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In the analysis of spatial data, one is often interested in modeling conditional probability

distributions, in order to assess the uncertainty in the values of the attribute under study

and to predict functions of this attribute.

This work examines three geostatistical models in which the attribute is assumed to

be, up to a monotonic transformation, a realization of a Gaussian random field. In the first

model, the mean of the Gaussian field is a known parameter and the conditional

distributions at any set of locations are Gaussian, with expected values equal to simple

kriging predictions and covariance matrix equal to that of the prediction errors. In the

second model, the mean value is replaced by a random variable adding to the Gaussian

field and whose prior variance is infinitely large, indicating a total lack of prior knowledge

on the true mean. It is shown that the conditional distributions are still Gaussian, with

expected values equal to ordinary kriging predictions and covariance matrix equal to that

of the corresponding prediction errors. The third model considers a random drift that

adds to the Gaussian field; the conditional distributions are then obtained by substituting

universal kriging for simple or ordinary kriging.

A computer program is provided to calculate recovery functions (tonnages, metal

contents and mean values above given thresholds) and uncertainty measures (probability

intervals and conditional variances) defined at point or block supports. The concepts are

illustrated with a case study consisting of evaluating the recoverable resources in a

porphyry copper deposit.
1. Introduction

Many disciplines in the geosciences are concerned
with the prediction of spatial attributes in relation to
threshold values. For instance, environmentalists want to
determine whether or not pollutant concentrations in the
air, water or soil fall short of given regulatory levels. Pest
managers are interested in mapping the probabilities that
pest densities or pathogen genotypes exceed critical
g.org/CGEditor/
thresholds, in order to define plant disease control
measures. Hydrologists intend to characterize the depth
to water table in relation to a threshold depth so as to
assess the risk of runoff generation during rainfall events.
Soil scientists and land planners are concerned with
excesses or deficiencies in soil properties. Mining en-
gineers aim to delineate the volume where mineral grades
are greater than an economic cutoff that makes mining
profitable.

Because of its smoothing property, linear kriging is ill-
suited to predict whether or not the values of an attribute
exceed a threshold. Instead, one can use nonlinear kriging
(indicator, disjunctive or multi-Gaussian kriging) to
characterize the unknown values by conditional prob-
ability distributions. Indicator and disjunctive kriging
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make hypotheses on the bivariate distributions of the
random field representing the attribute of interest. They
may produce order relation violations between different
thresholds and require corrections to obtain consistent
results (Deutsch and Journel, 1998, p. 81; Rivoirard, 1994,
p. 60). In contrast, multi-Gaussian kriging considers the
full set of multivariate distributions and does not produce
order relation problems. It has been widely used in
geostatistics applied to recoverable resources assessment
(Verly, 1983, 1984; Maréchal, 1984; Schofield, 1988).
However, it suffers from several limitations that restrict
its scope of application; in particular, it assumes that the
mean value of normal scores data is perfectly known and
it loses efficiency if this mean value is misspecified
(Guibal and Remacre, 1984; Rivoirard, 1994, p. 67, 96).

This article focuses on the multi-Gaussian approach to
the modeling of conditional probability distributions and
prediction of recoverable resources above given thresh-
olds. Its objective is to weaken the assumption of a known
mean and to provide a theoretically sound framework to
account for an uncertain mean. The concepts are com-
plemented by a set of computer programs and illustrated
with a case study in mineral resources evaluation.

2. Multi-Gaussian kriging with a known mean

2.1. Model assumptions

The attribute of interest is regarded as a realization of a
random field over a spatial domain D, say Z ¼ {Z(x), xAD},
that can be transformed into another random field
Y ¼ {Y(x), xAD} with Gaussian univariate distribution, by
means of a non-decreasing transformation function f:

8x 2 D; ZðxÞ ¼ fðYðxÞÞ. (1)

The following assumptions are made:
(1)
 Y is a Gaussian random field, i.e. its finite-dimensional
distributions are multivariate Gaussian.
(2)
 Y is second-order stationary and ergodic, with mean 0,
variance 1 and semi-variogram gY. The covariance
between two variables Y(x) and Y(x0) is equal to the
prior variance minus the semi-variogram:

8x;x0 2 D; CY ðx;x
0Þ ¼ 1� gY ðx;x

0Þ. (2)
(3)
 The values of Y are known at a set of sampling
locations {xa, a ¼ 1,y,n}:

8a 2 f1; . . .ng; YðxaÞ ¼ ya. (3)

Because of the stationarity assumption, the covariance
function and semi-variogram of Y only depend on the
lag separation vector (x0�x), which facilitates their
inference.
2.2. Conditional distribution of a vector of unknowns

