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ABSTRACT

This article applies two novel techniques to forecast the value of US manufac-
turing shipments over the period 1956–2000: wavelets and support vector 
machines (SVM). Wavelets have become increasingly popular in the fi elds of 
economics and fi nance in recent years, whereas SVM has emerged as a more 
user-friendly alternative to artifi cial neural networks. These two methodologies 
are compared with two well-known time series techniques: multiplicative sea-
sonal autoregressive integrated moving average (ARIMA) and unobserved 
components (UC). Based on forecasting accuracy and encompassing tests, and 
forecasting combination, we conclude that UC and ARIMA generally outper-
form wavelets and SVM. However, in some cases the latter provide valuable 
forecasting information that it is not contained in the former. 
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INTRODUCTION

Over the past 50 years, an increasing number of statistical methods has been developed to predict 
the evolution of various macroeconomic and fi nancial time series (e.g., Roche, 1995; Diebold, 1998; 
Clements and Hendry, 1998; Leung et al., 2000; Morana, 2001; Dooley and Lenihan, 2005; Lanza 
et al., 2005; Mills, 1999; Tsay, 2005; Rapach et al., 2005). Two recently developed mathematical 
techniques, which have started to gain ground in the economic and fi nancial fi elds, are wavelets and 
support vector machines (SVM).

Wavelets, a refi nement of Fourier analysis which dates back to the late 1980s, were originally 
utilized in signal and image processing. A particular feature of wavelet analysis is that it makes it 
possible to decompose a time series into its high- and low-frequency components, which are local-
ized in time. Recent applications of wavelet methods in economics and fi nance have dealt with 
the permanent income hypothesis, the estimation of systematic risk, and the interaction between 
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emerging and developed stock markets, among other themes (e.g., Ramsey and Lampart, 1998; 
Ramsey, 1999, 2002; Lin and Stevenson, 2001; Gençay et al., 2002, 2003, 2005; Hong and Kao, 
2004; Whitcher, 2004; Connor and Rossiter, 2005; Fernandez, 2005). However, the use of wavelets 
for forecasting purposes is almost non-existent in the literature. Indeed, one of the fi rst attempts in 
this area was Arino’s (1995) article on forecasting of Spanish car sales. More recently, Conejo 
et al. (2005) applied wavelets and other techniques to forecast electricity prices.

SVM represent a kernel-based learning algorithm, which has arisen as a more user-friendly tool 
than artifi cial neural networks (e.g., Burges, 1998; Cristianini and Shawe-Taylor, 2000). Tradition-
ally, SVM have been applied to pattern recognition problems (e.g., text categorization, face recogni-
tion), but over the years their use has extended to nonlinear regression models. A key property of 
SVM is that training SVM boils down to a linearly constrained quadratic programming problem, 
whose solution is unique and globally optimal. Applications of SVM to forecasting are fairly recent 
and have dealt primarily with fi nancial and energy issues (e.g., Tay and Kao, 2001, Kim, 2003; Dong 
et al., 2005; Huang et al., 2005; Lu and Wang, 2005).

Our study focuses on forecasting the value of shipments of the US manufacturing industry for the 
period January 1958 to December 2000. Some of the categories analyzed include Durable goods, 
Nondurable goods, Automotive equipment, Consumer staples, Business supplies, and Construction 
supplies. Providing industry participants with reliable forecasting techniques is, in our view, central 
to the decision-making process. In particular, an accurate prediction of the future value of shipments 
can help managers to assess the profi tability and growth potential of an ongoing business.

The contribution of our work is twofold. Firstly, we utilize two novel nonlinear forecasting tech-
niques, which are based on wavelet methods and support vector machines, along with two well-
known model specifi cations: seasonal multiplicative autoregressive integrated moving average 
(ARIMA) and unobserved components. Secondly, we perform encompassing tests for various time 
horizons. As Fang (2003) illustrates for the case of UK consumption expenditure, forecast encom-
passing tests are a useful tool to determine whether a composite forecast can be superior to indi-
vidual forecasts. In addition, forecast encompassing tests are potentially useful in model specifi cation, 
as forecast combination implicitly assumes the possibility of model misspecifi cation. Our computa-
tions, carried out for different time series, show that the time horizon is a key element to decide 
which model or combination of models can be more suitable in terms of forecast accuracy.

