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Abstract

A Matlab program (TBCOSIM) is provided for co-simulating a set of stationary or intrinsic Gaussian random fields in

R3, whose simple and cross-covariance functions are fitted by a linear model of coregionalization. It relies on the turning

bands method, which performs three-dimensional simulation via a series of one-dimensional simulations along lines that

span R3. There is no restriction on the number of random fields to simulate, on the number of basic structures used in the

coregionalization model, and on the number and configuration of the locations where simulation has to be performed.

Additionally, the realizations can be made conditional to data, back-transformed and averaged over a block support.

TBCOSIM uses parallel simulation algorithms: at each location, the random fields are simulated simultaneously and a

single co-kriging is needed for conditioning all the realizations. The capabilities of the program are illustrated with the

analysis of a set of non-conditional realizations and with an application to a soil contamination dataset.

Keywords: Multivariate geostatistics; Stochastic simulation; Co-kriging; Linear model of coregionalization; Multivariate normal

distribution
1. Introduction

Many disciplines in the geosciences are concerned
with the characterization of co-regionalized vari-
ables monitored at sampling locations. Examples of
applications include the evaluation of recoverable
resources in polymetallic deposits, the modeling of
the petrophysical properties of a reservoir or an
aquifer, the remediation of soils polluted by heavy
able from server at http://www.iamg.org/

x.htm.

978 4498; fax: +56 2 978 4985.

ess: xemery@ing.uchile.cl
metals, or the prediction of soil properties for
agricultural land management.

In this context, practitioners may be interested
in predicting the values of the coregionalization
over a given domain or in assessing the uncertainty
attached to these values, either at a single location
or jointly over several locations. The prediction
problem can be solved by using co-kriging methods
(Goovaerts, 1997; Wackernagel, 2003), while spatial
uncertainty can be assessed by resorting to geosta-
tistical co-simulation, which aims at constructing
outcomes (realizations) that reproduce the spatial
variability of each variable as well as the relation-
ships between the variables. This approach requires
defining a random field model and an algorithm to
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construct realizations of this model (Chilès and
Lantuéjoul, 2005). To date, the simplest and most
widespread model is that of Gaussian random fields,
whose finite-dimensional distributions are multi-
variate normal.

A variety of algorithms have been proposed in the
literature. Although some of them provide perfect
simulations of Gaussian random fields, they suffer
from limitations concerning the number or the
spatial configuration of the locations where these
random fields can be simulated. For instance, the
discrete spectral algorithm proposed by Pardo-
Igúzquiza and Chica-Olmo (1993, 1994) requires
the locations to be evenly spaced; also, this
algorithm cannot reproduce exactly some covar-
iance models that are smooth near the origin, as
pointed out by Chilès and Delfiner (1997). The
multivariate extension of the matrix decomposition
method (Myers, 1989) is not suitable to simulating
random fields on domains containing more than a
few thousands locations.

To avoid such limitations, some approximations
are required. In this respect, one can distinguish
algorithms that generate Gaussian random fields with
covariance functions that differ from the desired
model, and algorithms that do not generate Gaussian
random fields, although the covariance model may be
accurately reproduced. In the first category, one finds
algorithms based on a discretization of continuous
spectral representations (Robin et al., 1993; Gutjahr
et al., 1997) and the variants of the sequential
Gaussian algorithm that depart from a unique
neighborhood implementation (Tran, 1994; Gómez-
Hernández and Cassiraga, 1994; Emery, 2004).

The second category of approximate algorithms
includes the continuous spectral and the turning
bands methods. The former (Shinozuka and Jan,
1972) relies on a weighted sum of cosine functions
with random frequencies and random phases. It is
not general as it assumes that the spectral density of
the random field is zero outside a bounded interval.
Also, the convergence of the sum to random fields
with multivariate normal distributions is slow if the
covariance model is not smooth at the origin
(Lantuéjoul, 2002). Regarding the turning bands
method (Matheron, 1973; Mantoglou, 1987), it
performs the simulation of a d-dimensional random
field via a series of one-dimensional (1D) simula-
tions along lines that span Rd . A common criticism
to this method is the artifact banding (stripping
effect) caused when using too few lines or when
discretizing the 1D simulations. However, this
stripping can be considerably attenuated with a
suitable choice of the line simulation algorithm
and of the number and distribution of lines in Rd

(Lantuéjoul, 1994; Gneiting, 1999; Emery and
Lantuéjoul, 2006).