Let Y ¼ (Y(u1),y,Y(uk)) be a vector associated with a
set of locations u1,y,uk. Because of the multivariate
Gaussian assumption, the posterior distribution of Y (i.e.
its distribution conditioned to the data) is Gaussian, with
its moments determined by the linear regression (simple
kriging) of Y upon the data (Anderson, 2003, p. 34).
Specifically, the conditional mean is the simple kriging
vector ySK, whose ith component (i ¼ 1,y,k) is

yðuiÞ
SK
¼
Xn

a¼1

lSK
a;i ya, (4)

with

Xn

b¼1

lSK
b;i CY ðxa;xbÞ ¼ CY ðxa;uiÞ 8 a ¼ 1; . . . ;n. (5)

The conditional variance–covariance matrix is that of
the simple kriging errors, which will be denoted by RSK.
The generic term of this matrix (covariance between the
kriging errors at locations ui and uj) is (Harter, 1994, p. 55;
Anderson, 2003, p. 34):

RSK
i;j ¼ CY ðui;ujÞ �

Xn

b¼1

lSK
b;j CY ðui;xbÞ 8i; j ¼ 1; . . . ; k. (6)

Eq. (6) can be derived by expressing the kriging
predictors in terms of weighted sums of the data and by
using the kriging equations (Eqs. (4) and (5)). Because RSK

is a variance–covariance matrix, it is symmetric positive
semi-definite and can be written as the product of a
matrix by its transpose:

RSK ¼ ASK
ðASK
Þ
t . (7)

For instance, ASK can be the square root of RSK or a
triangular matrix obtained by Choleski factorization. The
conditional Gaussian vector Y is therefore decomposed in
the following fashion (Davis, 1987):

Y ¼ ySK þ ASK T, (8)

where T is a standard Gaussian random vector indepen-
dent of the data and with mutually independent compo-
nents. In the next subsections, the conditional distribution
of Y is used to predict a function of the attribute under
study and to assess the uncertainty in the values of this
attribute.

2.3. First application: prediction of a transfer function

Let us consider a function j(Y) of the unknowns
Y(u1),y,Y(uk) (transfer function or, in the mining termi-
nology, recovery function). This function can be predicted
by its conditional expectation, that is, by the expected
value of its conditional distribution:

½jðYÞ�n ¼ EfjðySK þ ASK TÞg. (9)

In practice, the expectation can be calculated by Monte
Carlo integration (Verly, 1984), by putting

½jðYÞ�n �
1

N

XN

i¼1

jðySK þ ASK tiÞ; (10)

where N is a large positive integer and t1,y,tN are
realizations of T obtained by simple random sampling
or, to speed the rate of convergence of Monte Carlo
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integration, by stratified sampling, e.g. Latin hypercube
sampling (McKay et al., 1979).

2.4. Example: recoverable resources in an ore deposit

Suppose that the original attribute is the grade of an
element of interest in an ore deposit. Let v be a block
representing a selective mining unit and {u1,y,uq} a set of
locations that discretize this block. Provided that this
discretization is fine enough, the true block grade can
reasonably be approximated as follows (Eq. (1)):

ZðvÞ �
1

q

Xq

i¼1

ZðuiÞ ¼
1

q

Xq

i¼1

fðYðuiÞÞ: (11)

The selection of the block as ore or waste material is
based on a predicted grade, which is usually derived from
a weighted average of production data (e.g. blast hole
data) located at uq+1,y,uk:

Zn
ðvÞ ¼

Xk

i¼qþ1

oiZðuiÞ ¼
Xk

i¼qþ1

oifðYðuiÞÞ: (12)

From the information on drill hole data (exploration
stage), it is of interest to anticipate the resources that will
be recovered at the mining stage. One assumes that the
pattern of blast hole sampling {uq+1,y,uk} and the
weighting {oq+1,y,ok} are known, but not the blast hole
grades. Let us define the vector of unknowns as
Y ¼ (Y(u1),y,Y(uq), Y(uq+1),y,Y(uk)). The actual recover-
able resources above a given cutoff z (incorporating the
information effect produced by ore-waste misclassifica-
tions at the production stage) can be assessed by the
following recovery functions:
�
 Tonnage above cutoff z:

jðYÞ ¼ I
Xk

i¼qþ1

oifðYðuiÞÞ; z

8<
:

9=
;, (13)

where I(Z;z) is an indicator function, equal to 1 if Z is
greater than z, 0 otherwise.