This article is organized as follows. The next section presents the four forecasting techniques 
utilized in this article. The third section presents forecast accuracy and encompassing tests. The 
fourth section describes the data, while the fi fth section presents our estimation results. The sixth 
section presents our main fi ndings.

SOME NONLINEAR FORECASTING MODELS

Seasonal multiplicative ARIMA
We consider the parsimonious multiplicative seasonal ARIMA model utilized by Box et al. (1994, 
Ch. 9) in their classical example of airline data. Specifi cally, let us consider a non-stationary yt time 
series and a model which links its behavior one year apart:

 ∆12yt = (1 − ΘL12)et

A similar model is used to link ets one month apart:



 

 ∆et = (1 − qL)ut

The combination of the two models gives rise to a seasonal multiplicative model:

 ∆∆12yt = (1 − qL)(1 − ΘL12)ut (1)

of order (0, 1, 1) × (0, 1, 1)12.
The parameters q and Θ are estimated by maximum likelihood.

Wavelets
Wavelets allow for decomposing a signal into fi ne and coarse resolution components (see, 
for instance, Bruce and Gao, 1996; Percival and Walden, 2000). Wavelets can be classifi ed into 
father and mother wavelets. Father wavelets (f) represent the smooth and low-frequency parts 
of a signal, whereas mother wavelets (y) characterize its detailed and high-frequency parts. 
The most widely used wavelets are the orthogonal ones (i.e., haar, daublets, symmelets, and 
coifl ets). In particular, the orthogonal wavelet series approximation to a continuous signal f(t) is 
given by

 f t s t d t d t dJ k J k
k

J k J k
k

J k J k
k

k( ) ≈ ( ) + ( ) + ( ) + +∑ ∑ ∑ − −, , , , , , ,φ ψ ψ ψ1 1 1… 11,k
k

t( )∑  (2)

where J is the number of multi-resolution components or scales, and k ranges from 1 to the number 
of coeffi cients in the corresponding component. The coeffi cients sJ,k, dJ,k,  .  .  .  , d1,k are the wavelet 
transform coeffi cients, whereas the functions fj,k(t) and yj,k(t) are the approximating wavelet 
functions.

Applications of wavelet analysis usually utilize a discrete wavelet transform (DWT). The DWT 
calculates the coeffi cients of the approximation in (2) for a discrete signal of fi nal extent, f1, f2,  .  .  .  , 
fn. That is, it maps the vector f = (f1, f2,  .  .  .  , fn)′ to a vector w of n wavelet coeffi cients, which con-
tains sJ,k and dj,k, j = 1, 2,  .  .  .  , J. The sJ,ks and dj,ks are called the smooth and detail coeffi cients, 
respectively. Intuitively, the smooth coeffi cients represent the underlying smooth behavior of the 
data at the coarse scale 2J, whereas the detail coeffi cients provide the coarse-scale deviations from 
it. When the length of the data n is divisible by 2J, there are n/2 coeffi cients d1,k at the fi nest scale 
21 = 2. At the next fi nest scale, there are n/22 coeffi cients d2,k. Similarly, at the coarsest scale, there 
are n/2J coeffi cients each for dJ,k and sJ,k.

Expression (2) can be rewritten as

 f(t) ≈ SJ(t) + DJ(t) + DJ−1(t) +  .  .  .  + D1(t) (3)

where S t s tJ J k J k
k

( ) = ( )∑ , ,φ  and D t d tJ j k J k
k

( ) = ( )∑ , ,ψ  are denominated the smooth and detail signals, 

respectively.
The terms in expression (3) represent a multi-resolution decomposition (MRD) of the signal into 

the orthogonal signal components SJ(t), DJ(t), DJ−1(t),  .  .  .  , D1(t) at different scales. For instance, 
when analyzing monthly data, wavelet scales are such that scale 1 is associated with 2- to 4-month 
dynamics, scale 2 with 4- to 8-month dynamics, scale 3 with 8- to 16-month dynamics, scale 4 with 
16- to 32-month dynamics, and so on.