Among the available softwares for co-simulating
Gaussian random fields, the turning bands program
proposed by Carr and Myers (1985) is limited to 2D
spaces and spherical covariance models; more
importantly, this program fails at reproducing the
cross-correlation between non-conditional random
fields (Myers, 1989). Many other softwares, such as
the GSLIB library (Deutsch and Journel, 1992),
GCOSIM3D (Gómez-Hernández and Journel,
1993) or Gstat (Pebesma, 2004), only offer sequen-
tial Gaussian co-simulation programs; some of
them are restricted to Markov-type covariance
models and colocated co-kriging, while others allow
using a full co-kriging (in practice, limited to a
moving neighborhood) to derive conditional dis-
tributions. The objective of this work is to present a
Matlab program for conditional co-simulation in R3

using the turning bands method.

2. Co-simulation of cross-correlated Gaussian

random fields

2.1. Modeling spatial correlations in a multivariate

framework

A difficulty with the simulation of co-regionalized
variables is the requirement for cross-covariance
functions that model the relationships between the
different variables. Let us consider a stationary
vector random field Y ¼ (Y1,yYM)t whose compo-
nents have zero means and multivariate normal
distributions. These distributions are characterized
by the matrix of simple and cross-covariances

8x; xþ h 2 Rd ; CðhÞ ¼ EfYðxÞYðxþ hÞtg. (1)

There exist several approaches for modeling the
simple and cross-covariances, e.g.:
�
 Markov-type model (Almeida and Journel,
1994).

�
 Intrinsic correlation (also known as ‘‘intrinsic

coregionalization’’ or ‘‘proportional covariance
model’’) (Journel and Huijbregts, 1978).

�
 Linear model of coregionalization (Journel and

Huijbregts, 1978).

�
 Bilinear model of coregionalization (Grzebyk

and Wackernagel, 1994).
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�
 Use of spectral representations (Pardo-Igúzquiza
and Chica-Olmo, 1994; Gutjahr et al., 1997)

�
 Models based on the square roots of covariance

functions (Oliver, 2003).

�
 Models induced by relationships (e.g. partial

differential equations) between the variables
(Chilès and Delfiner, 1999; de Fouquet, 2001).

Because of this diversity of covariance modeling
approaches, it seems difficult (if not impossible) to
design an all-purpose co-simulation algorithm. In
this paper, we will focus on the linear model of

coregionalization, in which the matrix of simple and
cross-covariances is of the form (Wackernagel,
2003, p. 175)

CðhÞ ¼
XN

n¼1

BnrnðhÞ; (2)

where {rn, n ¼ 1yN} is a set of covariance
functions (positive semi-definite functions); {Bn,
n ¼ 1yN} is a set of symmetric positive semi-
definite matrices.

To broaden the scope of this work, the stationar-
ity hypothesis will be weakened by considering the
more general model in which (Y1,yYM) are jointly
intrinsic Gaussian random fields (i.e. random fields
for which increments, or generalized increments, are
stationary and have multivariate normal distribu-
tions). In such a case, the spatial correlation at lag h
is characterized by a matrix of generalized simple
and cross-covariance functions (Dowd, 1989; Chilès
and Delfiner, 1999, p. 331). In the sequel, we will
still denote by C(h) this matrix and assume that
it is of the form given in Eq. (2), except that
{rn, n ¼ 1yN} may now be generalized covariances
instead of ordinary covariances. Henceforth, the
term ‘‘covariance’’ will be used indistinctly to
designate an ordinary or a generalized covariance.

2.2. Non-conditional simulation

For n ¼ 1yN, denote by Qn and Dn the matrices
of eigenvectors and eigenvalues of Bn (an orthogo-
nal and a diagonal matrix, respectively) and define
the square root matrix of Bn

Bn ¼ AnA
t
n with An ¼ Qn

ffiffiffiffiffiffi
Dn

p
. (3)

Let Xn be a Gaussian vector random field with M

independent components, each with covariance
function rn. As shown by Wackernagel (2003,
p. 176), the random field Y can be written in the
following fashion:

8x 2 Rd ; YðxÞ ¼
XN

n¼1

AnXnðxÞ: (4)

The simulation of a Gaussian vector random field
with cross-correlated components (Y) therefore
boils down to that of a set of independent scalar
Gaussian random fields (the components of X1y

XN). Note that the decomposition given in Eq. (4) is
the basis of factorial kriging analysis (Goovaerts,
1993, 1997; Wackernagel, 2003).

