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Abstract An important aspect in mineral resource evaluation is the reduction of vari-
ance when post-processing the grade distributions defined on the support (volume) of
the available data into distributions defined on the support of the proposed selec-
tive mining units. Although the volume-variance relationship is well understood for
the estimation of global grade distributions, it is still an unsolved issue for local es-
timation studies based on non-parametric geostatistical methods, such as indicator
kriging, for which the support correction is not inherent to the method. To clarify
this relationship, the local change of support problem is examined in the scope of
two parametric models (multi-Gaussian and discrete Gaussian models). It is shown
that the variance reduction factor between point and block-support local distributions
depends on the block being considered and is less than the global variance reduction
factor. As a consequence, post-processing the local point-support grade distributions
on the basis of the latter systematically understates the importance of the change of
support at the local scale and makes selective mining appear more economically at-
tractive than it really is. In the light of these results, a methodology is proposed to
post-process the local point-support distributions obtained via non-parametric (in-
dicator) methods into block-support distributions. An application to simulated data
indicates that this methodology provides an accurate estimation at the block support
when dealing with diffusion-type random fields.
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1 Introduction

A key aspect of selective mining is to decide what material in a deposit is worth
extracting and processing, versus what material should be considered as waste, and
to estimate the tonnage, metal content, and mean grade of the material selected as ore.
To obtain accurate results, the difference in support between the available data (drill
hole samples, blast holes, channel samples, etc., regarded as quasi-point supports)
and the proposed selective mining units (SMU) must be taken into account in the
estimation of recoverable resources.

To address the change-of-support problem, one option is to draw multiple realiza-
tions of a random field representing the grade of the element of interest at a point sup-
port, conditionally to the available information, and to regularize the realizations to
the SMU support (Journel and Kyriakidis 2004; Verly 1984). An alternative to condi-
tional simulation is the use of nonlinear kriging methods. In this respect, one can dis-
tinguish between distribution-based methods (e.g., multi-Gaussian, disjunctive and
bi-Gaussian kriging; uniform conditioning) and distribution-free or non-parametric
methods, mainly multiple indicator kriging and its variants. The former are often
associated with change-of-support models and have been applied to the estimation
of recoverable resources for a long time (Emery 2005; Guibal and Remacre 1984;
Marcotte and David 1985; Maréchal 1984). However, the difficulty of parametric
methods is their ability to properly model the spatial distribution of grades and to
incorporate secondary information (e.g., trends, rock types codified as a categorical
variable, layouts of the mineralization and alteration profiles, soft data corresponding
to imprecise measurements, etc.).

In contrast, the indicator approach is more flexible and therefore applicable to
a wider range of situations. However, it does not estimate grade distributions on a
larger support than that of the data, and therefore requires using a separate change-
of-support model, which may hinder the quality of recoverable resource estimates
(Rossi and Parker 1994). The goal of this work is to develop a methodology for
post-processing a local point-support grade distribution into a SMU grade distrib-
ution, which is applicable when the former is estimated via a non-parametric (in-
dicator) method. To fulfill this objective, it will be important to distinguish be-
tween global (prior) and local (conditional or posterior) distributions and to de-
sign a model for the latter when passing from a point support to a block (SMU)
support. The analysis of a few simple parametric models, specifically the multi-
Gaussian and discrete Gaussian, will help to point out the distinction between the
global and local frameworks and to design the intended local change-of-support
model.

In the sequel, we will denote by {Z(x), x ∈ D} the random field that represents the
point-support grades over a domain D of interest, and by {Z(v), v ∈ D} the regular-
ized field defined on the SMU support. When referring to the local distributions, the
same random fields conditioned to point-support data are considered; in this occasion,
a tilde will be used to identify the conditional fields

{∀x ∈ D, Z̃(x) = {
Z(x) | data

}
,

∀v ∈ D, Z̃(v) = {
Z(v) | data

}
.

