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Introduction
Uncertainty quantification is a key aspect
when assessing and classifying ore resources
and reserves in mining applications, or when
considering oil inventory in petroleum
engineering. The uncertainty stems from a lack
of knowledge about the geological genesis of
the deposition and an inability to construct
realistic genetic models of the mineral deposit
or petroleum reservoir. Geostatistical
simulation allows accounting for this
uncertainty, by generating multiple plausible
realizations of the distribution of petrophysical
properties. However, practical implementation
of conditional simulation in mining
engineering has been focused on reproducing
the variability of these properties within fixed
geological domains; the uncertainty in the
extent of these domains is often most
consequential and should be accounted for
when the geological model is not certain. 

Geostatistical simulation of categorical
variables representing geological domains,
henceforth called facies or lithofacies, can be
performed mainly in two ways. One is to
consider object-based models such as the
Boolean or dead leaves models.1–5 The main
problem of this approach is the difficult
conditioning when many hard data must be
honoured. Solutions are often iterative and
may take a long time to converge to satisfy all
the conditions in a single realization. 

A second approach corresponds to pixel-
based simulation methods. For instance,
sequential indicator simulation6 and transition
probabilities7 have been proposed to charac-
terize the spatial extension of lithofacies. They
provide a flexible framework, but often
realizations lack realism from a geological
standpoint. Gaussian-based models are an
alternative to the indicator-based approach.
Among these models, truncated Gaussian
simulation is suited to cases when there is a
sedimentary sequence of strata.8–10

Plurigaussian simulation is more flexible and
allows more complex transitions between
lithofacies, based on a truncation rule for a
multivariate Gaussian distribution.11–12

Plurigaussian simulation has found wide
acceptance for modelling petroleum reservoirs.
Mining applications have also been developed
in the past few years.13–16

One important limitation of most
categorical simulation methods is that
handling spatial changes in the facies
proportions becomes cumbersome. It often
requires using non-stationary models that
incorporate locally varying proportions, but
parameter inference (in particular, variogram
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analysis) is not clearly laid. This paper proposes a variation
of the plurigaussian model in order to combine three
important aspects: (1) spatially varying facies proportions,
(2) accounting for uncertainty in these proportions and (3)
stationarity of the model. The idea is to model the facies
proportions by random fields instead of deterministic fields
and to incorporate geological knowledge by introducing
information on the probability of finding a particular facies at
given locations. This information is converted into
conditioning data that ensure the reproduction of the spatial
variations (trends) in the facies proportions.  

In the following, the existing approaches to plurigaussian
simulation are discussed, then the model with randomized
facies proportions is introduced through a case study, and its
realizations are compared with those obtained via conven-
tional models.

Traditional plurigaussian models

Constant proportion model

Plurigaussian simulation aims at constructing realizations of
categorical variables that represent lithofacies by truncating
two or more Gaussian random fields. The simplest approach
consists of assuming that the facies proportions are constant
in space. The model is therefore defined by a truncation rule,
a set of threshold values and the correlogram models of the
Gaussian random fields to truncate.5,11 One advantage is the
ability to control and reproduce the contacts between facies as
interpreted by the geologist. Another property of this model is
its stationarity, which facilitates variogram analysis.

In contrast, this model is ill suited for characterizing
phenomena that show clear trends in the facies proportions,
for which the probability of occurrence of a facies cannot be
considered constant in space. In such situation, a solution is
to define a model with regionalized (spatially varying and
deterministic) facies proportions.

Regionalized proportion model

One approach consists of considering a variation of the facies
proportions with depth and of defining vertical proportion
curves. Such curves depend on the choice of a reference
surface and can account for stratigraphic correlation,
considering proportional deformation, truncation of the facies
through erosion, and superposition of a sedimentary facies
over an eroded surface.17 A new coordinate system can be
defined, such that the reference surface represents the zero
level. The inference of the parameters and the simulation are
performed in this new system, and then the coordinates are
back-transformed to the original stratigraphic space. The
concept of vertical proportion curves has been applied to the
simulation of sedimentary and fluvio-deltaic deposits.8,18

The plurigaussian model can also be generalized to
account for lateral changes in the facies proportions. In this
case, the proportions are calculated at specific locations from
the empirical proportions observed on the surrounding data,
then they are interpolated to the whole space, e.g. by inverse
distance weighting or by kriging, leading to a three-
dimensional map representing the local facies
proportions.19–21

Drawbacks of the traditional models

The model with constant proportions is simple and straight-
forward to use. However, it is usually not realistic since, in
general, some facies are more likely to prevail in some
regions than in others. For instance, in the case of ore
deposits, facies representing an oxide mineralization are
rarely found in depth, hence the assumption of a constant
probability of occurrence (constant proportion) is
questionable.