2.3. Conditioning of the data

To produce realizations conditioned to a set of
data, a supplementary step is required. In the
univariate case, this is done by adding a non-
conditional realization and the kriging of the
difference between the data values and the simu-
lated values at the data locations (Journel and
Huijbregts, 1978, p. 495). This result holds in the
multivariate case, except that co-kriging must be
used instead of kriging (Carr and Myers, 1985;
Myers, 1989; Gutjahr et al., 1997)

8x 2 Rd ; YCSðxÞ ¼ YSðxÞ þ ½YðxÞ � YSðxÞ�
�, (5)

where the asterisk indicates the co-kriging operator
from the values at the data locations and subscripts
S and CS stand for non-conditional and conditional
simulation, respectively.

Several comments are worth being made:
(1)
 The co-kriging weights needed in Eq. (5) only
depend on the covariance model and on the
configuration of data locations and locations
targeted for simulation. This entails that a single
co-kriging system has to be solved to condition
multiple realizations.
(2)
 Care must be taken in the design of the
co-kriging neighborhood. Over-restricted neigh-
borhoods (with small search radii and few
conditioning data) often introduce discontinu-
ities in the simulation maps, which can be
spuriously considered as part of the spatial
variability of the coregionalization, and provoke
a loss of precision and an increase of conditional
bias in the co-kriging estimates (Rivoirard, 1987;
Chilès and Delfiner, 1999). These drawbacks
are likely to be more severe for multivariate
simulation than for univariate simulation, as
the optimal choice of co-kriging neighborhood
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depends on the data configuration of the
variables of interest and on their simple and
cross-covariance functions (Rivoirard, 2004).
(3)
 When a unique neighborhood is considered, the
conditioning process (Eq. (5)) can be made
faster by using the dual form of co-kriging, in
which a single matrix system has to be solved for
all the locations where simulation is required
(Chilès and Delfiner, 1999, p. 186).
(4)
 Co-kriging and co-simulation can be performed
with heterotopic datasets, for which not all the
variables are known at each data location.
(5)
 Simple co-kriging is used for conditioning the
realizations of stationary random fields (those
for which the covariance functions have a finite
sill) with known mean values. Ordinary co-
kriging is used for stationary random fields with
uncertain mean values or for random fields with
stationary increments (intrinsic random fields of
order 0) (Emery, 2004, 2007b). Intrinsic co-
kriging is used for random fields with poly-
nomial drifts and stationary residuals and for
intrinsic random fields (Dimitrakopoulos, 1990;
de Fouquet, 1994).
3. Program description

The Matlab program TBCOSIM uses the turning
bands algorithm for simulating the components of
X1,y XN (Eq. (4)). It is restricted to simulation in
R3 (1D or 2D simulations can be performed by
setting the remaining coordinates to a constant, say
zero) and relies on a code developed in the
univariate framework by Emery and Lantuéjoul
(2006). The main features of this program are the
following ones:
(1)
 Use of parallel algorithms: at each location, the
M variables are simulated all together (regard-
less of the values simulated at other locations)
and all the realizations are made conditional by
solving a single co-kriging system. This allows a
considerable reduction of calculations with
respect to sequential algorithms, in which the
variables are simulated in turn conditionally to
previously simulated values and one co-kriging
is needed for each realization. Co-kriging is
performed in a moving neighborhood defined
by an ellipsoid that may be divided into octants.
A unique neighborhood is assumed if the radius
of this ellipsoid is set to infinity; in such a case,
dual co-kriging is used.
(2)
 Use of continuous simulation algorithms along
the lines, which avoids discretizing the 1D
simulations and allows reproducing the simple
and cross-covariances of Y without bias, even if
the simulation is performed at unevenly spaced
locations in R3 (Emery and Lantuéjoul, 2006).
(3)
 No restriction on the number of nested struc-
tures used in the linear model of coregionaliza-
tion. Each structure can have a geometric
anisotropy defined by three angles and three
scale factors, following GSLIB conventions
(Deutsch and Journel, 1992, p. 23). The available
covariance models are the spherical, exponential,
gamma, stable, cubic, Gaussian, cardinal sine, J-
Bessel, K-Bessel (Matérn), generalized Cauchy,
exponential sine, linear, power, mixed power and
spline (Emery and Lantuéjoul, 2006) (see sub-
routine COVA for details).
(4)
 The convergence of the simulated distributions
to multivariate normality is controlled by the
number of lines used to simulate each nested
structure. Suggestions for choosing this number
have been given by Tompson et al. (1989),
Freulon and de Fouquet (1991), Gneiting
(1999), Lantuéjoul (1994, 2002) and Emery
and Lantuéjoul (2006), among others; a general
recommendation for 3D simulation is to use
hundreds or thousands of lines.
(5)
 Post-processing options: the realizations can be
back-transformed from the Gaussian unit to
that of the variables of interest by specifying a
set of transformation tables and parameters
for tail extrapolation, following the approach
proposed by Emery (2006). More precisely, let
fðz
ðmÞ
k ; yðmÞk Þ; k ¼ 1 . . .Kg be the transformation