(1)



2 Global Versus Local Change of Support

2.1 Global Framework

Geostatistical change-of-support models for global grade distributions are based on
Cartier’s relation, which states that the expected grade at a point-support location
x uniformly distributed in a block v with known grade is equal to the block grade
(Matheron 1984, p. 425). This relation implies that Z(v) has the same mean as Z(x)
and a smaller variance (support effect). Examples of models that fulfill Cartier’s rela-
tion include the affine, indirect lognormal, and discrete Gaussian corrections (Emery
2004; Isaaks and Srivastava 1989; Lajaunie 2000; Matheron 1976, 1985).

2.2 Local Framework

Change-of-support is more problematical in the case of distributions conditioned to a
set of data. A common practice consists in estimating the point-support grade distri-
bution at the center of the block, then in post-processing this distribution by applying
one of the previous corrections. However, the relationship between the local distrib-
utions at point and block supports is not as simple as in the global framework. For
instance, if the central point corresponds to a data location, the point-support distri-
bution has a zero variance (no uncertainty), but this cannot be the case for the true
block-support distribution: in such a situation, the change of support is characterized
by an increase of the variance when passing from the point-support to the block-
support distributions. A solution to this problem is to post-process the grade distrib-
ution at a point uniformly located within the block, instead of the central point. The
justification is that Cartier’s relation still holds at the local scale, so that the means of
Z̃(x) and Z̃(v) (with x ∈ v) are equal, and the variance of the latter is less than that
of the former. A second difficulty arising when post-processing local point-support
distributions is that the reduction of variance is not the same as in the case of the
prior (global) distributions and depends on the amount of conditioning information
surrounding each block. This point is illustrated in the next section for the specific
situation of a Gaussian random field and a transform of this field.

3 Local Change of Support in the Multi-Gaussian Model

3.1 First Example: One-Dimensional Gaussian Random Field

Suppose that the random field {Z(x), x ∈ D} has multivariate Gaussian distributions,
and let us denote by ρ(x,x′) the covariance between the variables located at x and x′.
For any x and v in D, the point-support and block-support conditional variables Z̃(x)

and Z̃(v) are Gaussian, with means and variances equal to their simple kriging esti-
mates and kriging variances, respectively.

To allow explicit calculations, we will consider the case when v is the interval
[0,L] (L > 0) in R, ρ(x,x′) = exp(−|x − x′|) is an exponential covariance func-
tion, and there is a single conditioning datum located at x1 ≤ 0, with a value equal to



Fig. 1 Ratio between local and
global variance reduction
factors, as a function of the
block size. Case of a
one-dimensional Gaussian
random field with an
exponential covariance function
and a single conditioning datum
at location x1

the prior mean (0). In this case, the means of Z̃(x) and Z̃(v) are still zero and their
variances are

σ ∗2(x) = 1 − ρ(x,x1)
2 = 1 − e−2|x1−x|,

σ ∗2(v) = 1

L2

∫ L

0

∫ L

0
ρ(x,x′) dxdx′ −

(
1

L

∫ L

0
ρ(x,x1) dx

)2

= 2

L2

{
L + e−L − 1 − e2x1−L

[
cosh(L) − 1

]}
.

(2)

If x is a random point uniformly distributed in [0,L], the variable Z̃(x) appears as
a mixture of Gaussian variables with the same zero mean. Its variance is the average
value of the kriging variance σ ∗2(x) when x belongs to [0,L]. Accordingly, the local
variance reduction factor between Z̃(x) and Z̃(v) is

fx = σ ∗2(v)

1
L

∫ L

0 σ ∗2(x) dx
= 2

L

L + e−L − 1 − e2x1−L[cosh(L) − 1]
L − e2x1−L sinh(L)

, (3)

while the global variance reduction factor (between Z(x) and Z(v)) is

f = 1

L2

∫ L

0

∫ L

0
ρ(x,x′) dxdx′ = 2

L2

(
L + e−L − 1

)
. (4)

Figure 1 plots the ratio between both variance reduction factors as a function of
the block length L, for several values of x1. One observes that this ratio depends on
the location of the conditioning datum and is always less than one: the local change-
of-support correction is stronger than the global one. The ratio between the local and
global variance reduction factors is close to one if

• the block is very large (L → ∞): in this case, the variance reduction factors tend
to zero



• the block is very small (L → 0): the variance reduction factors are equal to one
(no support correction is needed)

• the datum is located “far” from the block (case x1 = −1): the conditioning infor-
mation has almost no effect on the local distributions.

