j0 be a positive symmetric function defined by

j0(x) =
{

e
1

x2−1 for x ∈ (−1,1),

0 elsewhere.
(4.1)

Now, let (χn)n∈N be the following sequence of “cut-off” function:

– χn ∈ C∞
0 (R),

– 0 � χn � 1,
– χn(s) ≡ 1 for |s| � n and χn(s) ≡ 0 for |s| � 2n.

Define

Jn := 1

mn

(
j0

n
+ J (z)χn(z)

)
,

where mn := 1
n

∫
R

j0(z) dz + ∫
R

Jχn(z) dz. Observe that since
∫

R
j0 > 0, Jn is well defined and

Jn(z) → J (z) pointwise.
Since Jn satisfies the assumption of Proposition 3.1, there exists for each n ∈ N a critical

speed c∗
n for the problem (4.2) below:⎧⎨

⎩
Jn � u − u − cu′ + f (u) = 0 in R,

u(−∞) = 0,

u(+∞) = 1.

(4.2)

Before going to the proof of Theorem 1.3, we prove some a priori estimates on c∗
n. Namely we

have the following



Proposition 4.1. Let c∗
n be the critical speed defined above, then there exists a positive constant

κ1 such that

−κ1 � c∗
n.

Proof. Let fθ be a fixed function of ignition type such that fθ � f . Using Theorem 2.2, we have
cθ
n � c∗

n. To obtain our desired bound, we just have to bound from below cθ
n . The later is obtained

using Lemma 2.5. Indeed, for each n ∈ N, we have

μ
(
cθ
n

)2 − νn

∣∣cθ
n

∣∣ � 0,

with νn := ∫
R

Jn(z)|z|dz and μ is independent of n. Since νn � ν̄ := supn∈N{νn} < ∞, we end
up with

μ
(
cθ
n

)2 − ν̄
∣∣cθ

n

∣∣ � 0.

Hence,

∣∣cθ
n

∣∣ � κ1. �
Let us also recall some properties of the following approximated problem:

⎧⎨
⎩

Jn � u − u − cu′ + f ηθ (u) = 0 in R,

u(−∞) = 0,

u(+∞) = 1,

(4.3)

where θ > 0 and ηθ is such that

– ηθ ∈ C∞
0 (R),

– 0 � ηθ � 1,
– ηθ (s) ≡ 0 for s � θ and ηθ (s) ≡ 1 for s � 2θ .

For such kind of problem we have

Lemma 4.2. Let cθ and cθ
n be the unique speed solutions of (2.1) with the nonlinearity f ηθ

and respectively the kernels J and Jn and let c∗
n be the critical speed solution of (4.3) with the

nonlinearity f and the kernel Jn. Then the following holds:

(a) For fixed θ , limn→∞ cθ
n = cθ .

(b) For a fixed n, then limθ→0 cθ
n = c∗

n.

Part (b) of this lemma is contained in Proposition 2.1. Part (a) can be proved using similar
arguments as in Proposition 2.1.



4.2. Construction of the solutions: Proof of Theorem 1.3

We are now in position to prove Theorem 1.3. From Proposition 2.1, we already know that
there exists a travelling front to (1.3)–(1.5) with a critical speed c∗. To complete the proof, we
have to construct nondecreasing solution for any speed c � c∗. We emphasize that since (w,κ)

is not a super-solution of (1.3)–(1.5) with the approximated kernel Jn, there is no uniform upper
bound directly available for the speed c∗

n and the argumentation in the above section cannot
directly be applied.

From Proposition 4.1, we have the following dichotomy: either lim inf(c∗
n)n∈N < +∞ or

lim inf(c∗
n)n∈N = +∞. We prove that in both situations there exists a front solution for any speed

c � c∗.

Case 1: lim inf(c∗
n)n∈N < +∞. In this case, the same argument as in Proposition 3.1 in Sec-

tion 3.3 works. Indeed, up to a subsequence c∗
n → c̃ and we must have c∗ � c̃. To prove that

c∗ = c̃ we proceed as in Section 3.3, using Lemma 4.2 instead of Lemma 3.11.
Let now turn our attention to the other situation.

Case 2: lim inf(c∗
n)n∈N = +∞. In this case limn→∞ c∗

n = +∞ we argue as follows. Fix c > c∗,
c �= 0, where c∗ is defined by Proposition 2.1. We will show that for such c there is a monotone
solution to (1.3)–(1.5). When c∗ � 0 and c = 0 then a standard limiting procedure will show that
a monotone solution exists with this speed.

Again, by Theorem 2.2 and Proposition 2.1, we have cθ < c∗ for every positive θ . Therefore,

∀θ > 0, cθ < c∗ < c.

Fix θ > 0. Since cθ
n → cθ , one has on the one hand cθ

n < c for n � n0 for some integer n0. On the
other hand, c∗

n → +∞, thus there exists an integer n1 such that c < c∗
n for all n � n1. Therefore,

we may achieve for n � sup{n0, n1},
cθ
n < c < c∗

n.

From this last inequality, and according to Theorem 2.2 and Lemma 4.2, for each n �
sup{n0, n1} there exists a positive θ(n) � θ such that c = c

θ(n)
n .

Let un be the nondecreasing solution of (4.2) associated with θ(n). Since θ(n) is bounded, we
can extract a subsequence still denoted (θ(n))n∈N which converges to some θ̄ . We claim that

Claim. θ̄ = 0.

Assume for the moment that the claim is proved. Using the translation invariance, we may
assume that for all n, un(0) = 1

2 . Using now that un is uniformly bounded and Helly’s theorem,
up to a subsequence un → u pointwise, where u is a solution of (1.3)–(1.5) with speed c.