 

In order to decompose the time series of interest into its seasonal and trend components, we utilize 
an MRD with seven scales and choose the least asymmetric fi lter (symmlet) ‘s8’. The seasonal 
component is reconstructed from scales 1–2, whereas the trend component is obtained from scales 
3–7. For illustrative purposes, Figure 1 depicts the seasonal component and the seasonally adjusted 
series for total manufacturing obtained from wavelets and the STL (seasonal-trend decomposition 
based on loess) procedure. The latter consists of Cleveland et al.’s (1990) trend decomposition 
procedure, which is based on a locally weighted regression smoother (loess). As we see, the wavelet-
based decomposition yields a smoother estimate of the seasonally adjusted series than STL. As a 
result, a greater proportion of the high-frequency component of the time series is passed on to the 
seasonal component, relative to STL.

Unobserved components (UC)
The basic univariate UC model is given by

 yt = mt + gt + xt (4)
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Figure 1. Seasonal decomposition of total manufacturing value of shipments. Notes: (1) STL: Cleveland 
et al.’s (1990) trend decomposition procedure based on loess. (2) The wavelet fi lter utilized is ‘s8’



 

where mt is the unobserved trend component, gt is the unobserved seasonal component, and xt is the 
unobserved irregular component (see Harvey, 1993, Ch. 5, or Zivot and Wang, 2003, Ch. 14, for 
details).

The non-stationary trend component mt takes the form of a local linear trend:
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where ht ∼ N(0, s 2
h) and et ∼ N(0, s 2

e) are both white-noise processes, m1 ∼ N(0, w) and b1 ∼ 
N(0, w), with w large. The stochastic seasonal component is given by
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where L is the lag operator, s is the number of seasons, and vt ∼ N(0, s 2
v) is a white-noise process. 

If s 2
e = 0, mt follows a random-walk process with drift b1. If s 2

h = s 2
e = 0, mt is a deterministic trend. 

Equations (4) and (5) are handled by expressing them in a state-space representation and estimating 
them by the Kalman fi lter algorithm.

Support vector machines
SVM is a relatively recent technique within classifi cation methods (e.g., Venables and Ripley, 2002, 
Ch. 12; Chang and Lin, 2005). It consists of mapping a vector of attributes (i.e., regressors), x, into 
a higher-dimensional space by a function f, and fi nding a linear maximum-margin hyperplane.1 That 
is, we seek a classifying hyperplane of the form f(x) = w′f(x) + b = 0. The data points that are located 
exactly the margin distance away from the hyperplane are denominated the support vectors.2

Specifi cally, the e-support vector regression (e-SVR) solves the following quadratic programming 
problem:

 min
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subject to

 yi − (w′f(xi) + b) ≤ e + xi
− ∀i

 (w′f(xi) + b) − yi ≤ e + xi
+

 xi
− ≥ 0, xi

+ ≥ 0

where C > 0 is a penalty parameter and b is a constant term.
The solution to this minimization problem is of the form
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m
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1 A maximum-margin hyperplane separates two clouds of points, and it is at equal distance from the two. The smallest 
distance from the hyperplane is called the margin of separation.
2 The distance of a point xi to the hyperplane is given by w′f(x) + b/�w�2. The margin distance is given by 2/�w�.