On the contrary, the discrepancy between the global and local variance reduction
factors increases when the data location is close to the block, and therefore Z(x1)

is highly correlated with Z(v). This result indicates that post-processing the local
point-support distribution on the basis of the global variance reduction factor would
understate the true support correction in the vicinity of the conditioning data. In the
next section, the analysis is extended to a more general setting, corresponding to the
case of a transformed Gaussian random field.

3.2 Second Example: Transformed Gaussian Random Field

Assume the following:

(1) The random field under study {Z(x), x ∈ D} can be transformed into a standard
Gaussian field {Y(x), x ∈ D} (with zero mean and unit variance)

∀x ∈ D, Z(x) = φ(Y (x)). (5)

(2) The discrete Gaussian correction is suitable at the global scale, with r as its
change-of-support coefficient.

(3) The discrete Gaussian correction is also suitable at the local scale, with a change-
of-support coefficient rx to be determined for each x in D.

Here, one is interested in finding a condition that ensures the consistency between
the global support correction and the local one (assumptions (2) and (3)). For recov-
ery estimation, this means that the local resource estimates (tonnage, metal content,
mean grade above given cutoffs) are expected to match, on average over many blocks
of the deposit, the global resource estimates. To simplify the presentation, the demon-
stration is reported in Appendix A. In this appendix, it is established that the required
consistency condition is not met when the local change-of-support coefficient is equal
to the global one, but when it is defined by

σ ∗2(x)
(
1 − r2

x
) = 1 − r2, (6)

in which σ ∗2(x) is the simple kriging variance of Y(x).
As σ ∗2(x) is less than or equal to one, the local change-of-support coefficient rx is

less than the global coefficient r . This corroborates the comment made in the scope
of the one-dimensional Gaussian random field, according to which the local change-
of-support correction is stronger than the global one. The relationship that defines the
local change-of-support coefficient [(6)] has been found by Emery and Ortiz (2004,
p. 254) in the scope of the lognormal model, corresponding to the case when the
transformation function φ is an exponential function. Equation (6) has no solution if
σ ∗2(x) < 1 − r2. This difficulty stems from the fact that one has post-processed the
local point-support distribution at a non-random location x inside block v. As men-
tioned earlier, to avoid such a situation, the analysis must be performed on the local



point-support distribution at a random location within the block, which is considered
in the next section.

4 The Discrete Gaussian Model for Local Estimation

4.1 Overview of the Model

Let us consider the original field with randomized locations {Z(x), x ∈ D}, the
regularized field {Z(v), v ∈ D}, and their Gaussian transforms {Y(x), x ∈ D} and
{Yv, v ∈ D}.
1. At the global scale (discrete Gaussian correction), one assumes that any pair

{Y(x), Yv} with x ∈ v has a standard bi-Gaussian distribution with the same
correlation coefficient r for every block (change-of-support coefficient). In gen-
eral, this is a mild hypothesis and the support correction is suitable for many
types of deposits (Chilès and Delfiner 1999, p. 447; Demange et al. 1987;
Emery and Soto-Torres 2005).

2. At the local scale, one assumes that the transformed random fields {Y(x), x ∈ D}
and {Yv, v ∈ D} have joint multivariate Gaussian distributions. The application of
the local model is therefore restricted to deposits for which the multi-Gaussian
assumption is suited to the Gaussian transform of the grade data.

Because of the latter assumption, the conditional distributions of Y(x) and Yv

(with x ∈ v) are Gaussian, with their means equal to their simple kriging estimates
y∗(x) and y∗

v from the Gaussian data and variances equal to the corresponding kriging
variances σ ∗2(x) and σ ∗2

v . Therefore, conditionally to these data

{
Ỹ (x) = y∗(x) + σ ∗(x)U(x),

Ỹv = y∗
v + σ ∗

v Uv,
(7)

where U(x) and Uv are standard Gaussian variables that are independent of the data.
The kriging estimates and kriging variances at point and block supports are linked by
the following relations (Emery and Ortiz 2004, p. 254)

{
y∗(x) = ry∗

v ,

1 − σ ∗2(x) = r2
(
1 − σ ∗2

v

)
.