In this way we get a nontrivial solution of (1.3)–(1.5) for any speed c � c∗.
Let us now turn our attention to the proof of the above claim.

Proof of the Claim. We argue by contradiction. If not, then θ̄ > 0 and the speed cθ̄ of the
corresponding nondecreasing front solution of (2.1) satisfies

cθ̄ < c∗ < c.



Let us now consider, un the solution associated with θ(n), normalized by un(0) = θ(n). Using
uniform a priori estimates, Helly’s theorem we can extract a converging sequence of function
and get a solution u with speed c of the following:

J � u − u − cu′ + fθ̄ (u) = 0 in R.

Using the arguments developed in [9, Section 5.1] to prove Theorem 1.2 of that reference, one
can show that u satisfies the boundary conditions

u(+∞) = 1, u(−∞) = 0.

According to Proposition 2.1, we get the contradiction

c = cθ̄ < c∗ < c.

Hence θ̄ = 0. �
5. Characterization of the minimal speed and asymptotic behavior

Throughout this section we will assume the hypotheses of Theorem 1.6, namely f satis-
fies (f1), f ′(0) > 0, f ∈ C1,γ near 0 and (1.7), and J satisfies (j1), J ∈ C1 and is compactly
supported.

Let us consider the following equation

J � u − u − cu′ + f (u) = 0 in R,

lim
x→−∞u(x) = 0. (5.1)

We need to establish some estimates on bounded solutions of (5.1) that we constantly use
along this section.

Lemma 5.1. Let u be a nonnegative bounded solution of (5.1), then the following holds:

(i)
∫ x

y

∫
R

J (s − t)[u(t) − u(s)]dt ds = ∫ 1
0

∫
R

J (−z)z[u(x + zη) − u(y + zη)]dzdη,

(ii) f (u) ∈ L1(R),
(iii) u,J � u ∈ L1(R−),
(iv) v(x) := ∫ x

−∞ u(s) ds satisfies v(x) � K(1 + |x|) for some positive K and v(x) ∈ L1(R−).

Proof. We start with the proof of (i). Let (un)n be a sequence of smooth (C1) functions which
converges pointwise to u. Using the Fundamental Theorem of Calculus and Fubini’s Theorem,
we have

x∫
y

∫
R

J (s − t)
[
un(t) − un(s)

]
dt ds =

x∫
y

1∫
0

∫
R

J (−z)zu′
n(s + zη)dz dη ds

=
1∫ ∫

J (−z)z
[
un(x + zη) − un(y + zη)

]
dzdη.
0 R



Since |J (−z)zun(y + ηz)| � K|J (−z)z| ∈ L1(R × [0,1]) and un converges pointwise to u,
passing to the limit in the above equation yields

x∫
y

∫
R

J (s − t)
[
u(t) − u(s)

]
dt ds =

1∫
0

∫
R

J (−z)z
[
u(x + zη) − u(y + zη)

]
dzdη.

To obtain (ii), we argue as follows. Integrating (5.1) from y to x, it follows that

c
(
u(x) − u(y)

) −
x∫

y

∫
R

J (s − t)
[
u(t) − u(s)

]
dt ds =

x∫
y

f
(
u(s)

)
ds. (5.2)

Using (i), we end up with

c
(
u(x) − u(y)

) −
1∫

0

∫
R

J (−z)z
[
u(x + zη) − u(y + zη)

]
dzdη =

x∫
y

f
(
u(s)

)
ds. (5.3)

Again, since |J (−z)zu(y + ηz)| � K|J (−z)z| ∈ L1(R × [0,1]), we can pass to the limit
y → −∞ in the above equation using Lebesgue dominated convergence theorem. Therefore,
we end up with

cu(x) −
1∫

0

∫
R

J (−z)zu(x + zη)dz dη =
x∫

−∞
f

(
u(s)

)
ds.

Thus,

x∫
−∞

f
(
u(s)

)
ds � K

(
|c| +

∫
R

J (z)|z|dz

)

which proves (ii). From Eq. (5.2), we have

c
(
u(x) − u(y)

) −
x∫

y

f
(
u(s)

)
ds +

x∫
y

u(s) ds =
x∫

y

J � u(s) ds.

Thus J �u ∈ L1(R−) will immediately follow from u ∈ L1(R−) and (ii). Observe now that since
f ′(0) > 0, and u(−∞) = 0, for x � −1, we have f (u) > αu for some positive constant α.
Therefore,

α

x∫
−∞

u(s) ds �
x∫

−∞
f

(
u(s)

)
ds

and (iii) is proved.



To obtain (iv) we argue as follows. From (i)–(iii), v is a well-defined nondecreasing function
such that v(−∞) = 0. Moreover, v is smooth provide u is continuous. By definition of v, we
easily see that v(x) � C(|x| + 1) for all x ∈ R. Indeed, we have

v(x) �
0∫

∞
u(s) ds +

|x|∫
0

u(s) ds � K
(
1 + |x|),

where K = sup{∫ 0
−∞ u(s) ds; ‖u‖L∞(R)}.

