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The aim of this work is to investigate illumination compensation and normalization in eigenspace-based
face recognition by carrying out an independent comparative study among several pre-processing algo-
rithms. This research is motivated by the lack of direct and detailed comparisons of those algorithms in
equal working conditions. The results of this comparative study intend to be a guide for the developers of
face recognitions systems. The study focuses on algorithms with the following properties: (i) general pur-
pose, (ii) no modeling steps or training images required, (iii) simplicity, (iv) high speed, and (v) high per-
formance in terms of recognition rates. Thus, herein five different algorithms are compared, by using
them as a pre-processing stage in 16 different eigenspace-based face recognition systems. The compar-
ative study is carried out in a face identification scenario using a large amount of images from the PIE,
Yale B and Notre Dame face databases. As a result of this study we concluded that the most suitable algo-
rithms for achieving illumination compensation and normalization in eigenspace-based face recognition
are SQI and the modified LBP transform.
1. Introduction

Variable illumination is one of the most important problems in
face recognition. The main reason is the fact that illumination, to-
gether with pose variation, is the most significant factor that alters
the perception (appearance) of faces (Gross et al., 2004; Shin et al.,
2008). Lighting conditions change largely between indoor and out-
door environments, but also within indoor environments. Thus,
due to the 3D shape of human faces, a direct lighting source can
produce strong shadows that accentuate or diminish certain facial
features. Moreover, extreme lighting can produce too dark or too
bright images, which can disturb the recognition process (Basri
and Jacobs, 2004). Although, the ability of algorithms to recognize
faces across illumination changes has made important progress in
the last years, FRVT 2006 results show that illumination still has an
important effect on the recognition process (Phillips et al., 2007).

Several approaches have been proposed in the last years for
solving the variable illumination problem in face recognition con-
texts (Pizer et al., 1987; Adini et al., 1997; Belhumeur and Krieg-
man, 1998; Chen et al., 2000, 2006; Georghiades et al., 2001;
Shashua and Riklin-Raviv, 2001; Ramamoorthi, 2002; Gross and
Brajovic, 2003; Shan et al., 2003; Sim et al., 2003; Zhang and Sam-
aras, 2003; Zhao et al., 2003; Ahonen et al., 2004; Fröba and Ernst,
2004; Gross et al., 2004; Short et al., 2004; Wang et al., 2004; Lee
lar).
et al., 2005; Zhang et al., 2005; Xie and Lam, 2006; Shin et al., 2008;
just no name a few). These approaches can be roughly classified
into three main categories: face modeling, normalization and pre-
processing, and invariant features extraction.

Face modeling approaches use low-dimensional linear subspaces
for modeling image variations of human faces under different
lighting conditions. As an example, the illumination cone method
(Belhumeur and Kriegman, 1998; Georghiades et al., 2001) exploits
the fact that the set of images of an object (a face) in fixed pose, but
under all possible illumination conditions, forms a convex cone in
the images’ space. Illumination cones of human faces can be
approximated by low-dimensional linear subspaces whose basis
vectors are estimated using a generative model. The generative
model is built using a small number of training images of each face,
taken using different lighting directions. The recognition algorithm
assigns to a test image the identity of the closest illumination cone.
Similarly, in the spherical harmonic method (Ramamoorthi, 2002)
it is analyzed the subspace best approximating images of a convex
Lambertian object, taken from the same viewpoint, but under
different distant illumination conditions. Principal component
analysis (PCA) is applied, and a low-dimensional (less than nine-
dimensional) approximation of illumination cones is obtained.
One of main drawbacks of the face modeling approaches is the
requirement of images for building the linear subspaces. This
drawback limits its application in practical problems. Lee et al.
(2005) show how to arrange physical lighting so that the acquired
images of each object can be directly used as basis images of the
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linear subspaces. However, it still remains the requirement of
images for building the models. Moreover, the specularity problem
and the fact that human faces are not perfect Lambertian surfaces
are ignored by these models (Chen et al., 2006).

In the second category, normalization and preprocessing, image
pre-processing algorithms are employed to compensate and nor-
malize illumination. Most of these algorithms do not require any
training or modeling steps, knowledge of 3D face models or reflec-
tive surface models. For instance, in (Shashua and Riklin-Raviv,
2001) is proposed the quotient image (QI) method, which is a prac-
tical algorithm for extracting an illumination-normalized repre-
sentation of an image (e.g., face image). The QI, defined as the
ratio between a test image and linear combinations of three non-
coplanar illuminated images, depends only on the Albedo informa-
tion, which is illumination free. In (Wang et al., 2004) is introduced
the self-quotient image (SQI), which corresponds to the ratio be-
tween a test image and a smoothed version of it. The main
improvement of SQI over QI is the fact that it needs only one image
for extracting the intrinsic lighting properties of the image. Using
just one image means also that no image alignment is required.
Moreover, SQI works properly also in shadow regions. Similarly,
Gross and Brajovic (2003) proposed a pre-processing algorithm
that also consists in extracting the Albedo information using the
ratio between a test image and a second image, which corresponds
to an estimation of the illumination field. This last image is ob-
tained directly from the test image, and as in the SQI algorithm
no image alignment is required, and the method works properly
in shadow regions. Xie and Lam (2006) proposed a related ap-
proach, in which the intensity of the pixels is locally normalized
(zero-mean and unit variance) using a 7 � 7 window centered at
the pixel. The method is based on two assumptions: (i) in a small
image region W, the surface normal direction can be considered
constant, and (ii) the light source is directional, and therefore, from
(i) and (ii), almost constant in W. Another interesting algorithm is
the so-called plane subtraction or illumination gradient compensa-
tion algorithm (Sung and Poggio, 1998; Ruiz-del-Solar and Navarr-
ete, 2005), which consists on calculating a best-fit brightness plane
to the image under analysis, and then subtracting this plane to the
image. This method allows compensating heavy shadows caused
by extreme lighting angles. In addition to the mentioned algo-
rithms, general-purpose image pre-processing algorithms such as
histogram equalization, Gamma correction, and logarithmic trans-
forms have also been used for illumination normalization (Pizer
et al., 1987; Shan et al., 2003; Ruiz-del-Solar and Navarrete,
2005). In the specific case of PCA-based face recognition, some
authors suggest that illumination normalization can be achieved
by discarding the first three PCA components.

In the third category, invariant features extraction, illumination
invariant features are extracted and face recognition is carried
out using these features. Thus, in (Adini et al., 1997) edge maps,
images convolved with 2D Gabor-like filters, and image intensity
derivatives are employed as illumination invariant representa-
tions. The main conclusion of that study is that those image repre-
sentations are insufficient by themselves to overcome variations
because of changes in illumination direction. Very recently the dis-
crete cosine transform (DCT) was proposed for compensating illu-
mination variations in the logarithmic domain (Chen et al., 2006).
Taking into account that illumination variations mainly lie in the
low-frequency band, the main idea is to discard DCT coefficients
corresponding to low-level frequencies. The obtained results are
very promissory, although important issues such as the relation
between the number of selected DCT coefficients, the size of the
images, and the cutoff frequency, are not detailed addressed. An-
other invariant transform is the LBP (local binary pattern) (Ojala
et al., 1996), which allows compensating illumination using a lo-
cal-contrast based image representation. This transform and its
extension, known as modified LBP, have been employed to com-
pensate and normalize illumination in face detection (Fröba and
Ernst, 2004) and face recognition (Ahonen et al., 2004) contexts.

Thus, the aim of this work is to investigate illumination com-
pensation and normalization in eigenspace-based face recognition
by carrying out an independent comparative study among several
pre-processing algorithms. This research is motivated by the lack
of direct and detailed comparisons of those algorithms in equal
working conditions. The results of this comparative study intend
to be a guide for the developers of face recognitions systems. We
concentrate ourselves in algorithms with the following properties:
(i) general purpose, (ii) no modeling steps or training images re-
quired, (iii) simplicity, (iv) high speed, and (v) high performance
in terms of recognition rates. The high speed requirement is impor-
tant in our case, because we are especially interested in the con-
struction of real-time human-computer interfaces. The selected
algorithms to be compared belong to the normalization and pre-
processing category: SQI, Gross and Barjovic’ pre-processing algo-
rithm, and plane subtraction with histogram equalization, and to
the invariant features extraction category: LBP and modified LBP.