(8)

In particular, by accounting for the second identity and the fact that r is less than 1,
it is seen that the block-support kriging variance is less than the point-support one

∀x ∈ v, σ ∗2
v ≤ σ ∗2(x). (9)

4.2 Determination of the Local Change-of-Support Correction

For x ∈ v, the random variables Y(x) and Yv have a standard bi-Gaussian distribution
with correlation coefficient r . Therefore,

∀x ∈ v, Y (x) = rYv +
√

1 − r2W(x), (10)



where W(x) is a standard Gaussian variable independent of Yv . This variable is also
uncorrelated with (hence, due to the multi-Gaussian assumption, independent of) the
point-support random field {Y(x), x ∈ D}

∀x ∈ v, ∀x′ ∈ D, cov
(√

1 − r2W(x), Y (x′)
)

= cov
(
Y(x) − rYv,Y (x′)

)
= cov

(
Y(x), Y (x′)

) − rcov
(
Yv,Y (x′)

)
= 0. (11)

The last equality stems from the relationship between the simple and cross-
covariances of the Gaussian fields at point and block supports (Rivoirard 1994). In
particular, W(x) is independent of the point-support Gaussian data, of the kriging
estimator Y ∗

v (a weighted average of these data) and of the kriging error σ ∗
v Uv =

Yv − Y ∗
v .

At the local scale (conditionally to the data), (10) becomes

∀x ∈ v, y∗(x) + σ ∗(x)U(x) = r
(
y∗
v + σ ∗

v Uv

) +
√

1 − r2W(x), (12)

and the correlation coefficient between U(x) and Uv is

rx = rσ ∗
v

σ ∗(x)
. (13)

In summary, the following statements hold

• The conditioned random fields {Z̃(x),x ∈ D} and {Z̃(v), v ∈ D} can be trans-
formed into the standard Gaussian random fields {U(x),x ∈ D} and {Uv, v ∈ D}
[(7)].

• For x ∈ v, the pair {U(x),Uv} is bi-Gaussian with correlation coefficient rx.

These points are the basis assumptions of the global discrete Gaussian correction
(Rivoirard 1994, p. 81–82). This correction remains valid for the local distributions,
except that here the change-of-support coefficient is equal to rx instead of r . Since
σ ∗(x) ≥ σ ∗

v [(9)], the local coefficient is smaller than the global one

rx ≤ r. (14)

Such an inequality means that the reduction of variance is more pronounced in
the local framework than in the global framework. One consequence is that the ap-
proach consisting in post-processing the local point-support distributions using the
parameters of the global model is risky, as it makes the block grade distributions
appear more selective than they really are. The assumed volume-variance correction
is not as strong as it should be and produces biases in the assessment of recover-
able resources. Although it has been established in the scope of the discrete Gaussian
model, this result is actually very general (Appendix B). The local change-of-support
coefficient found in (13) is consistent with that defined in (6) for the multi-Gaussian
model, because of the identities given in (8). This coefficient can also be expressed
in a simple manner as a function of the block-kriging variance of the Gaussian data,
see (31) in Appendix C.



5 Proposed Methodology for Local Change of Support

5.1 General Presentation

The results obtained in the scope of the discrete Gaussian model are used to define a
methodology for post-processing local point-support distributions in a more general
setting. These distributions can have been estimated via any geostatistical method,
for instance indicator kriging or its variants (median indicator kriging, probability
kriging, or indicator cokriging). The proposed methodology consists of the following
steps:

1. Transform the original Z-data into Gaussian data (Y ) and perform a block kriging
of the Gaussian data. From the block-kriging variance, derive the local change-of-
support coefficient for each block [(31)].

2. For each block, determine the local distribution of the original Z-variable at a
point uniformly located within the block. At this step, a non-parametric method
(indicator kriging) can be used.