�
 Metal content above cutoff z:

jðYÞ ¼
1

q

Xq

i¼1

fðYðuiÞÞ

( )
� I

Xk

i¼qþ1

oifðYðuiÞÞ; z

8<
:

9=
;. (14)
2.5. Second application: assessment of local uncertainty

Apart from predicting the expected recovery functions,
it is also of interest to quantify the uncertainty in the
actual block grade Z(v), which is helpful for classifying the
mineral resources into measured, indicated and inferred
resources. Several measures of uncertainty can be derived
from the conditional distribution of Z(v) (in practice, from
the empirical distribution of a large set of block grades
obtained by Monte Carlo simulation), e.g.:
�
 conditional variance;

�
 bounds of the interval in which Z(v) has a given

probability to lie.
uncertain mean

3. Multi-Gaussian kriging with a constant but

3.1. Model with an unknown mean

The assumption of a known mean is quite restrictive, as
it does not allow any uncertainty in the value of this
parameter. In particular, the prediction of a transfer
function is biased when the mean is misspecified. To
weaken the model requisites, one option is to use the
following model:

8x 2 D; YðxÞ ¼ mþ UðxÞ, (15)

in which U ¼ {U(x), xAD} is a stationary and ergodic
standard Gaussian random field, while m is an unknown
scalar parameter. Provided mild assumptions, one can
derive an unbiased predictor of any transfer function j(Y)
based on the ordinary kriging of Y (Emery, 2006a, d). Such
a predictor relies on the definition of ‘‘pseudo’’ conditional
distributions, instead of the true conditional distributions
that would be derived if m were known. However,
although they allow unbiased predictions of transfer
functions, pseudo conditional distributions cannot be
used to derive measures of local uncertainty, as they do
not have the same dispersion as the true distributions
(Emery, 2006a, b).

3.2. Model with a random mean

To avoid the previous difficulty, a different approach is
proposed. It consists of replacing the unknown mean by a
random variable constant over space:

8x 2 D; YðxÞ ¼ M þ UðxÞ, (16)

where M is a Gaussian random variable with mean 0 and
variance s2, independent of the standard Gaussian field U.
The two random fields Y and U have the same semi-
variogram gU, but not the same variance nor the same
covariance function. The covariance between Y(x) and
Y(x0) is given by

8x;x0 2 D; CY ðx;x
0Þ ¼ s2 þ 1� gUðx;x

0Þ. (17)

This covariance does not tend to zero as the norm of
x0�x tends to infinity, indicating that the Gaussian
random field Y is not ergodic.

From a practical point of view, the models with
unknown mean (Eq. (15)) and with random mean
(Eq. (16)) are undistinguishable on the basis of a single
realization, hence either can be equally used. They only
differ on how the uncertainty in the mean of the Gaussian
field Y is accounted for: unknown scalar parameter (m) or
random variable (M). Although the true conditional
distributions are not accessible in the former case, as the
prior distribution of Y is not fully known, we will see that
they can be easily determined in the latter case.

3.3. Conditional distribution of a vector of unknowns

Except for the covariance function, the model in
Eq. (16) is the same as that analyzed in Section 2. By
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using Eq. (17) and putting

mi ¼ ð1þ s2Þ
Xn

b¼1

lSK
b;i � 1

 !
8i ¼ 1; . . . ; k, (18)

the simple kriging system at location ui (Eq. (5)) can be re-
written in the following fashion:

Xn

b¼1

lSK
b;igUðxa;xbÞ � mi ¼ gUðxa;uiÞ 8a ¼ 1; . . . ;n,

Xn

b¼1

lSK
b;i ¼ 1þ

mi

1þ s2
. (19)

The variance of the kriging error at this location (Eq. (6)
with j ¼ i, Eq. (17)) becomes:

RSK
i;i ¼

Xn

b¼1

lSK
b;igUðui;xbÞ � ð1þ s2Þ

Xn

b¼1

lSK
b;i � 1

 !
. (20)

The case of a known mean value is met when s2 is equal
to zero, which implies that the outcome of M is almost
surely zero. Here, one is interested in the opposite
situation, when there is a complete prior ignorance on
the mean value. This is done by letting the variance of M

become infinite. For the kriging error variance to be finite,
it is seen from Eq. (20) that a necessary condition is that
the kriging weights add to one. This condition entails that
simple kriging tends to ordinary kriging when s2 tends to
infinity:

8i ¼ 1; . . . ; k; yðuiÞ
SK
�!

s2!þ1
yðuiÞ

OK
¼
Xn

a¼1

lOK
a;i ya,

RSK �!
s2!þ1

SOK ¼ AOK
ðAOK
Þ
t , (21)

with, for i, j ¼ 1,y,k:

Xn

b¼1

lOK
b;i gUðxa;xbÞ � mi ¼ gUðxa;uiÞ 8a ¼ 1; . . . ;n,

Xn

b¼1

lOK
b;i ¼ 1,

ROK
i;j ¼ �gUðui;ujÞ þ

Xn

b¼1

lOK
b;j gUðui;xbÞ � mj. (22)