The comparative study is carried out using eienspace-based
face recognition systems, mainly because this family of face rec-
ognition methods is by far the most used one. Eigenspace-based
methods, mostly derived from the eigenspace-algorithm (Turk
and Pentland, 1991), project input faces onto a dimensional re-
duced space where the recognition is carried out, performing a
holistic analysis of the faces. Different eigenspace-based methods
have been proposed. They differ mostly in the kind of projection/
decomposition approach used (standard-, differential- or Kernel–
Eigenspace), in the projection algorithm been employed, in the
use of simple or differential images before/after projection, and
in the similarity matching criterion or classification method em-
ployed (see Ruiz-del-Solar and Navarrete, 2005 for an overview
of all these different methods). In this study we consider 16 dif-
ferent face recognition systems, which are built using four differ-
ent projections methods (principal component analysis – (PCA),
Fisher linear discriminant – (FLD), Kernel PCA – KPCA and
Kernel–Fisher discriminant – (KFD)) and four different similarity
measures (Euclidean-, Mahalanobis-, Cosines- and Whitening-
Cosines-distance). The study is carried out in two stages. In the
first stage the five illumination compensation and normalization
algorithms are used as a pre-processing stage in each of these
16 face recognition systems. The algorithms are compared and
analyzed using a large amount of images from two face dat-
abases, PIE (PIE Database, 2006) and Yale B (Yale Face Database
B, 2006), which contains face images with very different illumina-
tion conditions. As a result of these experiments, the algorithms
with the best illumination compensation and normalization capa-
bilities are selected for a deeper analysis. In the second stage the
selected algorithms are compared using the Notre Dame database
(Flynn et al., 2003), and four face recognition systems. In this sec-
ond set of experiments larger probe and gallery sets, in terms of
individuals, are employed, and the statistical significance of the
tests is analyzed. In both stages the algorithms are evaluated in
a face identification scenario; face verification or watch-list
search are not considered.

This study corresponds to an extension of the one presented in
(Ruiz-del-Solar and Navarrete, 2005), where illumination compen-
sation and normalization was not addressed. We believe that car-
rying out independent comparative studies between different
recognition algorithms is relevant, because comparisons are in
general performed using the own implementations of the research
groups that have proposed each method, which does not consider
completely equal working conditions. Very often, more than a
comparison between the capabilities of the algorithms, a contest
between the abilities of the research groups is performed.



Additionally, not all the possible implementations are considered,
but only the ones that some groups have decided to use.

This paper is structured as follows: The five algorithms under
analysis are described in Section 2. In Section 3 a comparative
study among these algorithms is presented. Finally, conclusions
of this work are given in Section 4.

2. Illumination compensation and normalization algorithms
under comparison

2.1. Illumination plane subtraction with histogram equalization

The illumination plane IP(x,y) of an image I(x,y) corresponds to
the best-fit plane from the image intensities. IP(x,y) is a linear
approximation of I(x,y), given by

IPðx; yÞ ¼ a � xþ b � yþ c ð1Þ

The plane parameters a, b and c can be estimated by the linear
regression formula:

p ¼ ðNTNÞ�1NTx ð2Þ

where p 2 R3 is a vector containing the plane parameters (a, b and
c) and x 2 Rn is I(x,y) in vector form (n is the number of pixels).
N 2 Rnx3 is a matrix containing the pixel coordinates: the first col-
umn contains the horizontal coordinates, the second column the
vertical coordinates, and the third column has all its values set
to 1.

After estimating IP(x,y), this plane is subtracted from I(x,y). This
allows reducing shadows caused by extreme lighting angles. After-
ward, histogram equalization is applied for compensating changes
in illumination brightness, and differences in camera response
curves. Some example images obtained after applying plane sub-
traction (PS) and histogram equalization (HE) are shown in Figs.
1c–d and 2c–d. Plane subtraction together with histogram equal-
ization was applied in (Sung and Poggio, 1998) for face detection
purposes, and in (Ruiz-del-Solar and Navarrete, 2005) for obtaining
illumination compensation in face recognition. In this last case,
histogram equalization is followed by intensity normalization of
the face vectors (zero-mean and unit variance).

2.2. Self-quotient image

The self-quotient image (SQI) method is based on the reflec-
tance illumination model of the human vision (Retinex theory:
Land, 1977; Jobson et al., 1996), which assumes: (i) human vision
is mostly sensitive to scene reflectance and mostly insensitive to
the illumination conditions, and (ii) human vision responds to local
changes in contrast, rather than to global brightness levels. These
two assumptions are related because local contrast is a function
of the reflectance. Thus, the reflectance is given by

Iðx; yÞ 1
Lðx; yÞ ¼ Rðx; yÞ ð3Þ

with I(x,y) the input stimulus (in this case the input image), and
L(x,y) the illuminance or perception gain at each point.

Illuminance can be considered as the low-frequency component
of the input stimulus, as has been proved by the spherical harmon-
ics analysis (Ramamoorthi, 2002). Then, illuminance can be esti-
mated as

Lðx; yÞ � Fðx; yÞ � Iðx; yÞ ð4Þ

with F(x,y) a low-pass filter.
From (3) to (4) the self-quotient image Q(x,y) is defined as

Qðx; yÞ ¼ Iðx; yÞ
Fðx; yÞ � Iðx; yÞ � Rðx; yÞ ð5Þ
It should be noted that the properties of Q(x,y) are dependant on the
kernel size of F(x,y). If too small, then Q(x,y) will approximate one,
and the Albedo information will be lost; if too large, there will ap-
pear halo effects near edges. In (Wang et al., 2004) this problem is
solved by using a multi-scale technique that employs kernels of var-
iable size. Another important improvement is the use of weighting
kernels that divide the convolution windows in two different re-
gions, depending on the observed pixel intensities. This technique
is supposed to avoid halo effects near the edges. Thus, the final
SQI computation procedure is given by (see Wang et al., 2004 for
details):

(1) Select several smoothing Gaussian kernels G1, . . . ,Gn, calcu-
late the corresponding weighting kernels W1, . . . ,Wn, and
the resulting multi-scale self-quotient images as
Qkðx; yÞ ¼
Iðx; yÞ

Iðx; yÞ � 1
N WkGk

� � ; k ¼ 1; . . . ;n ð6Þ

N is a normalization factor for obtaining normalized kernels
WkGk.
(2) Summarize the multi-scale self-quotient images, after
applying to each one a non-linear function T (Arctangent
or Sigmoid)
Qðx; yÞ ¼
Xn

k¼1

mkTðQkðx; yÞÞ ð7Þ

mk are weighting factors (usually set to one).Some example
images obtained after applying SQI are shown in Figs. 1e
and 2e.
2.3. Gross and Brajovic’ preprocessing algorithm

The pre-processing algorithm proposed by Gross and Brajovic
(2003) is also based on the reflectance illumination model of the
human vision described in the former section. In this case the
reflectance is computed as

Iðx; yÞ 1
Iwðx; yÞ

¼ Rðx; yÞ; ðx; yÞ 2 w ð8Þ

where Iw(x,y) is the stimulus level in a small neighborhood w in the
input image.

It can be seen that (8) is similar to (5). The difference in both
methods is the way in which the denominator term is computed.
In (Gross and Brajovic, 2003) Iw(x,y) = L(x,y) is computed by regu-
larization, and by imposing a smoothness constraint in this compu-
tation. The final discretized, linear partial differential equation to
be solved becomes:

Li;j þ
k
h

1
qi;j�1=2

ðLi;j � Li;j�1Þ þ
1

qi;jþ1=2
ðLi;j � Li;jþ1Þ þ

1
qi�1=2;j

ðLi;j � Li�1;jÞ
$

þ 1
qiþ1=2;j

ðLi;j � Liþ1;jÞ
%
¼ I ð9Þ

with k a parameter that controls the relative importance of the
terms, h the pixel grid size, and q a varying permeability weight
that controls the anisotropic nature of the smoothing constraint.
In (Gross and Brajovic, 2003) are given the details on how to solve
(9). In this work this algorithm will be named as SIP (Shadow
Illuminator Pro), which is the name of a commercial program that
implements it, and that will be used in this study. Some example
images obtained after applying the SIP algorithm are shown in Figs.
1f–g and 2f–g.