3. Post-process the local point-support distributions by applying a discrete Gaussian
correction with the local change-of-support coefficients calculated at step 1. This
step requires defining for each block a function that transforms the local point-
support distribution into the standard Gaussian distribution. Expansions into Her-
mite polynomials can be used to determine the local block-support distribution
(Rivoirard 1994).

The discrete Gaussian correction is preferred to other change-of-support models
that directly work with the original random field (Z), such as the affine correction,
as the latter are impractical due to the complicated expression of the local variance
reduction factor (Appendix D). Instead, with the recourse to Gaussian transforms, the
local change-of-support coefficient is expressed in a straightforward manner from a
block-kriging variance [(31)]. One drawback is that the methodology is not applica-
ble to variables with a strong zero effect (i.e., an important proportion of zero values),
as the Gaussian transform needed in step 1 is not defined unequivocally (Chilès and
Delfiner 1999, p. 406). For the first two steps, there is no need to randomize the data
locations in the blocks (at step 2, the random position only concerns the location
being estimated), hence one can avoid the loss of information caused by such a ran-
domization. The above methodology aims at avoiding the biases in the estimation of
recovery functions that occur when using the global change-of-support coefficient for
post-processing the local point-support distributions. Its performance is ensured only
when the grade distribution is satisfactorily described by either a multi-Gaussian or a
discrete Gaussian model (cases examined in the previous sections).

5.2 Application to Simulated Data

An exercise is now made to assess the robustness of the proposed methodology to
departures from the multi-Gaussian assumptions. We will examine two random fields
defined in R with the same univariate gamma distribution and the same exponential
covariance function. The first one is a diffusion-type gamma random field (Math-
eron 1985, p. 156) and the second one is a mosaic-type random field defined by a



Poisson tessellation with independent gamma valuations (Chilès and Delfiner 1999,
p. 541). In both cases, we assume that there is a single conditioning datum located
at x = 0, with a value equal to the median of the gamma univariate distribution, and
that the block v of interest is the union of 50 points regularly spaced in the interval
[−0.5;0.5]. The exercise consists of the following steps.

5.2.1 Calculation of the Global Change-of-Support Coefficient

Let {Z(x), x ∈ R} denote the gamma random field (diffusion-type or mosaic-type)
and {Y(x), x ∈ R} its Gaussian transform. The calculation of the global change-of-
support coefficient relies on the variance of the block-support variable Z(v) (cal-
culated by regularizing the point-support covariance function) and on the expan-
sion of the point-support transformation function φ [(5)] into Hermite polynomials
(Rivoirard 1994).

5.2.2 Calculation of the Local Change-of-Support Coefficient

The calculation of the local change-of-support coefficient requires performing a
block-kriging of the Gaussian transform from a datum located at x = 0 [(31)]. In
the diffusion model, the covariance function of the Gaussian transform is determined
from that of the gamma random field (an exponential model) by using the expansion
of the inverse transformation function φ−1 into Laguerre polynomials (Chilès and
Delfiner 1999, p. 412). In contrast, in the mosaic model, the covariance function of
the Gaussian transform is proportional to that of the gamma random field (Rivoirard
1994).

5.2.3 Conditional Simulation of the Gamma Random Fields

The next step is the simulation of the diffusion-type and mosaic-type gamma random
fields at the 50 locations in [−0.5;0.5] that compose the block of interest, condition-
ally to the datum located at x = 0. The simulation is performed sequentially by taking
advantage of the Markov property of both gamma random fields. By drawing a large
number of realizations for each random field, one can determine the true conditional
point-support distribution at a location uniformly distributed over the block, as well
as the true conditional block-support distribution.

5.2.4 Post-Processing of the True Point-Support Distribution and Comparison with
the True Block-Support Distribution

The conditional point-support distributions determined in the previous step are post-
processed into block-support distributions, by applying the discrete Gaussian correc-
tion with the change-of-support coefficients calculated in the first steps. The post-
processed distributions are compared to the true block-support distributions. A sim-
ple criterion for comparison consists of examining the metal-tonnage curves, which
characterize the distributions and allow comparing their selectivity (Matheron 1984;
Rivoirard 1994).