Now, integrating (5.1) on (−∞, x), we easily see that

cv′(x) = J � v(x) − v(x) +
x∫

−∞
f

(
u(s)

)
ds. (5.4)

Since f ′(0) > 0 we can choose R � −1 so that for s � R, f (u(s)) � αu(s) for some α > 0.
Fixing now x < R and integrating (5.4) between y and x, we obtain

c
(
v(x) − v(y)

)
�

x∫
y

(
J � v(s) − v(s)

)
ds + α

x∫
y

v(s) ds. (5.5)

Proceeding as above, we get that v ∈ L1(−∞,R). �
Following the idea of Carr and Chmaj [4], we now derive some asymptotic behavior of the

nonnegative bounded solution u of (5.1). More precisely, we show the following

Lemma 5.2. Let u be a nonnegative bounded continuous solution of (5.1). Then there exist two
positive constants M,β , such that v(x) = ∫ x

−∞ u(s) ds satisfies

v(x) � Meβx. (5.6)

Proof. The proof uses ideas from [11]. Let us first show that for some positive constants C, R,
we have

−R∫
−∞

v(x)e−βx dx < C, (5.7)

for some β > 0 small.
Consider R > 0 and β > 0 constants to be chosen later. Let ζ ∈ C∞(R) be a nonnegative

nondecreasing function such that ζ ≡ 0 in (−∞,−2] and ζ ≡ 1 in [−1,∞). For N ∈ N, let
ζN = ζ(x/N). Multiplying (5.4) by e−βxζN and integrating over R, we get

∫
(J � v − v)

(
e−βxζN

)
dx −

∫
cv′(e−βxζN

)
dx +

∫ x∫
f

(
u(s)

)
ds

(
e−βxζN

)
dx = 0. (5.8)
R R R −∞



Note that by the monotonicity of ζN we have

∫
R

J � v(x)ζN(x)e−βx dx =
∫
R

∫
R

J (x − y)e−βxζN(x)v(y) dz dy

=
∫
R

∫
R

J (z)e−β(z+y)ζN(z + y)v(y) dz dy

�
∫
R

v(y)e−βy

( ∞∫
−R

J (z)e−βzζN(y − R)dz

)
dy.

Therefore, we have

∫
R

(J � v − v)
(
e−βxζN

)
dx �

∫
v(x)e−βx

( ∞∫
−R

J (z)e−βz dz ζN(x − R) − ζN(x)

)
dx. (5.9)

Let us now choose our adequate R > 0. First pick 0 < α < f ′(0) and R > 0 so large that

f (u)(x) � αu(x) for x � −R. (5.10)

Next, one can increase R further if necessary so that
∫ ∞
−R

J (y) dy > (1 − α/2). By continuity
we obtain for some β0 > 0 and all 0 < β < β0,

∞∫
−R

J (y)e−βy dy � (1 − α/2)eβR. (5.11)

Collecting (5.9) and (5.11), we then obtain

∫
R

(J � v − v)
(
e−βxζN

)
�

∫
R

v(x)e−βx
(
(1 − α/2)eβRζN(x − R) − ζN(x)

)
dx

� (1 − α/2)

∫
R

v(x + R)e−βxζN(x) dx −
∫
R

v(x)e−βxζN(x) dx

� −α/2
∫
R

v(x)e−βxζN(x) dx, (5.12)

where we used the monotone behavior of v in the last inequality.
We now estimate the second term in (5.8):

∫
R

v′ζNe−βx dx = β

∫
R

vζNe−βx −
∫
R

vζ ′
ne

−βx dx � β

∫
R

vζNe−βx. (5.13)



Finally using (5.10), the last term in (5.8) satisfies

∫
R

( x∫
−∞

f
(
u(s)

)
ds

)
ζNe−βx dx =

−R∫
−∞

( x∫
−∞

f
(
u(s)

)
ds

)
ζNe−βx dx − C

� α

−R∫
−∞

vζNe−βx dx − C. (5.14)

By (5.8), (5.12)–(5.14), we then obtain

|c|β
∫
R

uζNe−βx dx � α

−R∫
−∞

uζNe−βx dx − C − α/2
∫
R

vζNe−βx dx,

(
α/2 − |c|β) −R∫

−∞
uζNe−βx dx � C̃.

Choosing β < α/(2|c|) and letting N → ∞ proves (5.7).
Using the monotonicity of v we can conclude that

v(x) � Ceβx, (5.15)

for some constant C. Indeed, if (5.15) does not hold, then for a sequence xn → −∞ we have
v(xn) � neβxn . Extracting a subsequence if necessary, we can assume that xn+1 < xn − 1, thus
since v is increasing we have

x0∫
−∞

v(x)e−βx dx �
∑
n�1

xn−1∫
xn

neβxne−βx dx

�
∑
n�1

n
1 − e−β(xn−xn−1)

β

�
∑
n�1

n
1 − e−β

β
= ∞

which is a contradiction. �
In the next result we establish that the bounded solution u of (5.1) also decays exponentially

as x → −∞.

Lemma 5.3. Suppose that u is bounded solution of (5.1). If for some M,β > 0 we have that
v(x) � Meβx for all x then there exist M1, α > 0 such that

u(x) � M1e
αx for all x ∈ R. (5.16)



Proof. When c �= 0 then by (5.4) we have the following estimates

|c|u(x) =
∣∣∣∣∣J � v − v +

x∫
∞

f
(
u(s)

)
ds

∣∣∣∣∣
� J � v + v +

x∫
∞

f (u(s))

u(s)
u(s) ds

� J � v + (K + 1)v,

where K is the Lipschitz constant of f . Now since

J � v(x) � C

∫
R

J (x − y)eβy � C′eβx,

we easily see that (5.6) holds.
When c = 0 the estimate does not directly comes from (5.4) and we have to distinguish several

cases.
Let first observe that for x < 0 since u is bounded by some constant C, J � u satisfies the

following

J � u(x) =
α
β
x∫

∞
J (x − y)u(y) dy +

+∞∫
α
β
x

J (x − y)u(y) dy

� ‖J‖∞

α
β
x∫

−∞
u(y)dy + C

∞∫
x( α

β
−1)

J (−z) dz

� ‖J‖∞v

(
α

β
x

)
+ Ce(β−α)x

∞∫
x( α

β
−1)

J (−z)eβz dz.