The last identity (covariance between the ordinary
kriging errors at locations ui and uj) is obtained by
substituting the expression of the prior covariance func-
tion (Eq. (17)) into Eq. (6) and by using Eq. (18). One
observes that s2 is absent from system (22), hence the
entries of the covariance matrix ROK no longer depend on
s2 and therefore remain finite when s2 tends to infinity. In
this limit case, the conditional distribution of Y is
Gaussian and its first- and second-order moments are
the vector of ordinary kriging predictions (yOK) and the
variance–covariance matrix of the prediction errors ROK.
Conditionally to the data (Eq. (3)), Y can be decomposed
as follows:

Y ¼ yOK þ AOK T , (23)

with T a standard Gaussian vector independent of the data
and with mutually independent components. As in
Section 2, Monte Carlo simulation allows calculating the
conditional expectation of any transfer function and
measures of local uncertainty (probability intervals,
conditional variance, etc.).

3.4. Notes
(1)
 The above results are remarkably simple and easy to
implement, since they amount to substituting ordin-
ary kriging for simple kriging in the approach
presented in Section 2. However, to avoid misinter-
pretations, it should be noted that the condition on
the sum of kriging weights is not an unbiasedness
constraint; rather, it is a requirement for the variance
of the kriging error to remain finite.
(2)
 The prior variance of the Gaussian random field Y

becomes infinitely large when the variance of the
random mean M tends to infinity (Eq. (17)). However,
as M is constant in space, the experimental variance of
the normal data (Eq. (3)) should remain close to the
prior variance of U, i.e. 1. Put another way, the random
variable M does not introduce spatial variability, but a
point-wise variability over the realizations of Y that
reflects the uncertainty in the mean. From a practical
point of view, one can work with normal scores data
with an experimental mean close to 0 and an
experimental variance close to 1, as in the traditional
multi-Gaussian kriging approach. The only difference
is the assumption that the spatial mean of Y is
uncertain (therefore, possibly different from the
experimental zero mean) and can be represented by
a random variable.
(3)
 The use of ordinary kriging is advantageous when the
data are scarce in the kriging neighborhood and the
mean value can be considered constant only at the
scale of this neighborhood (local stationarity).
4. Multi-Gaussian kriging in the presence of a drift

The results of the previous section can be extended to a
more general model, in which the Gaussian random field Y

is split into a drift component (M) that varies smoothly in
space and a residual component (U) with a standard
Gaussian distribution:

8x 2 D; YðxÞ ¼ MðxÞ þ UðxÞ. (24)

The drift is represented by a weighted average of the
form:

8x 2 D; MðxÞ ¼
XL

‘¼1

A‘f ‘ðxÞ; (25)

where {f‘, ‘ ¼ 1,y,L} is a set of known basis functions,
usually chosen as monomials of the coordinates (universal
kriging model), cosine functions (trigonometric kriging
model) or exhaustively known secondary variables (ex-
ternal drift model) (Matheron, 1971, p. 142; Séguret and
Huchon, 1990; Hudson and Wackernagel, 1994). So far,
most of these models have been developed with determi-
nistic and unknown coefficients {A‘, ‘ ¼ 1,y,L}.

Here, we assume that these coefficients are indepen-
dent Gaussian random variables and are independent of
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the residual component U. Let s‘
2 denote the prior

variance of A‘ and suppose that U is a stationary ergodic
Gaussian random field with covariance function CU.
In this context, the covariance between Y(x) and Y(x0) is
given by

CY ðx;x
0Þ ¼ CUðx;x

0Þ þ
XL

‘¼1

s2
‘ f ‘ðxÞf ‘ðx

0Þ. (26)

The simple kriging variance of the ith component of Y
becomes (Eq. (6) with j ¼ i, Eq. (26)):

RSK
i;i ¼ CUðui;uiÞ �

Xn

b¼1

lSK
b;i CUðui;xbÞ

�
XL

‘¼1

s2
‘ f ‘ðuiÞ

Xn

b¼1

lSK
b;i f ‘ðxbÞ � f ‘ðuiÞ

( )
. (27)

To account for a complete prior ignorance on the drift,
one assumes that the variances of the drift coefficients are
infinitely large: s‘

2-N for ‘ ¼ 1,y,L. From Eq. (27), one
sees that a necessary condition for the kriging variances to
remain finite is that the kriging weights satisfy the
following constraints:

Xn

b¼1

lSK
b;i f ‘ðxbÞ ¼ f ‘ðuiÞ; 8‘ ¼ 1; . . . ; L 8i ¼ 1; . . . ; k. (28)