table for the mth variable Ym, and z
ðmÞ
min and zðmÞmax

the extrema of the back-transformed variable.
The transformation function (fm) is modeled
through a piecewise interpolation of the transfor-
mation table, completed by exponential functions
that depend on two positive parameters (lm,l0m):

8yoy
ðmÞ
1 ; fmðyÞ ¼ z

ðmÞ
min þ ðz

ðmÞ
1 � z

ðmÞ
minÞe

lmðy�y
ðmÞ

1
Þ;

8y4y
ðmÞ
K ; fmðyÞ ¼ zðmÞmax þ ðz

ðmÞ
K � zðmÞmaxÞe

l0mðy
ðmÞ

K
�yÞ:

(

(6)
(6)
 Also, the realizations can be averaged over a
block support, via a discretization of the block.
TBCOSIM can be run directly in the Matlab
workspace with its input arguments (see the program
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file for details). Alternatively, it can be used with a
parameter file: in such a case, no input is needed and
the user is prompted for the name of the parameter
file (by default, TBCOSIM.PAR) (Table 1); the
coordinates and values of the Gaussian data and, if
the simulation has to be performed at scattered
locations, the coordinates of these locations must be
stored in ASCII files. TBCOSIM does not produce
any output in the Matlab workspace, but creates an
external ASCII file in which each column corre-
sponds to one realization of one variable (the first M

columns correspond to the first realization of the
whole coregionalization, and so on). For grid
simulation, the ordering of the grid nodes is the
same as in GSLIB, i.e. point by point to the east,
then row by row to the north, and level by level
upward (Deutsch and Journel, 1992, p. 20). Missing
data values (e.g. in heterotopic datasets) can be
codified by values outside a trimming interval or by
NaN (not-a-number).

TBCOSIM uses 12 sub-routines:
�
 BACKTR: back-transform from Gaussian to
original scale.

�
 COKRIGE: compute co-kriging weights (moving

neighborhood).

�
 COVA: compute covariance values.

�
 CREATE_PARAMFILE: create default para-

meter file TBCOSIM.PAR.

�
 DUAL: compute dual co-kriging weights (unique

neighborhood).

�
 PICKSUPR: build templates of super-blocks

(moving neighborhood).

�
 SEARCH: search for data in a moving neighbor-

hood.

�
 SETDUAL: compute right-hand side of dual co-

kriging system.

�
 SETROT: set up rotation matrix to transform

Cartesian coordinates.

�
 SUPERBLK: set up super-block strategy (mov-

ing neighborhood).

�
 TBMAIN: perform non-conditional simulation

along the lines.

�
 VDC: generate equidistributed lines over the unit

3D sphere.

4. Checking the reproduction of the random field

model

In this section, we consider the non-conditional
simulation of a pair of Gaussian random fields over
a 200� 200 grid. The coregionalization model
consists of a nugget effect, an isotropic spherical
structure with range 50 and an isotropic Matérn
(K-Bessel) structure with scale factor 10 and shape
parameter 2:

CðhÞ ¼
0:2 �0:1

�0:1 0:1

 !
nuggetþ

1 0:4

0:4 0:6

 !
sph50ðhÞ

þ
1:8 �1:4

�1:4 1:5

 !
K � Bessel10;2ðhÞ. (7)