Choosing α = β
2 in the above equation, we end up with

J � u(x) � Ce
β
2 x, (5.17)

for some constant C. Observe also that since f is smooth and f (0) = 0, we have for small ε > 0
and s > 0 small, ∣∣∣∣f (s)

s
− f ′(0)

∣∣∣∣ � ε.

Therefore from (5.1), for ε > 0 small there exists K(ε) > 0 such that for x < −K(ε) we have

u
(
1 − f ′(0) + ε

)
� J � u = u

(
1 − f (u)

)
� u

(
1 − f ′(0) − ε

)
. (5.18)
u



Observe now that if f ′(0) > 1, we get a contradiction. Indeed, choose ε so that (1 −
f ′(0) + ε) < 0, then we have the following contradiction when x < −K(ε)

0 > u
(
1 − f ′(0) + ε

)
� J � u � 0.

Thus, when f ′(0) > 1, there is no positive solution of (5.1) with zero speed.
Let us now look at the other cases. Assume now that f ′(0) < 1 and choose ε small so that

(1 − f ′(0) − ε) > 0 then from (5.18) for x < −K(ε) there exists a positive constant C so that

u � CJ � u � Ce
β
2 x.

Finally, when f ′(0) = 1 recall that f satisfies (1.7). Thus, for x � −1

J � u(x) = u − f (u) � Aum,

where A > 0, m � 1. Using (5.17), yields

u � C

A
e

β
2m

x. �
Remark 5.4. From the above proof, we easily conclude that for any 0 < α < ᾱ, where ᾱ depends
only on β and γ , there exists M1 > 0 such that (5.16) holds.

As in [4], for u a solution of (5.1) we define the function U(λ) = ∫
R

e−λxu(x) dx which by
Lemma 5.3 is defined and analytic in the strip 0 < Reλ < α. Note that

∫
R

J � u(x)e−λx =
∫
R

u(y)e−λy dy

∫
R

J (−z)eλz dz

and using integration by parts

c

∫
R

u′e−λx dx = λc

∫
R

u(y)e−λy dy.

Using the above identities, if we multiply (5.1) by e−λx and integrate in R we obtain

U(λ)
(−cλ + m(λ)

) =
∫
R

e−λx
(
f ′(0)u(x) − f

(
u(x)

))
dx, (5.19)

where the function m(λ) = ∫
R

J (−x)e−λxdx + f ′(0) − 1 is analytic in C.
Let c1 be the following quantity

c1 := min
λ>0

1

λ

(∫
R

J (−x)eλx dx + f ′(0) − 1

)
.



Proposition 5.5. If c < c1 then (5.1) does not have any solution.

Proof. Since u > 0 we deduce, from a property of Laplace transform [27, Theorem 5b, p. 58]
and Lemma 5.3, that the function U(λ) is analytic in 0 < Reλ < B , where B � α, and U(λ) has
a singularity at λ = B . Observe that if c < c1 then for some δ > 0

−cλ + m(λ) > δλ, for all λ > 0. (5.20)

Observe that since f ∈ C1,γ near 0 and using Lemma 5.3 we have that for some constant
C > 0

∫
R

e−λx
∣∣f ′(0)u(x) − f

(
u(x)

)∣∣dx =
−K∫
∞

e−λx
∣∣f ′(0)u(x) − f

(
u(x)

)∣∣dx

+
+∞∫

−K

e−λx
∣∣f ′(0)u(x) − f

(
u(x)

)∣∣dx

�
−K∫
∞

e−λx
∣∣Au1+γ + o

(
u1+γ

)∣∣dx + C

+∞∫
−K

e−λxu(x) dx

� C

∫
R

e−λxu1+γ (x) dx

� C

∫
R

e(−λ+γα)xu(x) dx.

From the above computation, it follows that
∫

R
e−λx |f ′(0)u(x) − f (u(x))|dx is analytic in

the region 0 < Reλ < B + γ α. Since γ > 0, using Eq. (5.19), we get U(λ) defined and analytic
for 0 < Reλ < B + γ α. Bootstrapping this argumentation we can extend analytically U(λ) to
Reλ > 0. Then for all λ > 0∫

R

e−λx
∣∣f ′(0)u(x) − f

(
u(x)

)∣∣dx �
(
f ′(0) + k

)∫
R

e−λxu(x) = CU(λ).

Therefore for all λ > 0, using (5.19), it follows that −cλ + m(λ) � C contradicting (5.20). �
Remark 5.6. We should point out that the above proposition holds as well if the kernel J instead
of being compactly supported, is only assumed to satisfy:

∃M,λ0 > 0 such that

+∞∫
0

J (−x)eλ0x � M.

Let us now establish the exact asymptotic behavior, as x → −∞, of a solution u of (5.1). We
proceed as follows. First, we obtain the exact behavior of v = ∫ x

−∞ u(s) ds, proceeding as in [4]
and then we conclude the behavior of u.



For c � c1 we denote λ(c) the unique minimal λ > 0 such that −cλ + m(λ) = 0. It can be
easily verified that λ(c) is a simple root of −cλ + m(λ) if c > c1, and it is a double root when
c = c1.

Proof of Theorem 1.6. Since there is a monotone solution (u, c∗) of (1.3)–(1.5) with critical
speed, it is a bounded solution of (5.1). Thus by Proposition 5.5, c∗ � c1.