One recognizes the unbiasedness constraints intro-
duced in universal kriging. Accordingly, if the variances
of the drift coefficients tend to infinity, simple kriging (SK)
tends to universal kriging (UK). For i, j ¼ 1,y,k, the kriging
weights and the error covariances are given by (Eqs. (5),
(6), (26) and (28))

Xn

b¼1

lUK
b;i CUðxa;xbÞ þ

XL

‘¼1

m‘;i f ‘ðxaÞ ¼ CUðxa;uiÞ 8a ¼ 1; . . . ;n,

Xn

b¼1

lUK
b;i f ‘ðxbÞ ¼ f ‘ðuiÞ 8‘ ¼ 1; . . . ; L,

RUK
i;j ¼ CUðui;ujÞ �

Xn

b¼1

lUK
b;j CUðui;xbÞ �

XL

‘¼1

m‘;j f ‘ðuiÞ. (29)

This system is established in the same fashion as
Eq. (22), which corresponds to the case of a single basis
function f1�1. Also, the convergence of simple kriging to
universal kriging has been demonstrated by Omre and
Halvorsen (1989).

In this model, the conditional distribution of Y is
Gaussian, with mean vector equal to the universal kriging
of Y and variance–covariance matrix equal to that of the
universal kriging errors. The results found in the previous
sections can therefore be extended by substituting
universal kriging for simple or ordinary kriging. As for
the ordinary kriging approach, it should be noted that
Eq. (28) does not correspond to unbiasedness constraints
stricto sensu, but to constraints ensuring that the predic-
tion errors have finite variances.

A problem specific to the universal kriging approach
is the inference of the residual covariance CU, as the
available data (Eq. (3)) concern the non-stationary
Gaussian field Y, not the residual field U. Several options
are possible to get out of this problem (Chilès and Delfiner,
1999, p. 115, 281):
�
 identify a direction along which the drift is approxi-
mately constant and calculate the sample semi-
variogram along this direction only;

�
 restrict variogram analysis to short distances, for

which the bias between the sample and theoretical
semi-variograms is small;

�
 use the formalism of intrinsic random fields and

generalized covariances and work with generalized

increments that filter the drift.

Another problem in the implementation of multi-
Gaussian kriging in the presence of a drift is the difficulty
to validate the univariate and multivariate Gaussian
assumptions. In practice, checks should be done by
analyzing the distributions of generalized increments,
which are not ‘‘contaminated’’ by the drift.

To avoid these difficulties, ordinary kriging is often
preferred to universal kriging, even if the data reveal clear
spatial trends (Journel and Rossi, 1989). The difference
between both types of kriging is usually small when the
data are abundant and becomes relevant only when data
are scarce or in extrapolation situations.

5. Program description

The main program associated with this article
(MK3D.M) is a Matlab function that uses multi-Gaussian
kriging to predict transfer functions and to calculate
measures of local uncertainty. It works with data located
in a three-dimensional space and requires the following
input arguments.

coord coordinates of scattered locations (block centers)
targeted for predictions (void for gridded loca-
tions)

x0,y0,z0 if gridded locations: minimum grid coordinates
along x, y and z directions

nx,ny,nz number of grid nodes along x, y and z directions
dx,dy,dz grid meshes (block size) along x, y and z

directions
nd block discretization along x, y and z directions

(1�3 vector)
datacoord data coordinates (n�3 matrix)
ydata Gaussian data values (n�1 vector)
limits trimming limits (inf and sup) for Gaussian data

(1�2 vector)
tableZY conversion table between original (Z) and Gaus-

sian (Y) values (void if no transformation is
required). The first column contains the original
values, the second column their standard normal
score transforms

zmin,zmax minimum and maximum values for the
original (Z) variable

tail additional parameters for tail modeling (Emery,
2006c, p. 972)

model semi-variogram model for Gaussian residuals
(nst�7 matrix), see the Matlab file for details
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cc sills of nested structures (nst�1 vector)
b additional parameters for some semi-variogram

models (nst�1 vector)
nugget nugget effect variance
radius maximum search radii along rotated y, x and z

directions
angles angles for anisotropic search (Deutsch and

Journel, 1998, p. 27)
octant divide the neighborhood into octants? 1 ¼ yes,

0 ¼ no
ndata number of conditioning data per octant (if

octant ¼ 1) or in total (if 0)
ktype kriging type: 0 ¼ SK; 1 ¼ OK; k+1 ¼ UK with

drift of degree k

cutoff cutoffs for recovery calculations (1�ncutoff vector)
prob probabilities for probability intervals (1�nprob

vector)
nrealiz number of realizations for Monte Carlo simula-

tion with Latin hypercube sampling
inf_effect blast hole coordinates (relative to the block

center) along x, y and z and weights for blast
hole data (Eq. (12)) (void if no information effect
has to be considered).