For the simulation of each nested structure, 1000
lines are used in the turning bands algorithm. To
validate the quality of the realizations, two ques-
tions can be asked:
(1)
 Do they conform to the above linear model of
coregionalization (Eq. (7))?
(2)
 Do they conform to a vector random field with
multivariate normal distributions?
Concerning the first question, a simple validation
exercise consists in examining the sample vario-
grams of the realizations: on average over many
realizations, they should match (up to reasonable
statistical fluctuations) the prior variogram model.
The results obtained for 100 realizations (Fig. 1,
left) show a good agreement between average
sample and theoretical variograms. Note that this
agreement may not hold if conditional realizations
are used, for three reasons:
(a)
 the recourse to a moving neighborhood for
conditioning co-kriging may introduce spurious
fluctuations (recall second comment in Section
2.3);
(b)
 the conditioning data may not exactly conform
to the coregionalization model;
(c)
 even so, the simple and cross-variograms of the
conditional simulations usually differ from the
prior variogram models, unless the simulation
domain is very large with respect to the domain
surrounding the conditioning data. Put another
way, the data introduce a ‘‘distorsion’’ with
respect to the prior model (Lantuéjoul, 2002,
p. 204; Emery, 2007b).
As for the second question (multivariate normal-
ity), the validation is often limited to the bivariate
distributions. One option is to examine the sample
indicator variograms for some quantiles and compare
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Table 1

Default parameter file for TBCOSIM

START OF PARAMETERS:

0 type of co-simulation: 0 ¼ gridded locations; 1 ¼ scattered locations

locations.prn if ¼ 1: file with coordinates of locations for co-simulation

1 2 3 columns for location coordinates

5.0 5.0 5.0 if ¼ 0: x0, y0, z0

20 20 10 nx, ny, nz

10.0 10.0 10.0 dx, dy, dz

5 5 2 block discretization (1 1 1 for point-support co-simulation)

2 number of variables to simulate

nscore.out file with conditioning data

1 2 3 columns for coordinates

4 5 columns for Gaussian data

-10 10 trimming limits for Gaussian data

nscore1.trn variable 1: file with conversion table (raw-Gaussian)

0.0 10.0 minimum and maximum values for raw variable

1.0 5.0 parameters for lower-tail and upper-tail extrapolation

nscore2.trn variable 2: file with conversion table (raw-Gaussian)

0.0 4.0 minimum and maximum values for raw variable

2.0 1.0 parameters for lower-tail and upper-tail extrapolation

2 number of nested structures

1 170 120 100 30 0 0 1 1000 1st structure: it a1 a2 a3 ang1 ang2 ang3 b nlines

0.45 0.30 0.30 0.52 variance-covariance matrix

4 100 100 50 0 0 0 0.5 1000 2nd structure: it a1 a2 a3 ang1 ang2 ang3 b nlines

0.45 0.25 0.25 0.30 variance-covariance matrix

0.10 0.11 0.11 0.18 nugget effect variance-covariance matrix

30 number of realizations

9784498 seed for random number generation

200 200 100 maximum search radii in the rotated system

30 0 0 angles for search ellipsoid

1 divide into octants? 1 ¼ yes, 0 ¼ no

4 optimal number of data per octant (if octant ¼ 1) or in total (if 0)

1 co-kriging type: simple ¼ 0, ordinary ¼ 1, intrinsic (order k) ¼ k+1

tbcosim.out name of output file

3 number of decimals for values in the output file

1 create a header in the output file? 1 ¼ yes, 0 ¼ no

5000 maximum number of locations to simulate simultaneously

Available model types:

1: spherical

2: exponential

3: gamma (parameter b40)

4: stable (parameter bo2)

5: cubic

6: Gaussian

7: cardinal sine

8: J-Bessel (parameter b40.5)

9: K-Bessel (parameter b40)

10: generalized Cauchy (parameter b40)

11: exponential sine

12: linear

13: power (exponent b40)

14: mixed power (exponent bo¼ 2)

15: spline (exponent b ¼ even integer)
their averages over the realizations with the corre-
sponding prior models (Goovaerts, 1997, p. 277).
Fig. 1 (right) presents the results associated with the
median indicator, which corroborate the assumption
of bivariate normal distributions. This validation
could be refuted if an insufficient number of lines
were used to simulate each nested structure in the
turning bands algorithm, see comment 4 in Section 3.
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Fig. 1. Variograms of Gaussian random fields (left) and of their median indicators (right) for a set of 100 non-conditional realizations.