Fig. 1. Example image of an individual from the Yale B database (a). The image is pre-processed by masking the central part (b). Afterwards several illumination invariant
algorithms are applied (c–i). PS: illumination plane subtraction; HE: histogram equalization; SQI: self-quotient image; SIP: Gross and Brajovic’ algorithm implemented by
Shadow Illuminator Pro; LBP: local binary pattern; mLBP: modified LBP. See Section 3.2 for details.
2.4. Local binary pattern (LBP)

The local binary pattern (LBP), introduced originally for texture
description in (Ojala et al., 1996), has been used in the last years to
compensate and normalize illumination in face detection and rec-
ognition contexts. LBP, also known as census transform (Zabih and
Woodfill, 1994), is defined as an ordered set of pixel intensity com-
parisons, in a local neighborhood N(xc,yc), which represents those
pixels having a lower intensity than the center pixel I(xc,yc). In
other words, LBP generates a string of bits representing which pix-
els in N(xc,yc) have a lower intensity than I(xc,yc). I(xc,yc) is not in-
cluded in N(xc,yc). Formally speaking let a comparison function
h(I(xc,yc), I(x,y)) be 1 if I(xc,yc) < I(x,y) and 0 otherwise. Then, the
LBP is defined as

LBPðx; yÞ ¼
[

ðx0 ;y0Þ2Nðx;yÞ
hðIðx; yÞ; Iðx0; y0ÞÞ ð10Þ

with [ the concatenation operator. Normally, a neighborhood of
3 � 3 pixels is used, although larger neighborhood can be defined
(Ahonen et al., 2004). In the case of a 3 � 3 neighborhood, LBP(x,y)
corresponds to the concatenation of 8 bits. LBP transforms images
in illumination invariant feature representations (see Figs. 1h and
2h), because all its computations are local, and they depend on
the relative values between neighbor pixels (local contrast).



Fig. 2. Example image of an individual from the PIE database (a). The image is pre-processed by masking the central part (b). Afterwards several illumination invariant
algorithms are applied (c–i). PS: illumination plane subtraction; HE: histogram equalization; SQI: self-quotient image; SIP: Gross and Brajovic’ algorithm implemented by
Shadow Illuminator Pro; LBP: local binary pattern; mLBP: modified LBP. See Section 3.2 for details.
It should be emphasized that in this work the LBP transform is
applied just as a pre-processing step, which do not alter the face
recognition methods to be employed (e.g., all images are LBP-
transformed and then processed). In other works (e.g., Ahonen
et al., 2004) spatial histograms of LBP features are computed, and
then the recognition is carried out by measuring the histograms
similarity using Chi square statistics, histogram intersection or
Log-likelihood statistics.

2.5. Modified LBP

In the original formulation of LBP not all possible local structure
kernels of a given neighborhood can be represented. This is mainly
because the local differences are computed by comparing the
neighborhood pixels with the center pixel, and obviously the cen-
ter pixel cannot be compared with itself. This produce that in some
cases LBP cannot capture correctly the local structure of the image
area under analysis. For overcoming this drawback, the modified
LBP (mLBP) (Fröba and Ernst, 2004) includes in the analysis the
central pixel, by considering an enlarged neighborhood
N1(xc,yc) = N(xc,yc) [ I(xc,yc), and by comparing the pixels’ intensity
values against the local mean pixel intensity Iðx; yÞ of all pixels in
N1(xc,yc). Thus, the mLBP is defined as

mLBPðx; yÞ ¼
[

ðx0 ;y0Þ2N1ðx;yÞ
hðIðx; yÞ; Iðx0; y0ÞÞ ð11Þ

mLBP transforms images in illumination invariant feature represen-
tations (see Figs. 1i and 2i), because all its computations are local,



and depend on the relative values between neighbor pixels (local
contrast) and on the local mean pixels’ intensity. In the case of a
3 � 3 neighborhood, mLBP(x,y) corresponds to the concatenation
of nine bits.

3. Comparative study

The study is carried out in two stages. In the first stage, the five
illumination compensation and normalization algorithms are com-
pared and analyzed using a large amount of images from the PIE
and Yale B databases, which contains face images with very differ-
ent illumination conditions and a relative small number of individ-
uals (10–68). As a result of these experiments, the algorithms with
the best illumination compensation and normalization capabilities
are selected for a deeper analysis. In the second stage, the selected
algorithms are compared using the Notre Dame database. In this
second set of experiments it is analyzed the performance of the
algorithms when gallery and probe sets with a larger number of
individuals are employed (�400). The statistical significance of
the tests is also analyzed in the second stage.

3.1. Databases

The Yale B database contains 5760 single light source images of
10 individuals. Each individual is seen under 576 views conditions:
nine different pose and 64 different illumination conditions
(Georghiades et al., 2001). The database is divided into four differ-
ent subsets according to the angle the light source direction forms
with the camera axis. For our experiments we employ only frontal
images (Pose 1). We use slightly different subsets than the original
ones: Subset 1: up to 12� and 70 images, Subset 2 up to 30� and 120
images, Subset 3: up to 60� and 120 images, and Subset 4: up to 77�
and 140 images. Subset 1 was used for building the eigenspace
models (YALEB-1), and the other sets for testing (YALEB-2, YA-
LEB-3 and YALEB-4).

The PIE (Pose, Illumination, and Expression) database contains a
total of 41,368 images from 68 individuals, with different pose,
illumination and expression conditions. The images were taken
using the CMU 3D room using a set of 13 synchronized high-qual-
ity color cameras and 21 flashes (Sim et al., 2003). The images are
classified into different sets depending on the including pose, illu-
mination and expression variations. Regarding illumination condi-
tions, PIE takes into account the fact that in the real world,
illumination usually consists of an ambient light with perhaps
one or two point sources. To obtain representative images of such
cases PIE creators decided to capture images with the room lights
on and with them off (Yale considers only this last case). We call
the set of images with room lights on lights, and the set of images
with room lights off illum. For our experiments we use only frontal
images, which corresponds to the ones captured using camera c27
(in the PIE terminology). From the lights set we select 24 images
from 68 individuals (individuals 0–32, 34–37, and 39–69) totaliz-
ing 1632 images. The training set for the projection algorithms
was built using images with good illumination conditions (frontal),
which corresponds to images 00, 06, 08, 11 and 20 from each indi-
vidual, totalizing 340 images. The remaining images form the test
set (1,292 images). These sets correspond to our PIE-LIGHTS-TRAIN
and PIE-LIGHTS-TEST sets. From the illum set we select 21 images
from 67 individuals (individuals 0–32, 34–37, and 40–69) and 18
images from individual 39 (only 18 images are available for this
individual), totalizing 1425 images. The eigenspace models are
built using images with good illumination conditions (frontal),
which correspond to images 08, 11 and 20 from each individual.
In the case of individual 39 the images are the 06, 11 and 20 (this
individual has no image 08). The total number of images used for
building the models is 204. The remaining images form the test
set (1239 images). These sets correspond to our PIE-ILLUM-TRAIN
and PIE-ILLUM-TEST sets.

In the University of Notre Dame Biometrics Database (Flynn et
al., 2003) each subject was photographed with a high-resolution
digital camera (1600 � 1200 or 2272 � 1704) under different
lighting and expression conditions. Subjects were photographed
every week for 10 weeks in the Spring of 2002, 13 weeks in the
fall of 2002, and 15 weeks in the spring of 2003. The database de-
fines the following conditions for faces: fa (normal expression), fb
(smile expression), lm (three spotlights) and lf (two side spot-
lights). The following combinations of illumination and expres-
sion conditions are defined in collection B: falm, fblm, falf and
fblf. As in (Chang et al., 2006) we use gallery and probe sets with
images from the falm, fblm, falf and fblf illumination–expression
pairs. We define six different gallery and six different probe sets.
Each set is defined by the kind of images used for building these
sets. Thus, a test set falm–falf means it was built using images
from falm and falf for each individual. In each set we use two
images per individual and 414 individuals. In the Notre Dame
experiments use a generalized PCA model that does not depend
on the gallery and probe set face images. This PCA model was
built using 2152 face images obtained from other face databases
and from Internet.

3.2. Test conditions

The algorithms are evaluated in a face identification scenario (1
against n comparison); face verification or watch-list search are
not considered. Given the large number of results reported in this
study, identification results are characterized in terms of rank-1 or
top-1 recognition rates. Cumulative match characteristics (CMC)
curves are not employed.

Before applying the illumination compensation and normaliza-
tion algorithms other pre-processing stages are applied to obtain
aligned face images of uniform size. First, faces are aligned by cen-
tering the eyes in the same relative positions, which should be at a
fixed distance of 62 pixels. Then, the face area is cut from the im-
age, and resized to 100 � 185 pixels. Examples of the obtained
images are shown in Figs. 1a and 2a. Finally, face images are
masked by cutting the image corners. Examples of this masked face
images (M images) can be seen in Figs. 1b and 2b. The illumination
invariant algorithms to be evaluated are (see explanation in Sec-
tion 2):

– PS + HE: illumination plane subtraction (PS) applied jointly with
histogram equalization (HE) was the pre-processing stage used
in (Ruiz-del-Solar and Navarrete, 2005), which correspond to
the comparative study of eigenspace-based face recognition
algorithms that is being extended in the present work. For this
reason PS + HE will be taken as the baseline algorithm for per-
forming the comparisons.