The outputs of MK3D.M consist of three recovery
functions that are of interest in mineral resources
evaluation: metal content (Eq. (14)), tonnage (Eq. (13))
and mean grade (metal divided by tonnage) associated
with the ncutoff input cutoffs. Additional outputs are the
interval bounds for the nprob input probabilities and the
local variances of block grades.

Program MK3D.M can also be run with a parameter
file: no input argument is required in the Matlab work-
space and the user is prompted for the parameter file
name. If no name is entered, a default file (MK3D.PAR) is
assumed; if this file is not found, a blank file is created.
When using the parameter file mode, the coordinates of
the locations targeted for prediction (if these locations are
not gridded), the data coordinates and data values and the
conversion table between original and Gaussian values
must be stored in ASCII files without header. The outputs
of MK3D.M are written in separate ASCII files with a
common base name.

Program MK3D.M uses 10 subroutines:

BACKTR.M back-transformation from Gaussian to origi-
nal values

COVA.M calculate covariance values
COVMATRIX.M calculate covariance matrices
COVUNIQUE.M calculate covariance matrix and its in-

verse for kriging in a unique neighborhood (case
when the search radii are set to infinity)

CREATE_PARAMFILE.M create default parameter file
MK3D.PAR

KRIGE.M calculate kriging weights
PICKSUPR.M build template of super-blocks for search

strategy
SEARCH.M search data located in a moving neighborhood
SETROT.M set up matrix for rotation and reduction of

coordinates
SUPERBLK.M set up super-block strategy.
6. First case study: mining dataset

In this section, we apply multi-Gaussian kriging to
predict the recoverable resources in a porphyry
copper deposit located in the Central Andes, Chile. The
available information consists of 2811 composite data
(10 m length) from a set of exploration drill holes, in
which the total copper grade has been assayed. To
preserve the confidentiality of the data, the grades have
been multiplied by an undisclosed factor. A location map
and a histogram of the assayed grades are shown in Fig. 1A
and B.

The prediction of mineral resources proceeds according
to the following steps.
6.1. Normal scores transformation

Declustering weights are assigned to the data by using
the cell method (Deutsch and Journel, 1998, p. 213). Let
z1,y,zn denote the original data values, ranked in
increasing order and p1,y,pn their respective declustering
weights. The transformed values (Eq. (3)) are

8a 2 f1; . . . ;ng; ya ¼ G�1
Xa�1

b¼1

pb þ
1

2
pa

 !
, (30)

where G�1 is the inverse standard Gaussian cumulative
distribution function. This step provides normal scores
data with experimental mean and variance close to zero
and one, respectively.
6.2. Validation of the bivariate Gaussian assumption

Before using multi-Gaussian kriging, it is worthwhile
to check whether or not the multivariate Gaussian
assumption is compatible with the normal scores data.
In practice, the check is limited to bivariate distributions,
as the inference of higher-order distributions is beyond
reach. A test that does not depend on the (possibly
unknown) mean value of the normal scores data consists
of examining the semi-variogram of order o4 0:

8x;x0 2 D; gðoÞY ðx;x
0Þ ¼ 1

2EfjYðxÞ � Yðx0Þjog. (31)

For o ¼ 2, one finds the traditional semi-variogram,
whereas the cases o ¼ 1 and 0.5 correspond to the semi-
madogram and semi-rodogram. If the random field Y has
bivariate Gaussian distributions, then one has (Emery,
2005, p. 168):

gðoÞY ðx;x
0Þ ¼

2o�1ffiffiffi
p
p G

oþ 1

2

� �
½gð2ÞY ðx;x

0Þ�o=2, (32)

where G( � ) is the gamma function. Eq. (32) indicates that,
in log–log coordinates, the points plotting the semi-
variogram of order o as a function of the traditional
semi-variogram are aligned with slope o/2. Once applied
to the transformed data, this test is quite satisfactory
(Fig. 1C and D), hence the multivariate Gaussian assump-
tion is deemed acceptable for the data under study.
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Fig. 1. Exploratory analysis of copper grade data. (A) Map of data locations (projection onto horizontal plane); (B) empirical grade histogram; (C) and (D)

sample semi-madogram and semi-rodogram as a function of sample semi-variogram; theoretical lines associated with bivariate Gaussian model are

superimposed.

Fig. 2. Sample (dashed lines) and modeled (solid lines) semi-variogram

of normal scores data along main anisotropy directions.
6.3. Variogram analysis of normal scores data

The semi-variogram of the normal scores data is
calculated along the main anisotropy directions (north,
east and vertical directions). The fitted model is the sum
of a nugget effect, a spherical and an exponential model
(Fig. 2).