 

where li and l i* are the Lagrange multipliers associated with the constraints yi − (w′f(xi) + b) ≤ e 
+ xi

− and (w′f(xi) + b) − yi ≤ e + xi
+, respectively. The function K(xi, xj) = f(xi)′f(xj) represents a 

kernel, which is the inner product of the two vectors xi and xj in the space f(xi) and f(xj). Well-
known kernel functions are K(xi, xj) = xi′xj (linear), K(xi, xj) = (g xi′xj + r)d, g  > 0 (polynomial), K(xi, 
xj) = exp(−g  � xi − xj �2), g  > 0 (radial basis function), and K(xi, xj) = tanh(g xi′xj + r) (sigmoid). The 
radial kernel is a popular choice in the SVM literature. Therefore our computations are based on 
such a kernel.

FORECASTING ACCURACY EVALUATION

We utilize as forecast evaluation statistics the root mean square error (RMSE) and the mean absolute 
error (MAE):

 RMSE MAEh
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where T is the sample size, h is the forecast step length and n is the window length.
In order to decide which model is best, we resort to the Diebold–Mariano (1995) test:

 DM
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, dt = L(u1
t+ht) − L(u2

t+ht), L(.) is a loss function, and lrv̂(d̄) is a consistent estimate 

of the long-run asymptotic variance of d̄. In order to compute the latter, Diebold and Mariano rec-
ommend using the Newey–West estimator with a rectangular kernel function and a lag truncation 
parameter equal to h − 1. For the RMSE, the loss function is given by L = (ûi

t+ht)2, whereas for the 
MAE it is given by L = ûi

t+ht.
Under the null hypothesis of equal predictive accuracy, E(dt) = 0. For a left-sided test, under the 

alternative hypothesis model 1 is more accurate than model 2 (i.e., E(dt) < 0). Conversely, for a 
right-sided test, E(dt) > 0 and model 2 is preferable to model 1.

In order to accommodate heavy-tailed forecasting errors, Harvey et al. (1997) suggest utilizing a 
modifi ed version of the DM statistic:

 HLN DM= + − + −( )( )T h h h T

T

*
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 (10)

which is distributed as t(T* − 1), T* ≡ T − n − h + 1.
In addition to the DM statistic, we resort to two forecasting evaluation techniques utilized by Fang 

(2003): forecasting combination and encompassing. The former consists of combining each pair of 
forecasts (both equally weighted) and computing the RMSE (and/or the MAE) for the combined 
forecasts. If this is at least 5% less than those of the two corresponding individual forecasts, the 
combination is preferable.



 

For forecasting encompassing, one of the specifi cations utilized by Fang is the following:

 ∆hyt+h = b0 + b1(ŷt,t
(1) 

+h − yt) + b2(ŷt,t
(2) 

+h − yt) + ut+h (11)

where ŷt,t+h is the forecast of yt+h based on information available at time t, and ∆hyt+h = yt+h − yt. (The 
difference operator is used due to non-stationarity of the time series).3 When b1 = 0 and b2 ≠ 0, the 
second model forecast encompasses the fi rst one. Conversely, if b1 ≠ 0 and b2 = 0, the fi rst model 
forecast encompasses the second one. In the case that both forecasts contain independent information 
for h-period-ahead forecasting of yt, both b1 and b2 should be different from zero. It is worth noting 
that no constraint is imposed on the sum (b1 + b2).

Equation (11) can be estimated in principle by ordinary least squares, utilizing standard errors 
robust to the presence of both heteroskedasticity and serial correlation. Nevertheless, if the two 
forecast series are highly collinear, Fang advises to resort to ridge regression.

DATA

Our data are US manufacturers’ shipments obtained from the US Census Bureau website, www.
census.gov. The sectors under consideration are Total manufacturing (MTM), Durable goods total 
(MDM), Nondurable goods total (MNM), Automotive equipment (AUE), Consumer staples (COS), 
Business supplies (BUS), Construction supplies (CMS), Total capital goods (TCG), Household 
durable goods (HDG), and Health care products (HCP). The sample period goes from January 1958 
to December 2000. Some descriptive statistics of the seasonally unadjusted series are reported in 
Table I. Augmented Dickey–Fuller (ADF) and Phillips–Perron unit-root tests show that, at a sig-
nifi cance level between 5% and 10%, we cannot reject the presence of a stochastic trend in any of 
the (seasonally adjusted) time series under consideration.