– LBP: local binary pattern with a 3 � 3 pixels neighborhood.
– mLBP: modified LBP with a 3 � 3 pixels neighborhood.
– SIP-77-62 and SIP-100-90: Gross and Brajovic’ algorithm imple-

mented by the SIP (Shadow Illuminator Pro) software, Version
2.1.8, Build 234. The key parameters of the algorithm are
amount, which specifies how much of the correction effect is
applied to the original image, and fill light, which specifies
how ‘‘flat” the illumination field is. After several tests we choose
using two different combinations of parameters. In the SIP-77-
62 case, the amount and fill light parameters are set to 77 and
62, respectively, while in the SIP-100-90 the parameters are
set 100 and 90.

– SQI: self-quotient image (SQI) algorithm.



It is important to mention that in the case of the SQI and SIP
algorithms, the parameters were hand tuned by us. After several
experiments we selected the parameters that allowed us to obtain
the highest recognition rate for each method. One drawback of
these methods is their dependence of the parameters’ values selec-
tion. We think that the algorithms should be robust enough for not
depending largely on the parameters, which is not the case for SQI
and SIP.

In the first stage of our study, the five algorithms under compar-
ison were applied in 16 different face recognition systems, which
are built using four different projections methods: PCA – (principal
component analysis), FLD – (Fisher linear discriminant), KPCA –
Kernel PCA (Gaussian–Kernel), and KFD – Kernel–Fisher discrimi-
nant (Gaussian kernel), and four different similarity measures:
Euclidean-, Mahalanobis-, Cosines- and Whitening-Cosines-dis-
tance. These projection methods and similarity measures, as well
as their corresponding training or modeling procedures, are de-
tailed described in (Ruiz-del-Solar and Navarrete, 2005). In all
cases the projection procedure consider intensity normalization
of the face vectors (zero-mean and unit variance). In all experi-
ments the number of projection axes employed in the FLD and
KFD systems is equal to the number of classes minus one (9 axes
in the case of Yale B and 67 axes in the case of PIE). In the PCA
and KPCA systems the number of projection axes is the resulting
of a normalized residual mean square error of 5% (Swets and Weng,
1996). We selected the two best performing algorithms to be fur-
ther analyzed.

In the second stage of the study, we decided to use only PCA
projections, given that: (i) the gallery sets contains just 1 or 2
images per individual, which makes very difficult to built a proper
Table 1
Yale B database: top-1 recognition rate (face identification scenario), 10 individuals, only

M + PS + HE M + LBP M + mLBP

1 vs 2 1 vs 3 1 vs 4 1 vs 2 1 vs 3 1 vs 4 1 vs 2 1 vs 3

PCA COS 100.00 96.58 52.07 99.75 99.83 91.93 100.00 99.92
0.00 2.76 3.73 0.40 0.35 2.80 0.00 0.26

EUC 100.00 96.58 52.00 99.75 95.50 81.93 99.67 98.75
0.00 2.56 3.62 0.40 2.46 2.02 0.70 0.81

WCOS 99.75 96.33 50.50 99.42 98.50 90.21 99.33 99.33
0.79 3.58 6.00 0.56 2.32 6.88 0.35 0.66

MAHA 100.00 95.25 48.57 77.50 61.33 33.50 91.17 86.00
0.00 2.81 5.91 6.35 7.57 7.03 5.84 4.26

FLD COS 100.00 95.08 51.50 100.00 99.50 88.50 99.83 99.42
0.00 3.69 1.76 0.00 0.70 2.00 0.35 1.25

EUC 99.75 93.75 47.21 98.50 96.58 76.21 98.83 98.25
0.79 2.46 3.85 1.17 1.90 4.11 0.70 1.69

WCOS 99.83 96.17 46.86 99.67 99.17 88.14 100.00 99.42
0.53 2.49 1.97 0.43 0.96 2.41 0.00 0.88

MAHA 100.00 94.83 47.86 99.83 99.75 87.57 99.92 99.42
0.00 3.06 2.33 0.35 0.40 2.66 0.26 1.04

KPCA COS 100.00 97.00 52.14 99.75 99.83 92.14 100.00 99.92
0.00 2.81 3.70 0.40 0.35 2.95 0.00 0.26

EUC 100.00 97.17 53.00 90.25 72.92 36.71 99.67 95.25
0.00 2.05 3.75 2.72 10.92 8.17 0.70 3.24

WCOS 100.00 97.33 55.79 99.67 99.58 93.79 99.67 99.92
0.00 1.92 7.49 0.43 0.44 4.01 0.43 0.26

MAHA 99.92 95.92 47.07 39.50 23.83 16.21 73.17 56.33
0.26 2.73 3.11 11.11 7.01 3.88 10.84 9.85

KFD COS 100.00 96.75 50.71 100.00 99.33 88.79 100.00 99.67
0.00 2.50 3.53 0.00 0.77 1.88 0.00 0.70

EUC 100.00 95.17 51.14 98.42 94.33 55.07 98.67 97.00
0.00 3.06 3.27 0.61 3.06 12.87 0.58 1.68

WCOS 100.00 93.33 46.00 79.08 65.92 29.50 92.17 78.25
0.00 3.07 2.36 8.02 6.40 4.64 4.09 3.69

MAHA 100.00 94.92 45.79 96.83 93.33 59.93 98.50 97.25
0.00 3.27 5.28 2.63 4.55 9.06 1.51 0.79

Training using YALEB-1 subset, and 2 images per class. The average of 10 different train
YALEB-1 and test using YALEB-i.
FLD or KFD representation, and (ii) the results obtained in stage
one show that the pre-processing algorithms have a similar behav-
ior in the PCA and kernel PCA representations. PCA was applied
using the same four similarity measures: Euclidean-, Mahalan-
obis-, Cosines- and Whitening-Cosines-distance. In all experiments
we fix the number of projection axes to 200. In addition, we em-
ploy the McNemar to determine whether one algorithm is signifi-
cant better than the other.

3.3. Stage 1: Simulations using the Yale B and PIE databases

The first simulations were carried out using the Yale B database.
The construction of the different recognition systems was carried
out using the YALEB-1 subset, which contains seven images for
each of the 10 database individuals. For each experiment we used
a fixed number of images per individual for building the projection
(e.g., PCA) space. Thus, experiments with 2, 3, 4, 5, 6 and 7 images
per individual were carried out. In order to obtain statistical repre-
sentative results, we took the average of several sets of experi-
ments for each fixed number of training images. Because of space
reasons, in this paper we just report the obtained results when
using 2 and 7 images per class, which correspond to the most dif-
ficult identification scenario (2 images) and the most reported one
for the Yale B database (7 images). The complete results using 2 to
7 images per class are reported in (Ruiz-del-Solar and Quinteros,
2006). In Tables 1 and 2 are displayed the results of the recognition
experiments using subsets YALEB-2, YALEB-3 and YALEB-4, which
contain 12, 12 and 14 images per individual respectively. For each
of the 16 face recognitions systems and five different illumination
compensation algorithms, the average top-1 recognition rate (first
frontal images (pose 1)

M + SIP1-77-62 M + SIP2-100-90 M + SQI

1 vs 4 1 vs 2 1 vs 3 1 vs 4 1 vs 2 1 vs 3 1 vs 4 1 vs 2 1 vs 3 1 vs 4

94.79 99.08 94.17 64.71 98.17 96.42 76.79 96.00 99.25 95.71
2.94 1.49 5.44 6.30 1.75 3.02 2.08 2.51 0.73 2.33
90.29 99.08 94.50 65.00 98.00 95.92 76.71 95.58 98.83 95.21
3.83 1.49 5.26 5.71 2.01 4.00 2.57 2.15 0.81 2.26
95.00 97.50 92.75 57.43 95.08 92.92 60.36 91.00 95.50 92.00
3.43 2.58 5.63 6.79 3.52 3.25 14.70 2.60 1.05 3.01
47.29 98.92 94.58 57.21 97.17 93.00 58.71 93.33 96.92 92.36
7.09 1.76 6.24 7.30 3.31 3.87 14.87 2.04 2.12 3.72
90.71 97.42 87.83 58.93 94.17 83.17 62.71 89.33 88.83 88.71
2.28 2.82 4.14 3.30 5.11 4.82 3.06 6.80 7.07 3.61
87.00 97.42 87.08 57.86 92.08 77.08 58.36 84.75 87.00 85.57
4.01 2.27 3.91 2.52 5.42 7.37 3.64 4.41 5.78 5.94
92.00 96.83 92.33 59.50 95.00 93.67 72.36 92.92 98.00 93.07
2.56 3.06 6.54 7.02 3.89 3.60 13.69 3.45 1.58 2.21
89.36 98.42 93.83 61.71 98.17 94.33 75.21 97.42 99.67 96.43
2.06 1.73 7.10 7.02 3.55 4.10 12.16 2.27 0.58 2.59
94.57 99.42 96.25 67.07 98.08 96.42 77.57 96.00 99.08 95.71
2.76 1.04 2.97 3.29 1.89 2.99 2.52 2.51 0.61 2.33
70.71 99.42 96.50 67.07 97.92 96.08 77.07 95.58 98.83 95.21
6.06 1.04 2.42 3.52 2.16 3.56 3.00 2.15 0.81 2.43
96.00 98.17 96.17 62.86 95.42 93.75 62.50 91.75 95.92 92.07
2.76 2.14 3.79 6.68 3.25 2.81 15.60 2.10 0.83 3.02
22.86 99.42 96.25 52.64 96.83 93.33 60.07 93.25 97.25 92.43
7.89 1.25 3.85 8.50 3.44 4.75 16.10 1.78 2.29 3.60
92.21 98.75 94.50 64.57 97.75 93.08 72.93 93.25 95.50 93.93
2.77 2.70 2.40 2.29 2.12 4.21 4.71 4.15 3.87 2.78
84.21 99.08 94.33 57.00 96.75 88.08 61.57 90.58 93.75 90.36
4.93 1.73 2.83 2.20 2.82 4.27 3.76 3.56 3.97 3.54
39.64 99.00 89.25 58.00 95.75 90.75 68.93 91.67 96.92 92.71
2.43 1.66 16.20 6.77 7.12 9.07 15.07 3.60 2.39 3.21
77.64 98.92 89.58 59.86 94.75 87.08 71.07 96.67 99.25 95.36
8.32 1.42 19.97 6.61 7.53 16.50 17.53 2.69 1.39 2.90