Dashed lines correspond to sample variograms calculated along abscissa axis; asterisks indicate their average over 100 realizations; solid

lines represent theoretical models.
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5. Case study: Swiss Jura dataset

To illustrate the importance of the co-simulation
approach in multivariate problems and the capabilities
of program TBCOSIM, a case study is now presented.
We will consider a dataset from the Swiss Federal
Institute of Technology that consists of 359 measure-
ments of heavy metal concentrations (cadmium, cobalt,
chromium, copper, nickel, lead and zinc) in the topsoil
of a contaminated site in the Swiss Jura. The site covers
approximately 1450ha and the sampling has been
performed on a regular grid with mesh 250� 250m2

completed by several clusters (Fig. 2). Details on the
site and laboratory procedures are given by Atteia et al.
(1994). In the following, the analysis is focused on three
contaminants: copper, lead and zinc (Table 2).

The goal of the study is to assess the risk that
the contaminant concentrations exceed regulatory
Fig. 2. Map of data locations (circles) and delineation of area

under study (Jura dataset).

Table 2

Basic statistics on contaminant concentrations, expressed in ppm (Jura

Mean Standard deviation Minimum Low

Cu 23.59 22.27 3.55 10.4

Pb 54.63 33.10 18.68 36.3

Zn 75.88 30.82 25.00 54.5
thresholds, in order to delineate the areas where
cleanup is needed. We will assume that the
remediation units are blocks with size 20� 20m2

and the thresholds for toxicity are 40 ppm for
copper, 65 ppm for lead and 100 ppm for zinc.

The study consists of the following steps.
(1)
data

er qu

6

0

0

Transform the original data (metal concentra-
tions) into normal scores, accounting for declus-
tering weights to correct for the irregular
sampling design. In the present case, the weights
have been obtained by the cell declustering
technique (Goovaerts, 1997, p. 83). This techni-
que accounts for the spatial configuration of the
data locations, but ignores the correlation be-
tween data. To account for this correlation and
improve the consistency of the declustering
scheme, the weights could be defined via co-
kriging or via redundancy coefficients, by general-
izing the approaches proposed by Switzer (1977),
Bourgault (1997) or Bogaert (1999) to the multi-
variate context, based on the simple and cross-
variograms of the variables or of their indicators.
(2)
 Calculate the sample (simple and cross) vario-
grams for the normal scores data and fit a linear
model of coregionalization. A nugget effect and
two nested isotropic spherical structures, the
first one with a range of 0.4 km and the second
one with a range of 1.5 km, are used (Fig. 3)

CðhÞ ¼

0:18 0:20 0:06

0:20 0:38 0:14

0:06 0:14 0:15

0
BB@

1
CCAnugget

þ

0:84 0:50 0:57

0:50 0:36 0:31

0:57 0:31 0:58

0
BB@

1
CCAsph0:4ðhÞ

þ

0:043 0:023 0:11

0:023 0:28 0:24

0:11 0:24 0:41

0
BB@

1
CCAsph1:5ðhÞ. (8)
set)

artile Median Upper quartile Maximum

17.20 27.02 166.40

46.80 60.30 300.00

73.56 90.00 259.84
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Fig. 3. Sample (dashed lines and circles) and modeled (solid lines) variograms for normal scores of copper, lead and zinc data (Jura

dataset).
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(3)
Fig.
Check for bivariate normality by examining the
indicator variograms at some specific thresholds,
see Section 4 and files INSTRUCTIONS_JURA,
GAMV_IND (sample indicator variogram cal-
culation) and VMODEL_IND (theoretical in-
dicator variogram calculation) for computer
programs and results.
(4)
 Perform conditional co-simulation of the metal
concentrations over the remediation units, with
the normal scores data and the fitted coregio-
nalization model as input in TBCOSIM. The
following parameters are considered:

�
 discretization of remediation units set to 6� 6

points;

�
 simulation of each spherical structure based on

1000 lines;
4. Maps of simulated contaminant concentrations averaged over
�

reme
conditioning by ordinary co-kriging;

�
 definition of a moving neighborhood with a

radius of 1.5 km and a maximum of 8 data in
each quadrant;

�
 generation of 100 realizations.