It remains to prove (1.8) and (1.9). The proof follows from a modified version of Ikehara’s
Theorem (see [27]). We define F(λ) = ∫ 0

−∞ v(y)e−λy . Since v is monotone, we can obtain the
appropriate asymptotic behavior of v if F has the representation

F(λ) = H(λ)

(λ − α)k+1
, (5.21)

with H analytic in the strip 0 < Reλ � α, and k = 0 when c > c∗, k = 1 when c = c∗.
Using (5.4), we have that

0∫
−∞

v(x)e−λx dx =
∫ ∞
−∞

∫ x

−∞ f (u(s)) − f ′(0)u(s) ds e−λx dx

cλ − m(λ)
−

∞∫
0

v(x)e−λx,

thus, using that either c �= 0 or f ′(0) < 1 holds, we have that by Lemma 5.3, (5.21) holds replac-
ing u by v with α = λ(c) described above, since it can be checked that −cλ+m(λ) has only two
real roots which are simple when c > c1 and double when c = c1.

It remains to conclude that (5.21) holds for u. First suppose that c = c1 and denote λ = λ(c1).
If c �= 0 then using (5.4) we have that

cu = J � v(x) − (
1 − f ′(0)

)
v(x) +

x∫
−∞

f
(
u(s)

) − f ′(0)u(s) ds.

By Remark 5.4 and since f is C1,γ near 0 we have that

∫ x

−∞ f (u(s)) − f ′(0)u(s) ds

|x|e−λ(c1)x
→ 0, (5.22)

as |x| → −∞. Therefore, we just have to prove that

lim
x→−∞

J � v(x) − (1 − f ′(0))v(x)

|x|eλ(c1)x
= L �= 0. (5.23)

Observe that since v satisfies (1.8) we have that for η = limx→−∞ v(x)

|x|eλ(c1)x
and suppJ ⊂ [−k, k]

J � v

|x|eλ(c1)x
= 1

|x|
k∫
J (−z)

(
η + O(1/x)

)
eλ(c1)z

(|x| + z
)
dz,
−k



therefore

J � v(x) − (1 − f ′(0))v(x)

|x|eλ(c1)x
→ ηm

(
λ
(
c1)) = ηc1λ

(
c1) �= 0,

which gives the desired result.
When c1 = 0, we proceed in a slightly different way. Observe that in this case f ′(0) < 1,

(
1 − f ′(0)

)
u = J � u + f (u) − f ′(0)u, (5.24)

and by Remark 5.4 and since f ∈ C1,γ near 0 we have that (5.22) holds. Also, by (j2) we have
that J � u = J ′ � v and

J ′ � v

|x|eλ(c1)x
= 1

|x|
k∫

−k

J ′(−z)
(
η + O(1/x)

)
eλ(c1)z

(|x| + z
)
dz

= η

∫
R

J (−z)eλ(c1)z dz + O(1/x),

with η > 0 as above. Hence, we obtain the desired result.
Finally, the case c > c1 is analogous. �

Proof of Corollary 1.7. Observe now that in the case of a KPP nonlinearity f , the func-
tion w := eλx is a super-solution of (1.3)–(1.5), provided that λ > 0 is chosen such that
−cλ + m(λ) = 0. The existence of such λ > 0 is guaranteed since c � c1. The existence of a
monotone travelling wave for any c � c1 is then provided by Theorem 1.3. Therefore c∗ � c1

and we conclude c∗ = c1. �
6. Uniqueness of the profile

In this section we deal with the uniqueness up to translation of solution of (1.3)–(1.5). Our
proof follows ideas of [7] and is mainly based on the sliding methods introduced by Berestycki
and Nirenberg [2,3] (see also [7]).

In the sequel, given a function u : R → R and τ ∈ R we define its translation by τ as

uτ (x) = u(x + τ) (6.1)

and sometimes we shall write uτ (x) = u(τ + x).
Let L denote the operator

Lu = J � u − u − cu′.

Proposition 6.1 (Nonlinear Comparison Principle). Let J satisfy (j1), (1.12) and let f be a
monostable nonlinearity so that f ′(1) < 0. Let u and v be two continuous functions in R such
that



Lu + f (u) � 0 on R, (6.2)

Lv + f (v) � 0 on R, (6.3)

lim
x→−∞u(x) � 0, lim

x→−∞v(x) � 0, (6.4)

lim
x→+∞u(x) � 1, lim

x→+∞v(x) � 1. (6.5)

Assume further that either u or v is monotone and that u � v in some interval (−∞,K). Then
there exists τ ∈ R such that uτ � v in R. Moreover, either uτ > v in R or uτ ≡ v.

Remark 6.2. Observe that by the maximum principle and since f (s) � 0 ∀s � 0, the super-
solution u is necessarily positive. Similarly, since f (s) � 0 ∀s � 1, the maximum principle
implies that v < 1.

Proof of Proposition 6.1. Note that if infR u � supR v, the theorem trivially holds. In the sequel,
we assume that infR u < supR v.

Let ε > 0 be such that

f ′(p) � 0 for 1 − ε < p < 1. (6.6)

Now fix 0 < δ � ε
2 and choose M > 0 sufficiently large so that

1 − u(x) <
δ

2
∀x > M, (6.7)

v(x) <
δ

2
∀x < −M, and (6.8)

v(x) � u(x) ∀x < −M. (6.9)

Step 1. There exists a constant D such that for every b � D

u(x + b) > v(x) ∀x ∈ [−M − 1 − b,M + 1]. (6.10)

Indeed, since u > 0 in R and limx→+∞ u(x) � 1 we have

c0 := inf[−M−1,∞)
u > 0.

Since limx→−∞ v(x) � 0 there is L > 0 large such that

v(x) < c0 ∀x � −L.

Then for all b > 0

u(x + b) > v(x) ∀x ∈ [M − 1 − b,−L].

Now, since sup[−L,M+1] v < 1 and limx→+∞ u(x) � 1 we deduce (6.10).