ing sets was considered (see explanation in main text). 1 vs i means training using



Table 2
YaleB database: top-1 recognition rate (face identification scenario), 10 individuals, only frontal images (pose 1)

M + PS + HE M + LBP M + mLBP M + SIP1-77-62 M + SIP2-100-90 M + SQI

1 vs 2 1 vs 3 1 vs 4 1 vs 2 1 vs 3 1 vs 4 1 vs 2 1 vs 3 1 vs 4 1 vs 2 1 vs 3 1 vs 4 1 vs 2 1 vs 3 1 vs 4 1 vs 2 1 vs 3 1 vs 4

PCA COS 100.00 99.17 57.86 100.00 100.00 95.00 100.00 100.00 99.29 100.00 100.00 67.14 100.00 100.00 75.00 99.17 100.00 97.86
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

EUC 100.00 99.17 57.86 100.00 99.17 92.14 100.00 100.00 98.57 100.00 100.00 67.14 100.00 100.00 75.00 99.17 100.00 97.86
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

WCOS 100.00 100.00 69.29 100.00 98.33 88.57 99.17 98.33 92.86 100.00 95.83 46.43 98.33 85.83 31.43 95.00 90.00 81.43
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

MAHA 100.00 100.00 62.86 78.33 71.67 47.86 88.33 86.67 64.29 100.00 95.83 50.00 95.83 85.00 30.71 88.33 88.33 75.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

FLD COS 100.00 98.33 53.57 100.00 100.00 93.57 100.00 100.00 92.86 100.00 96.67 69.29 100.00 97.50 75.71 98.33 99.17 98.57
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

EUC 100.00 99.17 52.86 98.33 96.67 86.43 99.17 99.17 95.71 100.00 97.50 71.43 99.17 94.17 75.00 100.00 100.00 100.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

WCOS 100.00 99.17 52.86 100.00 100.00 95.00 100.00 100.00 93.57 100.00 100.00 84.29 100.00 98.33 86.43 98.33 99.17 97.86
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

MAHA 100.00 97.50 50.00 100.00 100.00 95.00 100.00 100.00 90.71 100.00 100.00 75.71 100.00 99.17 85.00 100.00 100.00 98.57
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

KPCA COS 100.00 100.00 58.57 100.00 100.00 95.00 100.00 100.00 99.29 100.00 100.00 65.00 100.00 100.00 74.29 99.17 100.00 97.86
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

EUC 100.00 100.00 58.57 100.00 90.00 67.86 100.00 99.17 87.14 100.00 100.00 66.43 100.00 100.00 74.29 98.33 99.17 97.14
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

WCOS 100.00 100.00 82.14 100.00 99.17 95.00 100.00 99.17 97.14 100.00 99.17 67.86 98.33 85.83 34.29 95.00 90.83 81.43
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

MAHA 100.00 99.17 70.71 40.83 36.67 21.43 68.33 53.33 32.86 100.00 96.67 62.86 95.83 82.50 36.43 88.33 88.33 76.43
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

KFD COS 100.00 98.33 51.43 100.00 100.00 92.86 100.00 100.00 93.57 100.00 99.17 72.86 100.00 100.00 79.29 98.33 99.17 100.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

EUC 100.00 98.33 52.14 98.33 95.00 72.86 99.17 98.33 88.57 100.00 99.17 62.14 100.00 99.17 75.71 100.00 99.36 100.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

WCOS 100.00 97.50 48.57 90.00 70.83 39.29 96.67 85.00 59.29 100.00 96.67 75.71 100.00 99.17 83.57 94.17 97.50 97.14
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

MAHA 100.00 99.17 46.43 95.00 84.17 47.86 100.00 95.83 62.14 100.00 100.00 34.29 100.00 95.00 32.14 98.33 99.17 98.57
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Training using YALEB-1 subset, and seven images per class. 1 vs i means training using YALEB-1 and test using YALEB-i.
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Fig. 3. Yale B database: top-1 recognition rate (face identification scenario), 10 individuals, only frontal images (Pose 1). Training using YALEB-1 subset, and two images per
class. The average of 10 different training sets was considered (see explanation in main text). Test using YALEB-4.

Table 3
PIE-ILLUM database: top-1 recognition rate (face identification scenario), 68 individ-
uals, and training using two images per class

M + PS + HE M + LBP M + mLBP M + SIP1-
77-62

M + SIP-
100-90

M + SQI

PCA COS 85.81 99.77 99.85 85.47 87.99 96.48
0.04 0.09 0.04 0.50 0.48 0.00

EUC 85.75 99.05 99.75 85.50 87.78 96.17
0.00 0.18 0.00 0.45 0.59 0.09

WCOS 87.73 99.43 99.80 90.22 93.33 93.37
0.77 0.00 0.11 0.72 0.44 0.67

MAHA 86.42 78.54 86.62 90.52 94.07 93.38
0.22 2.24 2.82 0.76 0.29 0.31

FLD COS 85.86 99.64 99.90 87.71 96.45 98.82
1.90 0.04 0.04 0.06 2.27 0.27

EUC 70.17 99.64 99.84 86.19 97.35 99.62
3.15 0.04 0.00 1.42 1.90 0.04

WCOS 85.86 99.64 99.90 87.71 96.45 98.82
1.90 0.04 0.04 0.06 2.27 0.27

WEUC 70.17 99.64 99.84 86.19 97.35 99.62
3.15 0.04 0.00 1.42 1.90 0.04

KPCA COS 86.88 78.67 85.77 90.71 94.09 93.76
0.04 1.97 2.34 0.60 0.22 0.13

EUC 86.11 77.26 84.14 89.50 90.37 93.14
0.26 1.39 2.49 0.81 5.79 0.09

WCOS 86.72 91.65 94.28 90.75 94.92 97.46
0.15 1.12 0.22 0.79 0.55 0.00

MAHA 85.90 72.12 79.00 87.86 86.00 91.74
0.51 0.49 1.90 1.86 3.66 0.36

KFD COS 86.54 94.14 96.10 90.01 95.20 97.18
0.11 1.30 0.26 0.96 1.03 0.04

EUC 86.78 99.13 99.56 89.50 96.38 99.18
0.26 0.40 0.11 1.93 1.32 0.00

WCOS 83.29 97.35 98.10 87.96 95.35 98.30
0.18 0.72 0.33 1.51 1.79 0.13

MAHA 85.72 99.13 99.56 88.01 96.40 99.30
0.62 0.40 0.11 1.51 2.38 0.04

The average of three different training sets was considered (see explanation in main
text).
row) and standard deviation (second row) are shown. By analyzing
Tables 1 and 2 the first two obvious results are: (i) the top-1 recog-
nition rate increases when the number of training images per class
grows, and (ii) the recognition rate decreases when subsets YALEB-
2, YALEB-3 and YALEB-4 are used, because between YALEB-2 and
YALEB-4 increases the angle that the light source direction forms
with the camera axis.