Fig. 2 True and estimated
block-support metal-tonnage
curves for the one-dimensional
diffusion-type and mosaic-type
gamma random fields
conditioned to a single datum,
for three values of the shape
parameter of the point-support
univariate distribution

The results are shown in Fig. 2 for three values of the shape parameter (5, 1 and
0.5) of the point-support gamma distribution and for a point-support exponential co-
variance with a practical range of 3. Similar results (not shown here) have been ob-
tained when changing the value of the conditioning datum or the range of the point-
support covariance function. The proposed approach provides an accurate estima-
tion of the true block-support distribution for the diffusion-type random field, except
maybe when the shape parameter of the point-support distribution is less than 1 (cor-
responding to a highly skewed distribution). It still performs much better than the
approach based on the global change-of-support coefficient. In contrast, the estima-
tion based on the local change-of-support coefficient defined by (31) proves to be
biased in the case of the mosaic-type random field, and the proposed approach is
therefore not adequate for such random fields. In all the cases, the use of the global



Fig. 2 (Continued)

change-of-support coefficient leads to an overestimation of the true block-support
metal-tonnage curves or an overestimation of the actual block-support selectivity, es-
pecially for the diffusion-type model. This indicates that, as in the multi-Gaussian
and discrete Gaussian models, the true local variance reduction factor is less than
the global one (Appendix B). In the mosaic-type model, this local factor remains un-
known to a great extent, so that non-parametric (distribution-free) methods such as
indicator kriging are inadvisable when a change of support has to be considered.

6 Conclusions

Although the volume-variance relationship on global (prior) distributions is well un-
derstood and has originated many geostatistical change-of-support models, it turns



Fig. 2 (Continued)

out to be more complex when dealing with local distributions, that is distributions
conditioned to a set of neighboring data. The multi-Gaussian and discrete Gaussian
models offer a simple framework to analyze the change of support at the local scale.
The analysis proves that the variance reduction factor is block-dependent and is less
than the global one. In the presence of conditioning data, the support correction ap-
plied to the point-support distributions is stronger than that used in the global frame-
work. This observation is crucial for mineral resource estimation, as the approach
based on the global variance reduction factor systematically understates the impor-
tance of the change of support and makes selective mining appear more economically
attractive than it really is.

A methodology has been devised to obtain accurate estimates of the recoverable
resources, based on the local volume-variance relationship observed in the scope of



the discrete Gaussian model. It can be used to post-process the local point-support
distributions obtained via any non-parametric (distribution-free) method, but its ef-
ficiency is guaranteed only when the discrete Gaussian model is suited to the data
under study. The application to simulated random fields with skewed (gamma) uni-
variate distributions indicates that the proposed methodology is robust to departures
from the multivariate Gaussian assumptions when the point-support grades can be
represented by a diffusion-type random field.
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Appendix A

In this appendix, we assume that the original random field {Z(x), x ∈ D} can be
transformed into a standard Gaussian field {Y(x), x ∈ D} [(5)] and that the discrete
Gaussian correction is suitable at the global and local scales. Let us examine the im-
plications of these assumptions, in order to define a relationship between the change-
of-support coefficients at both scales.

7.1 Global Framework

The distribution of the regularized variable Z(v) is the same as that of φv(Yv), in
which Yv is a standard Gaussian random variable and φv is defined by (Chilès and
Delfiner 1999, p. 432)

∀y ∈ R, φv(y) =
∫ +∞

−∞
φ
(
ry +

√
1 − r2t

)
g(t) dt, (15)

in which g(.) represents the standard Gaussian probability density function and r the
global change-of-support coefficient.

7.2 Local Framework

Since the random field {Y(x), x ∈ D} has multivariate Gaussian distributions, the
conditional random variable Ỹ (x) is Gaussian, with mean equal to its simple kriging
estimate y∗(x) from the Y -data and variance equal to the associated simple kriging
variance σ ∗2(x). One can therefore define a local transformation function for the
original conditional random field

∀x ∈ D, Z̃(x) = φ
(
Ỹ (x)

) = φ̃x
(
U(x)

)
(16)

with

∀u ∈ R, φ̃x(u) = φ
(
y∗(x) + σ ∗(x)u

)
. (17)