On the other hand, although it is meant to create realistic
images of deposits with a complex geology, the model with
regionalized proportions leads to several difficulties.

(1) One should distinguish between two concepts: (i),
the observed lithofacies proportions and (ii), the
probabilities of finding these facies at given
locations. The ergodicity property states that the
spatial domains on which the proportions are
calculated should be large with respect to the ranges
of the random fields under study, in order to identify
them with theoretical probabilities.22 Now, this
condition is clearly not fulfilled in the model: the
proportions are calculated locally, on small domains
centred on the locations of interest, therefore they
may not match the probabilities of occurrence.

(2) Calculation of local proportions requires many data to
be reliable. This situation is not always met in
practice.

(3) Facies proportions need to be defined at every spatial
location where the simulation has to be performed,
even if no specific information is available at that
location and therefore the true proportions are
unknown. Consequently, the model is likely to
understate the uncertainty in the less recognized
parts of the deposit, by not accounting for the
uncertainty in the facies proportions.23–24

(4) The interpolation procedure used to create the
proportion maps is arbitrary and may produce
artefacts in these maps (hence, unrealistic properties
in the realizations): due to the smoothing effect of
the interpolator, extreme proportions do not occur in
undersampled areas. To illustrate this statement, an
example is shown next.

(5) Even if the underlying Gaussian random fields are
stationary, the facies indicators obtained by
truncating such random fields are not stationary,
which makes the calculation and fitting of their
simple and cross variograms problematic. When
dealing with a single vertical proportion curve, the
experimental indicator variograms can be calculated
for each horizontal level, then these local variograms
are averaged and fitted.12 The implementation for the
general case of regionalized proportions with vertical
and lateral variations is cumbersome, since it
depends on the sampling configuration and often
leads to variogram models that are difficult to
interpret.

The next section presents a model that considers region-
alized facies proportions but remains stationary. The idea is
similar to that used with Poisson point processes: a non-
stationary process with a regionalized density can be



converted into a stationary process (called Cox process or
doubly-stochastic Poisson process) by randomizing this
density.5 By analogy, regionalized facies proportions can be
modelled by random fields instead of deterministic fields. For
simplicity, the presentation is made through a case study to a
mining data set.

A mining case study

Presentation of the data and the deposit

The data used in this section correspond to a set of 2 376
diamond-drill hole samples from an exploration campaign in
a breccia complex of a porphyry copper deposit, located in the
Central Andes and owned by Division Andina of CODELCO-
Chile. The available information consists of the rock type
prevailing at each sample location. The rock type model can
be used to constrain the simulation of copper grades at a later
stage of the resource evaluation project. Three main rock
types can be distinguished (Figure 1).25–26

➤ cascade granodiorite (code 1), located in the eastern
and southern parts of the sampled area. It is one of the
host rocks of the breccia complex, with ages ranging
from 20.1 to 7.4 million years

➤ tourmaline breccia (code 2), located in the central part
of the sampled area. It consists of granodiorite clasts
surrounded by matrix cement dominated by tourmaline
and sulphides (chalcopyrite, pyrite, molybdenite and
minor bornite). Its age ranges from 5.2 to 5.1 million
years. The rock emplacement is related to the main
alteration-mineralization event of the breccia complex

➤ other breccias (code 3), which outcrop in the western
and southern parts of the sampled area. This group
comprises three sorts of rocks: castellana (rock flour
breccia), monolith and paloma breccias. It is younger
than the tourmaline breccia (or contemporaneous)
since granodiorite and tourmaline breccia clasts can be
found into these breccias. Their emplacement relocated
and diluted the previous tourmaline breccia 
mineralization. 