For analyzing the performance of the illumination compensa-
tion algorithms we will concentrate ourselves on the most difficult
case: test set YALEB-4 and two images per class. In Fig. 3 are dis-
played the top-1 recognition rate for that case. The first interesting
result is that the top-1 recognition rate increases from about 40%
when no pre-processing is employed (No Prep case), to about 95%
when the best performing pre-processing algorithms are applied.
In most of the cases, the pre-processing algorithms increase the
recognition rate. Second conclusion is that the highest recognition
rates are obtained by SQI and mLBP, but SQI shows a high recogni-
tion rate in all cases while mLBP not. mLBP (as LBP) obtains poor
results when the PCA–MAHA, KPCA–MAHA, KFD–MAHA and
KFD–WCOS systems are employed. We do not have a clear expla-
nation for this phenomenon, but one of the possible reasons is
the fact that probably the whitening operation does not work prop-
erly in the mLBP (and LBP) domain, and that different similarity
metrics (e.g., Hamming distances) should be used in these cases.
The third best performing algorithm is LBP, which also shows a
non-uniform behavior, followed by the two SIP variants. The base-
line algorithm (PS + HE) shows the worse results, although the
top-1 recognition rate is about 10% higher that the case when no
pre-processing is employed.

Regarding the performance of the face recognition methods, for
at least one pre-processing algorithm, each system achieves a very
high top-1 recognition rate. When comparing the PCA-based
systems with their KPCA-based counterparts we observe that the
obtained results are similar. This is also the case when comparing
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Fig. 4. PIE-ILLUM database: top-1 recognition rate (face identification scenario), 68 individuals, and training using two images per class. The average of three different
training sets was considered (see explanation in main text).

Table 4
PIE-LIGHTS database: top-1 recognition rate (face identification scenario), 68
individuals and training using two images per class

M+PS+HE M+LBP M+mLBP M+SIP1-
77-62

M+SIP-
100-90

M+SQI

PCA COS 99.92 100.00 100.00 99.90 99.17 99.87
0.13 0.00 0.00 0.18 0.04 0.09

EUC 99.97 99.95 99.97 99.90 99.15 99.87
0.04 0.09 0.04 0.18 0.08 0.09

WCOS 100.00 99.97 99.97 99.87 99.43 99.69
0.00 0.04 0.04 0.22 0.92 0.08

MAHA 99.92 97.96 98.84 99.87 99.59 99.82
0.08 1.79 0.56 0.22 0.65 0.04

FLD COS 99.82 100.00 100.00 99.02 92.05 98.92
0.31 0.00 0.00 1.43 4.47 0.20

EUC 99.54 100.00 100.00 99.12 91.87 98.84
0.80 0.00 0.00 1.39 3.98 0.13

WCOS 99.97 100.00 100.00 99.79 99.97 100.00
0.04 0.00 0.00 0.09 0.04 0.00

WEUC 99.92 100.00 100.00 99.69 99.90 100.00
0.13 0.00 0.00 0.27 0.18 0.00

KPCA COS 99.92 100.00 100.00 99.90 99.17 99.87
0.13 0.00 0.00 0.18 0.09 0.09

EUC 99.92 98.97 99.79 99.90 99.12 99.87
0.13 0.04 0.12 0.18 0.12 0.09

WCOS 100.00 99.97 100.00 99.77 99.36 99.79
0.00 0.04 0.00 0.13 1.05 0.04

MAHA 99.72 78.30 90.89 99.64 99.43 99.77
0.36 11.44 5.16 0.09 0.98 0.00

KFD COS 99.85 100.00 100.00 99.54 96.75 99.72
0.27 0.00 0.00 0.54 1.90 0.12

EUC 99.85 100.00 100.00 99.61 96.93 99.54
0.27 0.00 0.00 0.54 1.47 0.15

WCOS 99.97 99.92 99.87 99.74 99.87 99.95
0.04 0.13 0.16 0.18 0.16 0.04

MAHA 99.97 100.00 100.00 99.82 99.97 100.00
0.04 0.00 0.00 0.18 0.04 0.00

The average of five different training sets was considered (see explanation in main
text).
the results obtained with FLD and KFD. When comparing the
similarity measures we can observe that using Cosines distance
gives slightly better results than using Whitening-Cosines distance,
and that using Euclidean distance gives slightly better results than
using the Mahalanobis distance. These results are concordant with
the ones obtained in (Ruiz-del-Solar and Navarrete, 2005), where a
much more detailed analysis of the performance of these different
recognition methods, in a uniform illumination scenario is
presented.

In the second set of experiments we use the PIE illum and lights
sets. In the illum set case the construction of the different recogni-
tion systems was carried out using the PIE-ILLUM-TRAIN subset,
which contains three images for each of the 68 database individu-
als. For each experiment we used a fixed number of images per
individual, 2 or 3, for building the PCA space. In this paper we just
reported the obtained results for the most difficult identification
scenario, two individuals. In order to obtain statistical representa-
tive results we take the average of several sets of experiments for
each fixed number of training images. For testing purposes the
subset PIE-ILLUM-TEST containing 18 images per individual (for
individual 39 only 15 images) was employed. For each of the 16
face recognitions systems and 5 different illumination compensa-
tion algorithms, the average top-1 recognition rate (first row)
and standard deviation (second row) are shown in Table 3. Results
without standard deviation information are displayed in Fig. 4.
Interestingly, in the case when no pre-processing is employed,
the top-1 recognition rate varied largely from about 60% (PCA–
COS, PCA–EUC, FLD–EUC and FLD–MAHA systems) to about 70%
or more. When using pre-processing, the top-1 recognition rate in-
crease to about 95% in each case (100% in some cases), for at least
one-preprocessing algorithm. It can be observed that best results
are obtained by the LBP and mLBP algorithms, except in the case
of using PCA–MAHA and KPCA–MAHA. When using PCA–MAHA
and KPCA–MAHA, best results are obtained by SIP-100-90 and
SQI, respectively. However, if the results obtained by all recogni-
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Fig. 5. PIE-LIGHTS database: top-1 recognition rate (face identification scenario), 68 individuals and training using two images per class. The average of five different training
sets was considered (see explanation in main text).
tion systems are taking into account, the third best performing
algorithm is SQI; SIP-100-90 ranks fourth, and SIP-77-62 fifth.
The baseline algorithm (PS + HE) shows the worse results, although
Table 5
Face identification comparisons of different methods

Methods Error rate (%) corresponding to the
top-1 recognition rate

Yale B CMU
PIE

Subset
2

Subset
3

Subset
4

Linear subspace for modeling illumination
variation Georghiades et al. (2001)

0 0 15.0 –

Illumination cones-attached Georghiades et
al. (2001)

0 0 8.6 –

Illumination cones-cast Georghiades et al.
(2001)

0 0 0 –

Gradient angle Chen et al. (2000) 0 0 1.4 –
Harmonic images Zhang and Samaras (2003) 0 0.3 3.1 –
Illumination ratio images Zhao et al. (2003) 0 3.3 18.6 –
Quotient illumination relighting Shan et al.

(2003)
0 0 9.4 –

9PL Lee et al. (2005) 0 0 0 1.9b

DCT in logarithmic domain Chen et al. (2006) – 0 0.18 0.36
PCA-COS + mLBP 0 0 0.71 0.08/

0a

PCA-EUC + mLBP 0 0 1.43 0.16/
0a

FLD-EUC + SQI 0 0 0 6.06/
0a

KFD-COS + SQI 0 0 0 2.46/
0.21a

KFD-EUC + SQI 0 0 0 3.52/
0a

In the case of the Yale B database the seven images from Subset 1 are used for
modeling or building the subspaces. In the case of the CMU PIE database, depending
on the employed subset, 3 or 5 images are used for modeling.

a In these cases the PIE sets Illum/Lights are considered.
b Seven images per class are employed for building the subspaces.
it improves the results obtained with no pre-processing, by
increasing the top-1 recognition in more than 10%. In the case of
the lights set, the construction of the different recognition systems
was carried out using the PIE-LIGHTS-TRAIN subset, which con-
tains five images for each of the 68 database individuals. For each
experiment we used a fixed number of training images per individ-
ual, 2, 3, 4 or 5. In this paper we just reported the obtained results
for the most difficult identification scenario, 2 individuals. In order
to obtain representative results we take the average of several sets
of experiments for each fixed number of training images. For test-
ing purposes the subset PIE-ILLUM-TEST that contains 19 images
per individual was used. For each of the 16 face recognitions sys-
tems and five different illumination compensation algorithms,
the average top-1 recognition rate (first row) and standard devia-
tion (second row) are shown in Table 4. Results without standard
deviation information are displayed in Fig. 5.

An important aspect to notice is the fact that, the results ob-
tained with the PIE lights set are better than the ones obtained with
the illum set. The reason seems to be that in the lights set, images
include room lights, which facilitate obtaining illumination com-
pensation, because these images look more similar to images with
uniform illumination, and they contain less intensive shadows. The
images contained in the PIE illum and Yale B sets do not contain
room lights, and therefore are harder to analyze. Another impor-
tant result is the fact that for illumination compensation algo-
rithms the Yale B Subset 4 (YALEB-4) is a harder benchmark than
the PIE illum or lights sets. The reason is the large angle (>60�) that
the light source direction forms with the camera axis, and the fact
that no room lights are included.