Step 2. There exists b � D such that

u(x + b) + δ

2
> v(x) ∀x ∈ R. (6.11)

If not then we have

∀b � D there exists x(b) such that u(x(b) + b) + δ

2
� v

(
x(b)

)
. (6.12)

Since u is nonnegative and v satisfies (6.4) there exists a positive constant A such that

u(x + b) + δ

2
> v(x) for all b > 0 and x � −A. (6.13)

Take now a sequence (bn)n∈N which tends to +∞. Let x(bn) be the point defined by (6.12). Thus
we have for that sequence

u
(
x(bn) + bn

) + δ

2
� v

(
x(bn)

)
. (6.14)

According to (6.13) we have x(bn) � −A. Therefore the sequence x(bn)+bn converges to +∞.
Pass to the limit in (6.14) to get

1 + δ

2
� lim

n→+∞u
(
x(bn) + bn

) + δ

2
� lim sup

n→+∞
v
(
x(bn)

)
� 1,

which is a contradiction. This proves our claim (6.11).

Step 3. We observe that as a consequence of (6.10) and (6.11), and using that either u or v is
monotone we in fact have

u(x + b) � v(x) ∀x � M + 1,

u(x + b) + δ

2
> v(x) ∀x � M + 1. (6.15)

Indeed, it only remains to verify that u(x + b) > v(x) for x � M − 1 − b. If u is monotone from
(6.9) we have u(x + b) > u(x) > v(x) for x < −M . If v is monotone u(x) > v(x) > v(x − b)

for x < −M .

Step 4. Now we claim that

u(x + b) � v(x) ∀x ∈ R. (6.16)

To prove this, consider

a∗ = inf
{
a > 0

∣∣ u(x + b) + a � v(x) ∀x ∈ R
}

(6.17)

which is well defined by (6.11).
If a∗ = 0 then (6.16) follows. Suppose a∗ > 0. Then, since



lim
x→±∞u(x + b) + a∗ − v(x) � a∗ > 0,

there exists x0 ∈ R such that u(x0 + b) + a∗ = v(x0).
Let w(x) := u(x + b) + a∗ − v(x) and note that

0 = w(x0) = min
R

w(x). (6.18)

Observe that w also satisfies the following equations:

Lw � f
(
v(x)

) − f
(
u(x + b)

)
, (6.19)

w(+∞) � a∗, (6.20)

w(−∞) � a∗. (6.21)

Since w � 0, w �≡ 0, using the strong maximum principle for some global minimum x0 of w we
have

Lw(x0) > 0. (6.22)

By (6.15) we necessarily have x0 > M + 1.
At x0 we have

f
(
u(x0 + b) + a∗) − f

(
u(x0 + b)

)
� 0, (6.23)

since f is nonincreasing for s � 1 − ε, a∗ > 0 and 1 − ε < 1 − δ
2 � u for x > M . Combining

(6.19), (6.22) and (6.23) yields the contradiction

0 < Lw(x0) � f
(
u(x0 + b) + a∗) − f

(
u(x0 + b)

)
� 0.

Step 5. Finally it remains to prove that either uτ > v or uτ ≡ v. Let w := uτ − v, then either
w > 0 or w(x0) = 0 at some point x0 ∈ R. In the latter case we have w(x) � w(x0) = 0 and

0 � Lw(x0) � f
(
v(x0)

) − f
(
u(x0 + τ)

) = f
(
v(x0)

) − f
(
v(x0)

) = 0. (6.24)

Then using the maximum principle, we obtain w ≡ 0, which means uτ ≡ v. �
Proposition 6.3. Let J satisfy (j1), (1.12) and let f be a monostable nonlinearity so that
f ′(1) < 0. Let u1 and u2 be respectively super- and sub-solutions of (1.3)–(1.5) which are con-
tinuous. If u1 � u2 in some interval (−∞,K) and either u1 or u2 is monotone then u1 � u2
everywhere. Moreover either u1 > u2 or u1 ≡ u2.

Proof. Assume first that infR u1 < supR u2. Otherwise there is nothing to prove. Without losing
generality we can assume that u1 is monotone. Using Proposition 6.1, uτ

1 � u2 for some τ ∈ R,
so the following quantity is well defined

τ ∗ := inf
{
τ ∈ R

∣∣ uτ � u2
}
.
1



We claim that

τ ∗ � 0. (6.25)

Observe that by showing that τ ∗ � 0, we end the proof. To prove (6.25) we argue by contra-
diction. Assume that τ ∗ > 0, then since ui are continuous functions, we will have uτ∗

1 � u2 in R.
Let w := uτ∗

1 − u2 � 0. Since τ ∗ > 0 and u1 is monotone then w > 0 in (−∞,K). Now observe
that w > 0 in R or w(x0) = 0 for some point x0 in R. In the latter case

0 � (J � w − w)(x0) � f
(
u2(x0)

) − f
(
uτ∗

1 (x0)
) = 0.

Thus, using the maximum principle, w ≡ 0, which contradicts that w > 0 in (−∞,K). Now
since u1 is monotone and τ ∗ > 0 for small ε > 0, we have uτ∗−ε

1 > u2 in (−∞,M). Arguing
as in Step 4 of the proof of Proposition 6.1 we deduce uτ∗−ε > u2 in R which contradicts the
definition of τ ∗. �
Remark 6.4. With minor modifications the proofs of Propositions 6.1 and 6.3 hold if only one of
the functions u1 or u2 is continuous. For the proof of this statement we need the strong maximum
principle for solutions in L∞, which can be found in [10].

Theorem 6.5. Assume J satisfies (j1), (1.12) and let c ∈ L∞(R). If u ∈ L∞(R) satisfies u � 0
a.e. and J � u − u + c(x)u � 0 a.e. in R, then ess supK u < 0 for all compact K ⊂ R or u = 0
a.e. in R.