6.4. Prediction of recoverable resources at a block support

Multi-Gaussian kriging is now used to assess the
recoverable resources at a 20�20�20 m3 block support.
For Monte Carlo integration, each block is discretized into
6� 6�2 points and 250 realizations are used. Calcula-
tions are made by using simple and ordinary kriging of the
Gaussian data. The search radii are set to 250, 150 and
200 m along the north, east and vertical directions,
respectively, while the optimum number of data per
octant is set to 4.
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For each block, the predicted resources consist of the
metal content and tonnage above a cutoff of 0.8%Cu,
taking into account the information effect that will occur
at the time of ore-waste selection, by assuming that the
block grade will be predicted from 16 regularly spaced
blast hole data (Figs. 3 and 4).

One observes that predictions obtained by using
simple and ordinary kriging are similar, except in the
western area of the deposit where drill hole data are
scarce (Fig. 1A). In this area, simple multi-Gaussian kriging
yields predictions that tend to the average metal content
and tonnage above 0.8%, giving the impression that
mineral resources can be recovered (Fig. 5A). Such
predictions are not warranted by the data values, which
decrease when going towards the west (Fig. 5B), but by
the model that postulates a constant and known mean
grade over space. In contrast, ordinary multi-Gaussian
kriging only uses the data located in the moving
neighborhood and yields more plausible predictions in
the light of the grade distribution observed in Fig. 5B
(mineral to the east and waste to the west).
6.5. Cross-validation

To validate the predictions obtained by ordinary multi-
Gaussian kriging, a cross-validation is performed. At each
data location, the point-support metal contents above
given cutoffs (from 0.0% to 2.0%) are assessed by using the
data situated at least 50 m away from the target location.
This restriction is imposed because the accounting for
very close data (in particular, adjacent data in the same
drill hole as the data under consideration) often leads to
accurate predictions, irrespective of the model, which
hinders the validation (Isaaks and Srivastava, 1989,
p. 358).
Fig. 3. Pattern of blast hole locations relative to block targeted for

prediction (gray). Ordinary kriging weights are indicated above each

blast hole location.
The average true and predicted metal contents are
given in Table 1, together with the slope of the regression
of the former upon the latter. It is seen that the mean error
is always close to zero and the slope of the regression
close to 1, which suggests that predictions do not suffer
from global and conditional bias. A scatter diagram
between the true and predicted grades (metal contents
at cutoff 0%) is given in Fig. 6A.

One can also validate the uncertainty model derived
from the conditional distributions, by constructing prob-
ability intervals with, say, probabilities from 0.1 to 0.9, and
plotting these probabilities versus the fractions of data
that actually belong to the intervals so defined (Fig. 6B).
The plot indicates a good match, therefore, a correct
modeling of the local uncertainty.

It is worth mentioning that the quality of the validation
results depends on the number of conditioning data
considered in the kriging neighborhood. For instance,
with the current implementation (four data per octant),
the slope of the regression of the true grades upon the
predicted grades is equal to 0.99 (Fig. 6A). It decreases to
0.94 when considering one datum per octant, and to 0.75
when considering only four data in the neighborhood
(without octant division). Following Rivoirard (1987), this
regression slope is a helpful tool to choose the size of the
ordinary kriging neighborhood.
7. Second case study: sequential simulation

The conditional distributions determined by ordinary
kriging can also be used in the context of conditional
simulation (Emery, 2007). The simplest approach is the
sequential Gaussian algorithm, in which each value is
simulated in turn, conditionally to the original data and
previously simulated values. In practice, this algorithm
requires the definition of a moving neighborhood in which
to search the conditioning information.

In the following, we will perform sequential simulation
at the nodes of a regular grid with 100,000 nodes, by
considering a pure nugget semi-variogram with a unit sill
and a single original datum located at the origin and with
a zero value. Ten realizations are generated, in each of
which the experimental mean and variance are calculated.

A sensitivity analysis is made by changing the number
of conditioning data (original data and already simulated
values) considered in the kriging neighborhood (Table 2).
In the last case, which corresponds to a unique neighbor-
hood implementation, the experimental variance of the
simulated values obtained by using ordinary kriging is
very close to 1, i.e. it almost matches the expected
variance although the mean differs from 0. This situation
does not hold if the kriging neighborhood is limited to
1000 conditioning data or less. In contrast, the traditional
approach based on simple kriging always leads to a mean
close to 0 and a variance close to 1, irrespective of the
kriging neighborhood (this is explained because the
weights assigned to the conditioning data are zero, since
the semi-variogram is a nugget effect).