In summary, by analyzing the simulations carried out using the
Yale B and PIE databases we conclude that some of the compared
algorithms achieve very high recognition rates when used as a
pre-processing stage of standard eigenspace-based face recogni-
tion systems. This is the case of the mLBP and SQI algorithms.

In addition, it is interesting to analyze how is the performance
of those algorithms when compared with others algorithms not



considered in this study. In Table 5 is compared the performance
obtained by 11 of the best performing algorithms reported in the
Table 6
Processing time of different algorithms applied to a 640 � 480 pixels image from the
Yale B database M process includes alignment, resizing and masking

Algorithm Time (ms)

M 0.11
M+PS+HE 1.93
M+LBP 4.65
M+mLBP 5.54
M+SIP-77-62 900a

M+SIP-100-90 900a

M+SQI-2D 354.23
M+SQI-1D 165.44

All algorithms were implemented by the authors (see details in main text), except
SIP, in which case a commercial program was employed.

a Time obtained by a commercial program.

Table 7
Notre Dame database: top-1 recognition rate (face identification scenario), 414 individual

mLBP

falf-falm falm-fblm falf-fblm falm-fblf falf-fblf

falf-falm PCA-COS (+) 67.87 55.19 58.94 56.76 59.42
falf-falm PCA-EUC (+) 68.00 55.19 59.18 56.88 59.42
falf-falm PCA-WCOS (+) 65.22 52.29 56.76 53.62 57.73
falf-falm PCA-MAHA (+) 66.06 51.69 58.21 53.02 58.21
falf-falm FLD-COS (+) 66.55 (+) 53.50 (+) 58.82 (+) 54.59 (+) 59.18
falf-falm FLD-EUC (+) 61.47 (+) 49.03 (+) 54.47 (+) 49.40 53.14
falf-falm FLD-WCOS 17.03 13.41 9.18 4.47 8.82
falf-falm FLD-MAHA 18.96 15.58 11.96 6.76 11.84
falm-fblm PCA-COS 56.52 57.85 60.14 60.63 62.44
falm-fblm PCA-EUC 56.52 57.97 60.39 60.87 62.32
falm-fblm PCA-WCOS 49.52 53.38 56.64 55.19 57.97
falm-fblm PCA-MAHA 50.97 53.26 56.64 54.71 57.85
falm-fblm FLD-COS (+) 55.56 (+) 55.07 (+) 57.97 (+) 59.42 (+) 61.35
falm-fblm FLD-EUC (+) 51.81 (+) 50.00 53.50 (+) 52.29 (+) 55.92
falm-fblm FLD-WEUC 11.59 12.68 10.02 5.07 9.90
falm-fblm FLD-MAHA 13.77 14.98 12.92 8.21 13.04
falf-fblm PCA-COS 54.35 58.70 59.42 59.66 60.99
falf-fblm PCA-EUC 54.47 58.82 59.90 59.78 60.87
falf-fblm PCA-WCOS 49.28 54.95 57.37 56.40 58.21
falf-fblm PCA-MAHA 50.36 54.47 57.85 (+) 55.80 (+) 55.80
falf-fblm FLD-COS (+) 53.74 (+) 55.43 (+) 58.33 (+) 58.70 (+) 58.70
falf-fblm FLD-EUC (+) 49.28 50.72 51.93 (+) 53.62 (+) 53.62
falf-fblm FLD-WCOS 11.71 13.77 9.78 6.16 9.06
falf-fblm FLD-MAHA 14.37 16.55 13.04 9.90 12.32
falm-fblf PCA-COS 57.25 61.47 63.77 (+) 60.99 63.41
falm-fblf PCA-EUC 57.37 61.35 63.53 (+) 60.99 63.29
falm-fblf PCA-WCOS 49.76 55.56 59.90 53.26 57.85
falm-fblf PCA-MAHA 50.72 55.92 59.90 53.62 56.76
falm-fblf FLD-COS (+) 55.92 (+) 58.94 (+) 61.35 (+) 59.54 (+) 61.71
falm-fblf FLD-EUC 52.78 52.90 58.45 51.45 55.31
falm-fblf FLD-WCOS 12.68 15.22 11.59 4.83 9.66
falm-fblf FLD-MAHA 13.77 17.39 14.98 6.88 12.32
falf-fblf PCA-COS 55.07 62.32 63.04 60.02 61.96
falf-fblf PCA-EUC 55.31 62.20 63.04 59.90 61.84
falf-fblf PCA-WCOS 49.52 57.13 60.63 54.47 58.09
falf-fblf PCA-MAHA (+) 50.12 57.13 (+) 61.11 54.71 57.00
falf-fblf FLD-COS (+) 54.11 (+) 59.30 (+) 61.71 (+) 58.82 (+) 61.23
falf-fblf FLD-EUC 50.24 53.62 56.88 52.78 (+) 53.14
falf-fblf FLD-WCOS 12.80 16.30 11.35 5.92 8.82
falf-fblf FLD-MAHA 14.37 18.96 15.10 8.57 11.59
fblf-fblm PCA-COS 43.72 64.98 64.25 63.89 64.98
fblf-fblm PCA-EUC 43.84 64.98 64.25 63.89 64.73
fblf-fblm PCA-WCOS 33.82 58.21 60.51 56.04 58.33
fblf-fblm PCA-MAHA 35.02 58.70 59.54 56.40 56.64
fblf-fblm FLD-COS 43.12 60.87 60.87 (+) 63.65 (+) 63.41
fblf-fblm FLD-EUC 40.58 54.59 55.92 55.68 55.92
fblf-fblm FLD-WCOS 7.37 15.58 12.20 6.52 9.90
fblf-fblm FLD-MAHA 9.18 18.36 16.06 10.02 12.80

Results are displayed for the mLBP and SQI algorithms. In each case, columns refer to
recognition systems. (+) means that one algorithm (mLBP or SQI) outperforms the other
literature in the Yale B and CMU PIE databases, with the perfor-
mance of our best performing algorithms. Five of those algorithms
corresponds to face modeling approaches: linear subspace for mod-
eling illumination variation, illumination Cones-attached, illumination
Cones-cast, harmonic images and 9PL, two correspond to normaliza-
tion and preprocessing approaches derived from the QI method:
illumination ratio images and quotient illumination relighting, and
two correspond to invariant features extraction approaches: gradi-
ent angle and DCT in Logarithmic Domain. Nevertheless, it is impor-
tant to remark that this comparison (Table 5) should be taken just
as a reference, because not all algorithms have been tested in equal
working conditions, because different groups have implemented
them. In a near future we would like to implement some of these
algorithms for having a more objective comparison. From Table 5
we can see that in terms of performance the best results are ob-
tained by illumination Cones-cast, 9PL, DCT in Logarithmic Domain,
and five of our algorithms: PCA � COS + mLBP, PCA � EUC + mLBP,
FLD � EUC + SQI, KFD � COS + SQI and KFD � EUC + SQI. If we just
s