Proof of Theorem 1.8. The case of c �= c1 and c = c1 being similar, we present only the case
c �= c1. Let u1 and u2 be two solutions of (1.3)–(1.5) with the same speed c �= 0. Since c �= 0 the
functions ui are uniformly continuous. From Theorem 1.3, we can assume that u1 is a monotonic
function. Since, ui solve the same equation and u1 is monotone, using the translation invariance
of the equation and (1.9) we see that up to a translation

u1 = eλ(c)x + o
(
eλ(c)x

)
, as x → −∞, (6.26)

u2 = eλ(c)x + o
(
eλ(c)x

)
, as x → −∞. (6.27)

Let us first recall the following notation, uτ (.) := u(. + τ). Then, by monotonicity of u1 and
(6.26)–(6.27) for some positive τ we have uτ

1 � u2 in some interval (−∞,−K). Using Proposi-
tion 6.3, it follows that uτ

1 � u2 for possibly a new τ . Define now the following quantity:

τ ∗ := inf
{
τ > 0

∣∣ uτ
1 � u2

}
.

Observe that form the above argument τ ∗ is well defined. We claim

Claim. τ ∗ = 0.

Observe that proving the claim ends the proof of the uniqueness up to translation of the solu-
tion. Indeed, assume for a moment that the claim is proved then we end up with u1 � u2. Observe
now that in the above argumentation the role of u1 and u2 can be interchanged, so we easily see
that we have u1 � u2 � u1 which ends the proof of the uniqueness. �



Let us now prove the Claim.

Proof of the Claim. If not, then τ ∗ > 0. Let w := uτ∗
1 − u2 � 0. Then either there exists a point

x0 where w(x0) = 0 or w > 0. In the first case, at x0, w satisfies:

0 � J � w(x0) − w(x0) = f
(
u2(x0)

) − f
(
uτ∗

1 (x0)
) = 0.

Using the strong maximum principle, it follows that w ≡ 0. Thus uτ∗
1 ≡ u2, which contradicts

(6.26)–(6.27). Therefore, uτ∗
1 > u2. Using (6.26), since τ ∗ > 0 we have for uτ∗

1 the following
behavior near −∞:

uτ∗
1 := eτ∗

eλ(c)x + o
(
eλ(c)x

)
.

Therefore, for some ε > 0 small, we still have uτ∗−ε
1 � u2 in some neighborhood (−∞,−K)

of −∞. Using Proposition 6.3, we end up with uτ∗−ε
1 � u2 everywhere, contradicting the defin-

ition of τ ∗. Hence, τ ∗ = 0. �
Regarding Theorem 1.9 we need the following result:

Lemma 6.6. Assume that J and f satisfy (j1), (j2), (1.12) and (f1), (f2), respectively. Let 0 �
u � 1 be a solution to (1.3).

(a) Then

lim
x→−∞u(x) = 0 or lim

x→−∞u(x) = 1,

and

lim
x→∞u(x) = 0 or lim

x→∞u(x) = 1.

(b) If u(−∞) = 1 and u(+∞) = 1 then u ≡ 1.

Note that in this lemma we do not assume that u is continuous.

Proof. (a) Let 0 � u � 1 be a solution to (1.13). We first note that by (5.3) any bounded solution
u of (1.3) satisfies

∞∫
−∞

f (u)du < ∞. (6.28)

Let g(u) = u − f (u) and note that

J � u = g(u) in R, (6.29)

and that the hypotheses on f imply g′(u) � g′(0) and g(u) � u for u ∈ [0,1].
If f ′(0) < 1 then g′(0) > 0 and then g is strictly increasing. This together with (6.29) implies

that u is uniformly continuous and using (6.28) we see that u(−∞) = 0 or u(−∞) = 1 and the



same at +∞ which is the desired conclusion. Therefore in the sequel we assume f ′(0) � 1, that
is, g′(0) � 0.

Since both limits at −∞ and +∞ are analogous we concentrate on the case x → −∞.
We will establish the conclusion of part (a) by proving

lim inf
x→−∞J � u(x) = 0 �⇒ lim

x→−∞u(x) = 0, (6.30)

and

lim inf
x→−∞J � u(x) > 0 �⇒ lim

x→−∞u(x) = 1. (6.31)

We start with (6.30). Suppose that f ′(0) > 1. Then there is δ > 0 such that g(u) < 0 for
u ∈ (0, δ) and from (6.29) we deduce that u(x) � δ for all x, so regarding (6.30) there is nothing
to prove.

Suppose f ′(0) = 1. Then g is nondecreasing and by (1.7) we have, for some A > 0, m � 1,
δ1 > 0

g(u) � Aum ∀0 � u � δ1. (6.32)

Assume that lim infx→−∞ J � u(x) = 0 and let us show first that

lim
x→−∞J � u(x) = 0. (6.33)

Otherwise, set l = lim supx→−∞ J � u(x) > 0. Choose l ∈ (0, l) such that g′(l) > 0 and then
pick a sequence xn → −∞ such that J � u(xn) = g(l) for all n. Then there is some σ > 0 such
that for x ∈ (xn − σ,xn + σ) we have f (u(x)) � c > 0 for some uniform c. This contradicts
(6.28) and we deduce (6.33). This combined with (6.32) implies that limx→−∞ u(x) = 0, and
this establishes (6.30).

We prove now (6.31). Let us assume

l := lim inf
x→−∞J � u(x) > 0.