Every rock type is in contact with the two others. The
transition between granodiorite and tourmaline breccia is
gradational and erratic, whereas tourmaline breccia and
castellana breccia (hence the other breccias’ group) have a
sharper and well-defined contact. All these contacts are
steeply dipping and quite continuous in depth. Henceforth,
the granodiorite, tourmaline breccia and other breccias facies
will be denoted by F1, F2 and F3, respectively.

Stationary model with constant proportions

One approach to describe the rock types is to use a stationary
plurigaussian model in which the facies proportions are
constant in space. Under these conditions, one only has to
define the truncation rule, threshold values and correlograms
of the Gaussian fields that will be truncated.

Truncation rule and threshold values

The truncation rule controls the transitions between the
different facies. It has to be chosen in accordance with the
geological evidence and interpretation of the deposit and with
the statistical behaviour of the data. Here, two independent
standard Gaussian random fields (denoted by Y1 and Y2) will
be used, so the truncation rule amounts to defining a
partition of the bi-Gaussian space. 

A simplified geological evolution of the sampled area can
be summarized as follows: 20.1 million years ago,
granodiorite (F1) occupied the whole sampled area. Then, 
5.2 million years ago, the emplacement of tourmaline breccia
(F2) divided the area and decreased the proportion of
granodiorite. Later or simultaneously, the other breccia group
(F3) emplacement took place, decreasing the proportion of
granodiorite and tourmaline breccia and leading to the
current rock type configuration. Such an evolution can be
used to define the truncation rule (Figure 2).

The rock type prevailing at location x is defined as
follows:

[1]
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Figure 1—Plan view and cross-section showing lithofacies information
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where u1 and u2 are threshold values defined so that the
model reproduces the proportion of each facies. In the case
under study, 29% of the area of interest corresponds to
granodiorite (F1), 55% to tourmaline breccia (F2) and 16% to
the other breccias (F3). These global proportions yield the
following threshold values:

[2]

Variogram analysis
The correlograms ρ1 and ρ2 of the Gaussian random fields Y1
and Y2 are fitted according to their impact on the simple and
cross-variograms of the facies indicators. The following
nested cubic models lead to a satisfactory fitting:

[3]

In this equation, the distances in parentheses represent
the ranges along the horizontal and vertical directions,
respectively. The experimental indicator variograms and the
theoretical curves deduced from the previous models are
shown in Figure 3. Note that the cross-variogram between
the indicators associated with granodiorite and other breccias
is almost a pure nugget effect, which means that there is little
spatial relationship between both facies in the area under
study.

Stationary model with random proportions

Principles

To allow the facies proportions to vary in space, the idea is to
replace both thresholds u1 and u2 in Equation [1] by two
independent stationary Gaussian random fields U1 and U2,
with means m1 and m2, unit variances and the same correl-
ograms ρ1 and ρ2 as Y1 and Y2. Under these assumptions,
Equation [1] becomes:

[4]

V1 and V2 are two independent stationary standard
Gaussian random fields with correlograms ρ1 and ρ2 respec-
tively. Accordingly, the prior model (Equation [4]) is not
fundamentally different from the plurigaussian model with
constant facies proportions (Equation [1]): it just amounts to
replacing Y1 and Y2 by V1 and V2 and defining the means of
the random fields U1 and U2 by (Equations [1], [2], [4]):

[5]

At each location x, one can define proportion random
fields (P1, P2 and P3) associated with the different facies:

[6]

where G(.) is the standard Gaussian cumulative distribution
function. 

Spatial variations in the facies proportions can be
reproduced via the incorporation of conditioning information
on the facies proportions P1, P2 and P3 (or, equivalently, on
the random fields U1 and U2). For example, the probability of
finding granodiorite (F1) in the western sector of the area of
interest is deemed less than 5%. Such a condition (P1 less
than 0.05) implies a constraint on the threshold random field
U1 in this sector, namely that it is less than G-1(0.05)
(Equation [6]).

Conditional simulation

Quantification of geological knowledge
The geological knowledge on the deposit is quantified by
inequality constraints on the facies proportions at a set of
980 ‘control points’ located on a regular grid with mesh size
40 m × 40 m × 20 m (Figure 4): 

➤ in the central part of the deposit where the tourmaline
breccia prevails, the geologist assumes that there is less
than 5% chance of finding another rock type

Figure 2—Definition of the facies partition according to the geological evolution of the deposit
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➤ in the east and northeast parts, there is less than 5%
chance of finding tourmaline breccia and less than 5%
chance of finding other breccias

➤ in the southeast part of the deposit and in the contact
zone between tourmaline breccia and granodiorite,
there is less than 5% chance of finding other breccias

➤ in the western part, there is less than 5% chance of
finding granodiorite and less than 30% chance of
finding tourmaline breccia.