Table I. Descriptive statistics of US manufacturers’ shipments: 1958–2000

MTM MDM MNM AUE COS BUS CMS TCG HDG HCP

Mean 286,753 151,067 135,687 11,617 62,821 21,059 18,714 44,596  9,129  6,613
Median 301,950 154,873 147,242 11,632 67,740 23,710 19,299 44,359  9,185  5,859
Q1 243,391 131,248 111,637  9,146 50,370 15,662 15,933 37,669  8,201  3,763
Q3 331,710 173,009 157,783 14,284 72,569 25,797 21,401 51,487 10,125  9,531
max 416,264 240,960 175,303 19,138 85,395 30,104 26,317 80,528 12,648 15,583
min 149,654  71,435  77,660  3,498 37,687  9,838  9,856 20,244  5,115  2,035
obs     516     516     516    516    516    516    516    516    516    516

Notes:
1. Figures are seasonally unadjusted and expressed in million US dollars of December 2000.
2. The data are measured at a monthly frequency.
3. The data source is the US Census Bureau, www.census.gov.
4. The shipments categories are Total manufacturing (MTM), Durable goods total (MDM), Nondurable goods total (MNM), 
Automotive equipment (AUE), Consumer staples (COS), Business supplies (BUS), Construction supplies (CMS), Total 
capital goods (TCG), Household durable goods (HDG), and Health care products (HCP).
5. Q1 and Q3 represent the fi rst and third quartiles, respectively.

3 Given that we utilize the natural logarithm of the shipments series, ∆hyt+h = yt+h − yt represents the return on y between times 
t and t + h.



 

ESTIMATION RESULTS

The estimation results reported in this section were obtained from routines written by the author in 
S-Plus 7.0. In addition, the S+Wavelets 2.0 and S+Finmetrics 2.0 modules were utilized for imple-
menting the wavelet-based and unobserved component model spefi cations, whereas the libsvm S-
Plus library, written by David Meyer (based on C/C++ code by Chih-Chung Chang and Chih-Jen 
Lin from National Taiwan University), was utilized for implementing the SVM technique.4

For estimation purposes, the data are expressed in natural logarithms. The ARIMA and UC models 
estimated are those presented earlier. In order to compute the wavelet-based forecast, we fi t an 
ARIMA(0, 1, 1)12 to the seasonal component and an ARIMA(1, 1, 0) to the trend component, which 
are yielded by the MRD. These two functional forms seem reasonable approximations to the sea-
sonal- and trend-generating processes, respectively. The forecast series is computed as the sum of 
the seasonal and trend forecasts. For the SVM method, we use 12 lags of the time series as the vector 
of attributes. Once the separating hyperplane is determined, the fi tted model is utilized for out-of-
sample forecasting. Given that 12 lags of the dependent variable are needed for forecasting, unknown 
lagged values are replaced by one-step forecasts. For instance, for a two-step forecast (i.e., t + 2), 
we use as attributes the t − 10,  .  .  .  , t − 1 observations, which are known at time t, in addition to the 
one-step forecast for t + 1, which is obtained from the model.

The fi rst exercise we carry out consists of fi tting each model to the data series by using the three 
last years of observations for one-step-ahead forecasting (i.e., 1998–2000). Specifi cally, at the fi rst 
stage, we use the observations belonging to 1958–1997 for estimation, and we next add an extra 
observation at a time to re-estimate the models. We stop once we have utilized the whole sample 
period for estimation. Our results are summarized in Table II. We observe two patterns. First, the 
wavelet-based model outperforms the three others in terms of both RMSE and MAE. Second, SVM 
exhibits the poorest performance, with the exceptions of MDM (Durable goods total) and HDG 
(Household durable goods), for which the RMSE and MAE of SVM is similar to that of ARIMA. 
However, if we carry out the HLN test, we fi nd no strong statistical evidence in favor of any model 
at the conventional signifi cance levels.5 Indeed, only by considering a 19-percent signifi cance level, 