{U(x), x ∈ D} is a standard Gaussian random field independent of the data, corre-
sponding to the standardized kriging error. Let us now post-process the distribution



of Z̃(x) by applying a discrete Gaussian correction with a change-of-support coef-
ficient rx, so as to obtain an estimated distribution for Z̃(v). This distribution is the
same as that of φ̃v(Uv), where Uv is a standard Gaussian random variable indepen-
dent of the data, and φ̃v is defined by [(15) and (17)]

∀u ∈ R, φ̃v(u) =
∫ +∞

−∞
φ̃x

(
rxu +

√
1 − r2

x t
)
g(t) dt

=
∫ +∞

−∞
φ
(
y∗(x) + rxσ

∗(x)u + σ ∗(x)

√
1 − r2

x t
)
g(t) dt. (18)

7.3 Consistency between Global and Local Frameworks

The local model is consistent with the global correction (15) if the distribution of
Z(v) is the same as that of Z̃(v) when restoring the randomness to the conditioning
data. This is done by replacing the kriging estimate y∗(x) in (18) by the corresponding
estimator Y ∗(x) (a Gaussian variable with mean zero and variance 1 – σ ∗2(x)) and
by imposing the condition

φ̃v(Uv) ≡ φv(Yv) (equality of the distributions). (19)

There is no reason why (19) should be fulfilled when rx is equal to r . Instead, let
us assume that rx is defined by (6). By using (18), one obtains

φ̃v(Uv) =
∫ +∞

−∞
φ
(
Y ∗(x) + rxσ

∗(x)Uv +
√

1 − r2t
)
g(t) dt

=
∫ +∞

−∞
φ
(
rY ′ +

√
1 − r2t

)
g(t) dt, (20)

with Y ′ = (Y ∗(x) + rxσ
∗(x)Uv)/r . Because Uv does not depend on Y ∗(x) (as it is

independent of the Y -data), it is seen that Y ′ is a standard Gaussian random variable
and has the same distribution as Yv . By comparing with (15), one concludes that (19)
holds and that the global and local viewpoints are consistent.

Appendix B

Let x be a random point uniformly distributed in block v. Denote by

• m and m̃ the means of Z(x) and Z̃(x) (these are the same as that of Z(v) and Z̃(v))

• μ2(x), μ2(v), μ̃2(x) and μ̃2(v) the second raw (non-central) moments of Z(x),
Z(v), Z̃(x), and Z̃(v), respectively

• f the global variance reduction factor (between Z(x) and Z(v)), such that

μ2(v) = f μ2(x) + (1 − f )m2. (21)

In general, m̃, μ̃2(x), and μ̃2(v) depend on the conditioning data values, and they
become random variables when these data values are randomized. For the local and



global frameworks to be consistent, the local raw moments are expected to coincide
with the corresponding global raw moments

E
(
Zk

) = E
{
E

[
Zk|data

]}
. (22)

In particular, for k = 1 and k = 2
⎧⎪⎨
⎪⎩

E(m̃) = m,

E
(
μ̃2(x)

) = μ2(x),

E
(
μ̃2(v)

) = μ2(v).

(23)

Suppose now that the local variance reduction factor is chosen equal to the global
factor f . The corrected block-support second moment is therefore [(21)]

μ̃∗
2(v) = f μ̃2(x) + (1 − f )m̃2. (24)

By taking expected values, it becomes [(21) and (23)]

E
(
μ̃∗

2(v)
) = f μ2(x) + (1 − f )

(
m2 + var(m̃)

) ≥ μ2(v) = E
(
μ̃2(v)

)
. (25)

The corrected second moment is over-estimated. To avoid biases, the local vari-
ance reduction factor must be less than the global one.

Appendix C

This appendix focuses on the discrete Gaussian model and aims at establishing rela-
tionships between the kriging variance σ ∗2(x) of the point-support Gaussian variable
Y(x), in which x is a random location uniformly distributed in block v, the kriging
variance σ ∗2

v of the block-Gaussian variable Yv , and the kriging variance σ ∗2(v) of
the regularized Gaussian variable defined by

Y(v) = 1

|v|
∫

v

Y (x) dx, (26)

where |v| is the measure of v, and {Y(x), x ∈ D} is the Gaussian transform of the
original point-support random field {Z(x), x ∈ D} with non-random locations.