This exercise proves that, although the use of ordinary
kriging for determining conditional distributions and for
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Fig. 4. Multi-Gaussian kriging predictions of metal contents (in %Cu) and tonnages (non-dimensional) above cutoff 0.8% Cu. Representation of bench with

elevation 310 m.
sequential conditional simulation is legitimate, care must
be taken in the design of the kriging neighborhood. In
particular, too restrictive neighborhoods are likely to lead
to an overestimation of the true spatial variability. The
reason is twofold:
�
 The moving neighborhood ignores part of the con-
ditioning data and loses information when construct-
ing the conditional distributions. In the case of the
pure nugget semi-variogram, this problem is important
because closest data do not screen off the influence of
farthest data (the ordinary kriging weights of all the
data are the same).
�
 Each simulated value is re-used for conditioning the
next ones. Hence, any error made by restricting the
neighborhood propagates when the simulation pro-
ceeds. Note that this problem is not raised in the multi-
Gaussian kriging approach presented in Sections 3 and
6, insofar as the conditioning data required for ordinary
kriging only consist of the original data (Eq. (23)).

8. Conclusions

This work addressed the problem of assessing the
uncertainty in the values of a spatial attribute and
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Fig. 5. (A) Grade-tonnage curves for block with coordinates (10,560,310). (B) Scatter plot between copper grades and east coordinate (broken line

indicates empirical conditional mean).

Table 1
Cross-validation statistics for ordinary multi-Gaussian kriging

Cutoff grade

(% Cu)

Mean of true

metal content

(Q)

Mean of

predicted metal

content (Q*)

Slope of the

regression of Q

upon Q*

0.0 1.24 1.24 0.99

0.2 1.24 1.24 0.99

0.4 1.23 1.23 0.99

0.6 1.20 1.21 1.00

0.8 1.12 1.13 1.00

1.0 0.97 0.99 0.96

1.2 0.79 0.81 0.95

1.4 0.63 0.62 0.97

1.6 0.48 0.47 0.98

1.8 0.37 0.34 0.98

2.0 0.25 0.23 0.96
predicting functions of this attribute, at the support of the
available data or at a larger support. It focused on the
multi-Gaussian model, in which the attribute is repre-
sented by the transform of a Gaussian random field.

In the traditional approach, the mean value of the
Gaussian random field is supposedly known and its
conditional distributions at any set of locations are jointly
Gaussian, with means equal to simple kriging predictions
and variance–covariance matrix equal to that of the
prediction errors. An extension of this model consists of
replacing the known mean by an independent random
variable constant over space that adds to the Gaussian
field. When the prior variance of this random variable
becomes infinite, one obtains a model in which there is a
total prior ignorance on the true mean value. The
conditional distributions are then found by substituting
ordinary kriging for simple kriging. Similarly, one can
design a more general model that includes a random drift
and use universal kriging instead of simple or ordinary
kriging.

In all these models, the knowledge of the joint
conditional distributions allows calculating the condi-
tional expectation of a transfer function defined at a block
support and deriving measures of the uncertainty in the
actual block values, by discretizing the block into several
points and by resorting to Monte Carlo simulation.

The proposed approach can easily be extended
to the stochastic simulation framework, for instance by
using the sequential Gaussian algorithm and substituting
ordinary or universal kriging for simple kriging when
deriving the successive conditional distributions. This
constitutes a significant step towards the conditional
simulation of locally stationary or non-stationary random
fields.

Concerning the implementation of the proposed
methods, close attention has to be paid to the design of
the kriging neighborhood. In the light of the exercise made
in the previous section, this design is critical for the
sequential simulation algorithm, since too restrictive
neighborhoods lead to an inaccurate reproduction of the
spatial variability, especially if the semi-variogram model
presents a nugget effect. Additional research is required in
this respect to improve the neighborhood definition when
using ordinary kriging.
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Fig. 6. Cross-validation results. (A) True versus predicted grades (solid line indicates diagonal; dashed line indicates linear regression); (B) Probabilities

versus fractions of data that belong to probability intervals.

Table 2
Average means and variances of 10 realizations drawn over a regular 1D grid with 100,000 nodes, by using different kriging types (simple and ordinary)

and neighborhoods

Number of conditioning

data in kriging

neighborhood

Known mean (simple kriging) Uncertain mean (ordinary kriging)

Mean of realization Variance of realization Mean of realization Variance of realization

10 �0.002 0.998 �26.600 445.800

100 �0.002 0.998 �2.971 5.830

1000 �0.002 0.998 �0.530 1.045

10,000 �0.002 0.998 �0.276 0.998

100,000 �0.002 0.998 �0.260 0.998

The program file and implementation parameters are given in SGSIM.M and INSTRUC.M.
Appendix A. Supplementary materials

Supplementary data associated with this article can be
found in the online version at doi:10.1016/j.cageo.
2007.12.011.
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