As an illustration, the maps of contaminant
concentrations corresponding to the first reali-
zation are shown in Fig. 4.
(5)
 For each remediation unit, evaluate the prob-
ability that the three metal concentrations are
below the regulatory thresholds:
1� Probfhazardgmutivariate analysis

¼ ProbfCuo40;Pbo65;Zno100g

¼ ProbfCuo40jPbo65;Zno100g

� ProbfPbo65jZno100g � ProbfZno100g (9)
diation units, corresponding to first conditional realization.
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Fig. 5. Maps of hazard probability (probability that at least one contaminant concentration exceeds a regulatory threshold), calculated

after 100 realizations averaged over remediation unit support.
(concentrations and thresholds in Eq. (9) are
expressed in ppm). The probability of finding
hazardous contaminant concentrations is
mapped in Fig. 5A. For comparison, Fig. 5B
shows the map that would be obtained if the
metal concentrations were assumed independent
and treated separately:

1� Probfhazardgunivariate analysis

¼ ProbfCuo40g � ProbfPbo65g

� ProbfZno100g. (10)
Fig. 6. Comparison of hazard probabilities obtained in Fig. 5.
The hazard probability calculated by considering
the variables independently tends to overstate the
probability obtained by accounting for the cross-
correlations between these variables, as corrobo-
rated in Fig. 6. This bias is explained because the
copper, lead and zinc concentrations are positively
correlated, hence, in general

ProbfCuo40jPbo65;Zno100gXProbfCuo40g;

ProbfPbo65jZno100gXProbfPbo65g:

(

(11)

The probability maps in Fig. 5 are useful for site
management. For instance, the decision-maker can
distinguish three areas (Demougeot-Renard and de
Fouquet, 2004): a remediation area that contains the
units with a hazard probability greater than a given
threshold a and for which cleanup is needed; a low-

risk area containing the units with a hazard
probability less than a second threshold b (with
boa), so that they can be left on site without further
investigation; and an uncertain area (units with a
probability between b and a), for which the risk of
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Table 3

Number of remediation units in each area, calculated with

probability thresholds a ¼ 0.5 and b ¼ 0.2

Remediation

area

Uncertain

area

Low-risk

area

Multivariate

analysis

8756 12,571 15,864

Univariate analysis 12,472 11,271 13,448
hazard is too low to be included in the remediation
area, but too high to be left on site without further
characterization (additional sampling). For given
probability thresholds a and b, the extent of these
three areas strongly depends on whether the cross-
correlations between contaminant concentrations
are accounted for or not (Table 3).

6. Conclusions

Many geostatistical simulation algorithms are
still limited in multivariate situations, especially in
what refers to the reproduction of cross-correlations
between variables. In this paper, a Matlab co-
simulation program (TBCOSIM) has been pre-
sented, which offers the following features:
�
 3D simulation, either at gridded locations or
scattered locations;

�
 no restriction on the number of these locations;

�
 no restriction on the number of nested structures;

�
 no restriction on the number of variables;

�
 handling of heterotopic datasets (variables

known at different locations);

�
 use of stationary and intrinsic models;

�
 conditioning of the realizations to a set of data,

using:
J simple, ordinary or intrinsic co-kriging;
J unique or moving neighborhood;

�
 availability of the most commonly used covar-

iance models;

�
 back-transformation from normal values to

original units;

�
 change of support (regularization) of the realiza-

tions.

The main advantages of TBCOSIM are the
parallel procedure, in which all the variables are
simulated simultaneously and a single co-kriging is
used to condition all the realizations, and the
avoidance of discretization for the simulation along
the lines, which allows reproducing the simple and
cross-covariances exactly and performing simula-
tion at irregularly spaced locations in R3.

The drawbacks stem from the restrictions im-
posed by the choice of the random field model:
multivariate normal distributions, simple and cross-
covariances fitted by a linear model of coregiona-
lization. The latter is widely used in spatial analysis,
but may turn out to be insufficient for analyzing
temporal or spatio–temporal data, as it excludes
deferred correlations (delay effects). Program
TBCOSIM can however be adapted to simulating
more general models, e.g. Gaussian random fields
with covariances fitted by a bilinear model of
coregionalization that allows delay effects between
the variables (Wackernagel, 2003, p. 207). It can
also be extended to the simulation of plurigaussian
and Gaussian-related random fields (Lantuéjoul,
2002; Emery, 2007a).
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