Since J � u = g(u) � u it is enough to show that

lim
x→−∞J � u(x) = 1. (6.34)

Assume the contrary, that is,

0 < l < 1. (6.35)

Observe that

lim inf u(x) > 0.

x→−∞



This is direct if f ′(0) > 1 and follows from (6.29), (6.32) and l > 0 if f ′(0) = 1. Therefore
lim supx→−∞ u(x) = 1, otherwise (6.28) cannot hold. Hence

lim sup
x→−∞

J � u(x) = 1. (6.36)

Chose now α ∈ (l,1) a regular value of the function g. By (6.35), (6.36) and the continu-
ity of J � u there exists a sequence xn → −∞ such that J � u(xn) = α. Note that the set
{u ∈ [0,1]/g(u) = α} is discrete and hence finite and does not contain 0 nor 1. Hence, for suf-
ficiently small ε > 0 we have {u ∈ [0,1]/α − ε < g(u) < α + ε} ⊆ [ε,1 − ε]. Since J � u is
uniformly continuous there is σ > 0 such that for x ∈ (xn−σ,xn+σ) we have ε � u(xn) � 1−ε.
This contradicts the integrability condition (6.28), and we deduce the validity of (6.34).

(b) Assume that limx→∞ u(x) = limx→−∞ u(x) = 1 and set γ ∗ = sup{0 < γ < 1/u > γ }.
For the sake of contradiction assume that u is nonconstant. Then 0 < γ ∗ < 1. Since f (γ ∗) > 0
we have that v = u − γ ∗ � 0 satisfies

J � v − v − cv′ + f (u) − f (γ ∗)
u − γ ∗ (u − γ ∗) < 0. (6.37)

If c �= 0 then v reaches its global minimum at some x0 ∈ R which satisfies v(x0) = 0. Thus,
evaluating (6.37) at x0 we obtain a contradiction. If c = 0 we reach again a contradiction applying
Theorem 6.5. �
Proof of Theorem 1.9. Assume 0 � u � 1 is a solution of (1.13) such that u �≡ 0 and u �≡ 1.
By Lemma 6.6, u(−∞) = 0 or u(+∞) = 0. Then we may apply Theorem 1.6 and deduce the
exact asymptotic behavior of u at either −∞ or +∞ and that c∗ � 0 or c∗ � 0. Let u0 denote a
nondecreasing travelling wave with speed c = 0 if c∗ � 0 or a nonincreasing one if c∗ � 0. Then,
by slightly modifying the proof of Theorem 2.1 in [4] we deduce that for a suitable translation
we have uτ ≡ u0. In particular the profile of the travelling wave u0 is unique. �

Next we address the issues of nonuniqueness and discontinuities of solutions when c = 0. We
consider f such that

f is smooth, 0 < f ′(0) < 1, f ′(1) < 0 and f is KPP. (6.38)

We are interested in the case where u−f (u) is not monotone, and for simplicity we shall assume
that setting

g(u) = u − f (u)

there exist 0 < α < β < 1 such that

g′(u) > 0 ∀u ∈ [0, α) ∪ (β,1],
g′(u) < 0 ∀u ∈ (α,β). (6.39)

Proposition 6.7. Assume f satisfies (6.38), (6.39). Then there exists J such that no solution of
(1.3)–(1.5) is continuous, and this problem admits infinitely many solutions.



Proof. Let us choose J ∈ C1, with compact support and satisfying (j1) and (1.12), and such that
c1 � 0. Then by Corollary 1.7 we have c∗ = c1 � 0. Thus there exists a monotone travelling
wave solution u1 of (1.3)–(1.5) with speed c = 0. If (1.3)–(1.5) has a continuous solution u2,
then by Theorem 1.8 and Remark 6.4 we have u1 ≡ u2. Hence u1 is monotone and continuous.
Then J � u1 is monotone which implies that u1 − f (u1) is monotone in R. This is impossible if
u1 is continuous and u − f (u) is not monotone.

For the construction of infinitely many solutions we follow closely the work of [1]. Since
g′(0) > 0 and g′(1) > 0 there are a < b such that

g is increasing in [0, a], g is increasing in [b,1],
g(a) = g(b) and g is not monotone in [a, b].

Define

g̃(u) =
{

g(u) if u ∈ [0, a] or u ∈ [b,1],
g(a) if u ∈ [a, b].

Let gn : [0,1] → R be smooth such that gn → g uniformly in [0,1], gn ≡ g in a neighborhood
of 0 and 1, g′

n > 0 and u − gn(u) is KPP. Then by Corollary 1.7 the problem (1.3)–(1.5) with
nonlinearity fn = u − gn(u) has critical speed c∗ � 0 independent of n, and hence there exists a
monotone solution un

J � un = gn(un), un(−∞) = 0, un(+∞) = 1.

Notice that any solution to this problem is continuous and hence we may choose

un(0) = a.

By Helly’s theorem there is a subsequence which converges pointwise to a solution u of the
following problem

J � u = g̃(u) in R.

Remark that u(0) = a, and u(−∞) = 0, u(+∞) = 1 by Lemma 2.4. Note that u is continuous
in (−∞,0] since u � a in (−∞,0] and g is strictly increasing in [0, a].

We will show that u has a discontinuity at 0 and u(0+) = b. As in [1], choose δn > 0 such
that un(δn) = b. Let δ = lim inf δn and note that u � b in (δ,∞). Let us show that δ = 0. If not,
then g̃(u(x)) = g(a) for x ∈ (0, δ) and this implies J � u = const in (0, δ). Then for 0 < τ < δ/2
we have J � (u − u(· − τ)) � 0 and vanishes in a nonempty interval. By the maximum principle
u ≡ u(· − τ) and this implies that u is constant, which is a contradiction. Thus δ = 0 and u has a
jump discontinuity at 0. Hence u is a solution to (1.3)–(1.5). We conclude that u(0+) = b because
J � u is continuous. �
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