Table II. Assessment statistics of one-step-ahead forecast errors

MTM MDM MNM AUE COS BUS CMS TCG HDG HCP

(a) RMSE
ARIMA 0.014 0.020 0.011 0.063 0.011 0.016 0.020 0.026 0.031 0.028
UC 0.012 0.018 0.011 0.061 0.013 0.015 0.020 0.028 0.033 0.028
Wavelet 0.010 0.013 0.008 0.043 0.010 0.011 0.018 0.018 0.020 0.022
SVM 0.021 0.021 0.024 0.085 0.027 0.022 0.033 0.036 0.030 0.035

(b) MAE
ARIMA 0.012 0.017 0.009 0.052 0.009 0.012 0.016 0.022 0.024 0.022
UC 0.011 0.016 0.009 0.050 0.010 0.012 0.016 0.023 0.026 0.021
Wavelet 0.008 0.010 0.007 0.036 0.008 0.009 0.014 0.014 0.017 0.017
SVM 0.016 0.016 0.020 0.064 0.022 0.018 0.022 0.031 0.024 0.027

4 Examples on the use of the libsvm library are given in the textbook by Venables and Ripley (2002). Documentation on the 
SVM technique can be found at Chih-Jen Lin’s website, www.csie.ntu.edu.tw/~cjlin/papers/.
5 When the time series of forecast errors is relatively short, as in this case (=36), the HLN test usually fails to reveal a 
signifi cance difference between the two models (see Enders, 2004, p. 92).



 

we would be able to conclude that wavelets outperform SVM for the case of MNM (Nondurable 
goods total).

In order to have a more complete picture of the forecasting performance of the four models, we 
next consider from one-step- to 12-step-ahead forecasts. This time, forecasts are computed by using 
a rolling window of 32 years. Specifi cally, we hold the last 10 years of data for forecast evaluation 
(i.e., 1990–2000), obtaining a time series of 132 forecast errors for h = 1, 2,  .  .  .  , 12.6 In order to 
evaluate the models, in addition to the HLN test, we consider Fang’s (2003) forecasting combination 
and encompassing.

Figure 2 depicts the evolution of the RMSE of forecast errors as the time horizon increases for 
Durable and Nondurable goods, Consumer staples and Construction supplies. For Durable goods, 
wavelets outperform the three other specifi cations for h < 4, whereas SVM has the poorest forecast 
performance for all time horizons. For Nondurable goods, SVM does a better job as it outperforms 
UC for h > 6, while wavelets do worse than the three other methods for h ≥ 4. For Consumer staples, 
ARIMA gives the best forecast performance for all h > 2, and SVM outperforms wavelets for h > 
4. Similar results are obtained for Construction supplies, for which ARIMA and UC have almost 
identical performance, and both do better than SVM and wavelets. Overall, we conclude that the 
ARIMA and UC specifi cations tend to outperform the two others, while wavelets may be preferable 
to SVM in some cases.

If we conduct the HLN test for each category depicted in Figure 2, our above conclusions are, in 
general, supported. Indeed, for Consumer staples, SVM is rejected in favor of ARIMA and UC at 
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Figure 2. RMSE at different forecasting horizons

6 The 12 forecasts are computed simultaneously at each iteration.



 

the 16% and 14% signifi cance levels, respectively, at h = 6. For Construction supplies, the wavelet-
based specifi cation is rejected in favor of ARIMA and UC at the 15% signifi cance level at h = 5 and 
10, at the 12% signifi cance level at h = 6, and at the 11% signifi cance level at h = 7, 8, and 9. For 
Nondurable and Durable goods, the evidence provided by the HLN test in favor of a particular model 
is weaker. Truly, for the former, the wavelet-based model is rejected in favor of ARIMA and UC 
at the 16% signifi cance level at h = 6, whereas for the latter ARIMA is preferred to SVM at the 17% 
signifi cance level at h = 6.