Let R be the covariance matrix of the Gaussian data with randomized locations,
and Cx the covariance vector between these data and Y(x). The simple kriging vari-
ance of Y(x) is

σ ∗2(x) = 1 − CT
x R−1Cx. (27)

Because x is uniformly distributed in v, Cx also coincides with the covariance
vector between the Gaussian data with randomized locations and the regularized
Gaussian variable Y(v). Therefore, the simple kriging variance of this regularized
variable is

σ ∗2(v) = var
(
Y(v)

) − CT
x R−1Cx. (28)



Now, the variance of Y(v) is the same as the covariance between Y(x) and Y(x′),
where x and x′ are random locations uniformly distributed in v, which in turn is equal
to the square of the change-of-support coefficient (Emery and Ortiz 2005; Emery
2007)

∀x, x′ ∈ v,x �= x′, r2 = cov
(
Y(x), Y (x′)

) = var
(
Y(v)

)
. (29)

From (8) and (27) to (29), it follows

σ ∗2(v) = σ ∗2(x) − 1 + r2 = r2σ ∗2
v , (30)

so that the local change-of-support coefficient [(13)] can be written as

∀x ∈ v, rx =
√

σ ∗2(v)

σ ∗2(v) + 1 − var(Y (v))
. (31)

Appendix D

Still in the scope of the discrete Gaussian model, it is of interest to express the
local variance reduction factor for the original random field (Z), when passing
from the point support to the block support. Let us expand the point- and block-
support transformation functions (5) and (15) into the normalized Hermite polyno-
mials {Hp,p ∈ N} (Rivoirard 1994)

{
Z(x) = φ(Y (x)) = ∑+∞

p=0 φpHp(Y (x)),

Z(v) = φv(Yv) = ∑+∞
p=0 φprpHp(Yv),

(32)

where r is the global change-of-support coefficient. Accordingly, the original random
fields conditioned to the data can be written as follows [(7)]

{
Z̃(x) = ∑+∞

p=0 φpHp

(
y∗(x) + σ ∗(x)U(x)

)
,

Z̃(v) = ∑+∞
p=0 φprpHp

(
y∗
v + σ ∗

v Uv

)
.

(33)

To express the variances of these conditional random fields, the following transla-
tion formula is used (Emery 2005, p. 298)

Hp(a + by) =
p∑

n=0

√
Cn

p

(
1 − b2)(p−n)/2

bnHp−n

(
a√

1 − b2

)
Hn(y). (34)

Using (8) and (33)

{
Z̃(x) = ∑+∞

p=0 φ̃p(1)Hp(U(x)),

Z̃(v) = ∑+∞
p=0 φ̃p(r)Hp(Uv),

(35)



with ∀p ∈ N and ∀t ∈ [0,1]

φ̃p(t) =
+∞∑
n=p

φn

√
C

p
n

(
1−σ ∗2(x)

)(n−p)/2(
σ ∗2(x)+ t2 −1

)p/2
Hn−p

(
y∗(x)√

1 − σ ∗2(x)

)
.

(36)
Because the Hermite polynomials are orthonormal for the standard Gaussian dis-

tribution, the local variances of the original random fields can be expressed as

var
(
Z̃(x)

) =
+∞∑
p=1

φ̃2
p(1) and var

(
Z̃(v)

) =
+∞∑
p=1

φ̃2
p(r). (37)

There is no reason why the ratio between both local variances should be equal to
the global variance reduction factor, as it is often assumed in practical applications
(Journel and Kyriakidis 2004, p. 40)

var(Z̃(v))

var(Z̃(x))
�= var(Z(v))

var(Z(x))
. (38)

In general, the local variance reduction factor depends on the configuration of data
locations neighboring the location under consideration (through the kriging variance
term σ ∗2(x)) and also on the grade values (through the kriging estimate y∗(x)). Its
calculation is quite tedious, so that a local change-of-support model based on this
factor, such as the affine correction, turns out to be impractical.
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