SQI

fblf-fblm falf-falm falm-fblm falf-fblm falm-fblf falf-fblf fblf-fblm

38.41 57.25 52.66 51.81 55.07 54.47 47.34
38.77 57.37 52.66 52.05 55.07 54.59 47.34
33.33 54.83 48.67 49.88 48.79 49.40 38.89
33.45 54.59 48.19 49.40 48.91 48.91 38.04
37.44 45.77 38.77 43.60 45.41 44.57 39.25
34.54 48.07 39.25 43.84 45.77 45.77 39.49
5.68 (+) 37.32 (+) 34.30 (+) 35.51 (+) 33.45 (+) 35.39 (+) 26.81
6.88 (+) 28.62 (+) 26.33 (+) 23.91 (+) 24.15 (+) 24.28 (+)20.17
54.23 56.52 54.47 56.28 57.97 59.06 56.40
54.11 56.76 54.47 56.52 57.97 59.30 56.40
48.91 51.81 51.09 52.54 53.86 55.19 49.76
49.03 50.72 50.48 51.81 53.86 54.35 49.15
(+) 52.90 42.27 38.53 44.69 46.86 49.64 48.91
46.62 45.53 40.82 46.50 48.07 50.48 49.03
10.99 (+) 36.47 (+) 36.11 (+) 36.35 (+) 38.29 (+) 41.30 (+) 35.99
13.89 (+) 27.78 (+) 26.93 (+) 27.42 (+) 28.86 (+) 32.13 (+) 29.47
56.16 54.83 57.13 54.47 59.90 57.49 57.13
56.16 54.95 57.13 54.47 59.90 57.61 57.13
49.64 48.91 51.21 50.48 53.38 52.66 50.48
48.91 49.03 50.85 50.24 52.78 52.29 49.52
(+) 55.80 41.91 41.55 44.32 48.79 48.07 48.79
49.76 43.60 42.63 43.96 49.40 49.40 48.91
12.80 (+) 37.32 (+) 38.77 (+) 36.35 (+) 40.34 (+) 40.94 (+) 38.16
15.70 (+) 26.69 (+) 28.86 (+) 25.97 (+) 29.35 (+) 28.86 (+) 29.83
55.31 55.43 55.68 57.00 55.19 56.64 55.31
55.68 55.56 55.68 57.25 55.19 56.76 55.31
50.60 50.97 53.50 54.95 50.24 52.42 50.72
50.97 50.00 53.02 53.86 50.97 51.57 50.36
(+) 53.74 40.82 40.10 46.50 44.44 44.93 47.34
48.43 44.08 42.15 48.07 46.14 46.86 47.58
13.04 (+) 35.14 (+) 38.04 (+) 40.70 (+) 33.09 37.92 (+) 35.75
14.25 (+) 27.42 (+) 29.47 (+) 30.56 (+) 24.64 (+) 28.74 (+) 28.26
57.25 53.74 58.33 55.19 57.13 55.07 56.04
57.73 53.74 58.33 55.19 57.13 55.07 56.04
51.33 48.07 53.62 52.90 49.76 49.88 51.45
50.85 48.31 53.38 52.29 49.88 49.52 50.72
(+) 56.64 40.46 43.12 46.14 46.38 43.36 47.22
51.57 42.15 43.96 45.53 47.46 45.77 47.46
14.86 (+) 35.99 (+) 40.70 (+) 40.70 (+) 35.14 (+) 37.56 (+) 37.92
16.06 (+) 26.33 (+) 31.40 (+) 29.11 (+) 25.12 (+) 25.48 (+) 28.62
(+) 73.07 (+) 53.02 60.14 59.66 60.02 59.66 65.10
(+) 73.07 (+) 53.14 60.14 59.66 60.02 59.78 65.10
66.91 (+) 45.05 56.04 55.56 54.83 55.68 62.32
66.43 44.44 55.68 54.71 54.83 54.95 61.84
(+) 72.10 36.96 42.87 47.22 47.83 48.43 56.88
63.65 39.61 45.53 48.19 49.76 50.48 57.00
20.17 (+) 35.14 (+) 42.51 (+) 41.55 (+) 39.98 (+) 43.48 (+) 47.10
23.07 (+) 25.48 (+) 32.00 (+) 32.61 (+) 29.83 (+) 33.33 (+) 37.92

different gallery sets. Rows refer to different combinations of probe sets and face
one according to the McNemar test.



consider the Yale B results (some of the compared algorithms do
not have results for the PIE database), best performing algorithms
are illumination Cones-cast, 9PL, FLD � EUC + SQI, KFD � COS + SQI
and KFD � EUC + SQI. However, it should be considered that illumi-
nation Cones-cast and 9PL are face modeling methods, and that for
this reason they require more training or modeling images. On the
other hand, from the algorithms that have reported results in Yale
B and PIE we observe that best results are obtained by
PCA � COS + mLBP and PCA � EUC + mLBP, which show also the
highest recognition rates in the PIE database.

The processing time is another important aspect that should be
considered when comparing algorithms. We analyzed the process-
ing time of the five algorithms under comparison. The experiments
were performed in a standard PC (Intel Pentium 4, 2.60Ghz, 256MB
RAM) with Linux Debian, kernel 2.6.8-2-686, and an image of
640 � 480 pixels from the Yale B database was processed. In the
case of the SIP program, Windows XP Professional Edition with Ser-
vice Pack 2 was employed. In the case of SQI we have two different
implementations: in the SQI-2D case the 2D Gaussian filters are
implemented using 2D windows, but in the SQI-1D the same filters
are implemented using 1D windows. The obtained results are
shown in Table 6. We can observe that PS + HE is the fastest algo-
rithm, but as we have already seen, the one with the worst perfor-
mance. LBP and mLBP are also very fast, with a processing time of
5–6 ms. These two algorithms are followed at a large distance by
SQI. In fact the SQI algorithm is between 30 and 70 times slower
than LBP and mLBP, depending on the employed implementation
(2D or 1D filters). The SIP is a special case because we do not em-
ploy our own implementation of the algorithm, but a commercial
program that implements it, and also a different Operation System
(Windows instead of Linux). In any case we can affirm that after
our estimations SIP is slower than LBP and mLBP.

It should be mentioned that although these absolute number
(processing time in ms) could change depending on the implemen-
tation (e.g., employed PC), they show a tendency: PS + HE, LBP and
mLBP are very fast, and SIP and SQI are slower. A last advantage of
LBP and mLBP is the fact of being almost parameter free (the de-
fault window size is 3 � 3 pixels). This is not the case of SQI or
SIP, where several parameters should be tuned, affecting the final
performance of these methods. PS + HE has no parameters but a
low performance.

As a result of the analyzed experiments we selected the mLBP
and SQI algorithms to be further analyzed in stage 2.

3.4. Stage 2: Simulations using the Notre Dame database

The mLBP and SQI are further analyzed in a more natural sce-
nario using the Notre Dame Database. We define six gallery and
six probe sets that correspond to different illumination-expres-
sion conditions (see explanation in Section 3.1). In each experi-
ment the sets contains 414 individual and two images per
individual. Table 7 shows the results of all 36 experiments in
terms of recognition rate. mLBP and SQI are compared using the
McNemar test. We consider that one of the algorithms outper-
forms the other when the probability of the null hypothesis (both
algorithms performs the same) is smaller than 0.001. In Table 7
‘‘(+)” means that one algorithm outperforms the other in the
McNemar test.

By analyzing the obtained results it can be seen that when
using the FLD–WCOS and FLD–MAHA projection methods SQI al-
ways outperforms the mLBP algorithm. However, for most of the
other projection methods mLBP outperforms SQI. It can be also
seen that for a given gallery and probe set (e.g., falf–falm with
falm-fblm) in most of the cases the best performing recognition
system is achieved using the mLBP as a pre-processing
algorithm.
4. Conclusions

Variable illumination is a major problem in face recognition.
The aim of this work was to investigate it by carrying out an inde-
pendent comparative study among several illumination compensa-
tion and normalization algorithms. We concentrated ourselves in
algorithms with the following properties: (i) general purpose, (ii)
no modeling steps or training images required, (iii) simplicity,
(iv) high speed, and (v) high performance in terms of recognition
rates. Thus, five different algorithms were compared by using each
of them as a pre-processing stage in 16 different eigenspace-based
face recognition systems. The compared algorithms were: PS + HE
(plane subtraction + histogram equalization), LBP (local binary pat-
tern), mLBP (modified LBP), SQI (self-quotient image) and the Gross
and Brajovic’ preprocessing algorithm. It is important to notice that
all compared algorithms, with the exception of the baseline algo-
rithm (PS + HE), are based on local computations that depend on
the relative values between neighbor pixels and/or the local mean
pixels’ intensity. This allows obtaining very good results in terms of
illumination compensation and normalization.

The experiments were carried out using the Yale B, PIE and No-
tre Dame databases in a face identification scenario with large vari-
ations in illumination. From these experiments we can conclude
that when using an eigenspace-based face recognition system
and a proper illumination compensation and normalization algo-
rithm, having at least two example images with uniform illumina-
tion per individual is enough for obtaining high top-1 recognition
rates. Best results were obtained by the SQI and mLBP algorithms.
When both algorithms are compared using a test of statistical sig-
nificance (McNemar test) with different face recognition systems,
in most of the cases mLBP outperforms SQI. In addition, mLBP
has a high processing speed and it is almost parameter free (the de-
fault window size is 3 � 3 pixels). In the reported experiments, LBP
and SIP obtains also good results, but these results are not as good
as the ones obtained by mLBP and SQI.

A problem to be tacked in the near future is the fact that LBP
and mLBP do not work properly when using similarity measures
that use whitening (Mahalanobis- and Whitening-Cosines dis-
tance). Probably the whitening operation does not work properly
in the LBP and mLBP domains, and different similarity metrics
(e.g., Hamming distances) should be used in these cases. We are
currently analyzing this issue.

In a second line of work, we would like to extend our compar-
ative study by including other recently proposed illumination com-
pensation algorithms as for example the DCT in Logarithmic Domain
algorithm. In this case it should be analyzed how to select the
proper number of DCT coefficients for a given image size and target
cutoff frequency.
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