As we see, the HLN test helps us to discriminate between models only in some specifi c cases. 
Therefore, forecast combination and encompassing arise as complementary tools to discriminate 
between models. Forecast combination was computed for Total manufacturing, Business supplies, 
Consumer staples, and Total Capital goods. Our results show that, in terms of RMSE, an equally 
weighted average of wavelets and ARIMA forecasts can be superior to each single forecast at h = 
3 (Total manufacturing, Business Supplies, and Consumer staples) and h = 4 (Total manufacturing, 
Consumer staples, and Total capital goods). Likewise for the combination of wavelets and UC fore-
casts at h = 3 (Business supplies), h = 4 (Total manufacturing and Consumer staples) and h = 5, 10 
(Total capital goods); and for the combination of SVM and wavelets forecasts at h = 4 (Consumer 
staples), 5 and 6 (Total manufacturing and Consumer staples).

Forecast-encompassing testing, based on equation (11), was carried out for six shipments 
categories: Total manufacturing, Durable goods, Nondurable goods, Business supplies, Total capital 
goods, and Household durable goods.7 At h = 6, ARIMA encompasses UC for all shipment catego-
ries, while it encompasses SVM for all categories, except for Business supplies and Total capital 
goods at the 5% signifi cance level. UC in turn encompasses wavelets for Nondurable goods 
and Business supplies and SVM for all categories except for Total capital goods. For other 
pair-wise linear combinations, the two forecasts series are statistically signifi cant, indicating 
that both contain independent information that is useful to explain the variation in ∆hyt+h. This is 
the case, for instance, for UC and wavelets (Total manufacturing, Durable goods, Total capital 
goods, and Household durable goods), and wavelets and SVM (Total manufacturing and 
Business supplies).

At h = 9, ARIMA’s encompassing UC occurs only for Total capital goods. In most cases, the 
two forecast series contain independent and relevant information. The wavelet-based method is 
again encompassed by the three others for Nondurable goods and Business supplies. Meanwhile, 
the performance of SVM relative to the other estimation techniques stays about the same, except for 
Total capital goods, where it is encompassed by all the other methods at the 1% signifi cance 
level.

CONCLUSIONS

This article analyzes the forecast performance of four nonlinear methods: seasonal multiplicative 
ARIMA, unobserved components, wavelets, and SVM. The fi rst two models are well known in the 
time series literature, whereas the second two models are based on mathematical techniques which 

7 In each case, we computed the condition number of the regressors matrix. This is obtained as the square root ratio of its 
largest to its smallest characteristic root (after scaling each column so that it has unit length). A condition number exceeding 
20 is indicative of the existence of multicollinearity. The greatest condition number we found in our data was around 15. 
Therefore, we concluded that resorting to ridge regression was unnecessary.



 

have been developed in recent years. Specifi cally, wavelets have become popular in economics and 
fi nance from the mid 1990s onwards, whereas SVM is a relatively new data classifi cation technique, 
which is considered as a more user-friendly tool than artifi cial neural networks.

Our sample is obtained from monthly statistics of US manufacturing shipments for the sample 
period January 1958 to December 2000. Specifi cally, we focus on 10 shipment categories, which 
include, among others, Total manufacturing, Durable goods, Nondurable goods and Consumer 
staples. Our main fi ndings can be summarized as follows. First, the time horizon is a key element 
to decide which model or linear combination of models is best in terms of forecast performance. 
In that regard, forecasting combination and encompassing testing shed more light than the Harvey–
Leybourne–Newbold test. Second, in general, the ARIMA and UC techniques are more likely to 
encompass the wavelet and SVM ones. However, in some cases the latter provide valuable forecast-
ing information that it is not contained in the former. Therefore, pair-wise linear combinations of 
forecasts can be more informative than those of either ARIMA or UC. Third, it appears that the 
information provided by SVM forecasts seems most valuable when linear combinations of SVM and 
wavelets forecasts are considered.
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