All these constraints are assumed to remain constant
with depth, because of the geological continuity along the
vertical direction.

Steps for conditional simulation
In practice, the simulation of facies (rock type domains) can
proceed according to the following steps.

(1) Co-simulate the Gaussian random fields Y1, Y2, U1
and U2 at the sample locations and at the control 
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Figure 3—Simple and cross-variograms of the facies indicators (dash lines: sample variograms, continuous lines: variogram models)

Figure 4—Mapping of interval constraints according to geological
knowledge
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points, conditionally to the available data (drill hole
data and interval constraints defined at the control
points). This step can be performed by an iterative
technique known as Gibbs sampler. At each iteration,
one selects a point at random among the drill hole
locations and control points and updates the
Gaussian random fields at the selected point,
conditionally to the values taken by the Gaussian
fields at the other points.27–29 In the present case, the
Gibbs sampler is stopped after 1 000 000 iterations,
so that the values of the Gaussian fields Y1, Y2, U1
and U2 at each conditioning point (drill hole sample
or control point) are updated 300 times on average.

(2) Simulate the Gaussian fields Y1, Y2, U1 and U2 at the
locations where the facies realizations are required.
Since these fields are independent, each field is
conditioned only to its values at the sample locations
and at the control points obtained in the previous
step. The simulation can be made with any Gaussian
simulation method. In the case study, the turning
bands algorithm is used.22

(3) Apply the truncation rule to obtain a rock type model
(Equation [4]).

Results and discussion

Figure 5 displays nine conditional realizations of the facies,
three of them corresponding to a random proportion model,
three to a constant proportion model (Equation [1]), and the
last three to a regionalized proportion model where local
facies proportions are calculated in 100 × 100 m2 grid cells
and interpolated to the whole space by squared inverse
distance weighting. The results call for several comments. 

First, the constant proportion model is not always
realistic. For instance, breccias can appear in the east and
southeast parts of the deposit: although few drill holes are
available in these sectors, the occurrence of breccias is highly
improbable from a geological point of view. The regionalized
proportion model improves this situation by imposing local
facies proportions. However, this model has the following
drawbacks: 

➤ The interpolation of the proportions may be inaccurate
and lead to misleading interpretations. For instance, the
proportion of tourmaline breccia seems to be overes-
timated in the southeast part of the deposit (Figure 5)

➤ The interpolation smoothes out the proportions and
creates artefacts in the proportion maps, which affects

Figure 5—Rock type models obtained by plurigaussian simulations (representation of the bench of elevation 25 m)



the properties of the realizations. These artefacts are
avoided in the random proportion model (Figure 6)

➤ Because the proportions are deterministic, the
realizations do not account for the uncertainty in the
facies that prevail in the regions where the geology is
not well known.

The realizations corresponding to the random proportion
model combine the advantages of the constant and region-
alized proportion models: one avoids the occurrence of
improbable facies in given sectors of the deposit, thanks to
the constraints imposed at the control points, and still works
in a stationary framework that facilitates parameter inference
and variogram analysis. The reproduction of non-stationary
patterns (spatial variations in the facies proportions) is
deferred to the conditioning process.

Conclusions

The introduction of proportion random fields into the
plurigaussian model combines two interesting aspects: (1),
the prior model remains stationary, which is a very
favourable situation for variogram analysis and (2), the
facies proportions vary in space and can therefore account for
changes in the geological characteristics of the deposit or
reservoir. In addition to its simplicity and straightfor-
wardness, the proposed approach allows integrating
geological knowledge in the model (soft information) and
considers the uncertainty in the facies proportions, especially
in the sectors that are not well recognized, since it does not
need to know the exact proportions at every location. 

The random proportion model is quite general; the
constant proportion model corresponds to the case when
there is no geological constraint; while the regionalized
proportion model is obtained by assigning hard constraints
(exact values) to the facies proportions at each location to
simulate. It is hoped that the presented case study will
stimulate the application of plurigaussian simulations to
mining and petroleum industry.
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