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ABSTRACT

This article applies two novel techniques to forecast the value of US manufac-
turing shipments over the period 1956-2000: wavelets and support vector
machines (SVM). Wavelets have become increasingly popular in the fields of
economics and finance in recent years, whereas SVM has emerged as a more
user-friendly alternative to artificial neural networks. These two methodologies
are compared with two well-known time series techniques: multiplicative sea-
sonal autoregressive integrated moving average (ARIMA) and unobserved
components (UC). Based on forecasting accuracy and encompassing tests, and
forecasting combination, we conclude that UC and ARIMA generally outper-
form wavelets and SVM. However, in some cases the latter provide valuable
forecasting information that it is not contained in the former.
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INTRODUCTION

Over the past 50 years, an increasing number of statistical methods has been developed to predict
the evolution of various macroeconomic and financial time series (e.g., Roche, 1995; Diebold, 1998;
Clements and Hendry, 1998; Leung et al., 2000; Morana, 2001; Dooley and Lenihan, 2005; Lanza
et al., 2005; Mills, 1999; Tsay, 2005; Rapach et al., 2005). Two recently developed mathematical
techniques, which have started to gain ground in the economic and financial fields, are wavelets and
support vector machines (SVM).

Wavelets, a refinement of Fourier analysis which dates back to the late 1980s, were originally
utilized in signal and image processing. A particular feature of wavelet analysis is that it makes it
possible to decompose a time series into its high- and low-frequency components, which are local-
ized in time. Recent applications of wavelet methods in economics and finance have dealt with
the permanent income hypothesis, the estimation of systematic risk, and the interaction between
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emerging and developed stock markets, among other themes (e.g., Ramsey and Lampart, 1998;
Ramsey, 1999, 2002; Lin and Stevenson, 2001; Gengay et al., 2002, 2003, 2005; Hong and Kao,
2004; Whitcher, 2004; Connor and Rossiter, 2005; Fernandez, 2005). However, the use of wavelets
for forecasting purposes is almost non-existent in the literature. Indeed, one of the first attempts in
this area was Arino’s (1995) article on forecasting of Spanish car sales. More recently, Conejo
et al. (2005) applied wavelets and other techniques to forecast electricity prices.

SVM represent a kernel-based learning algorithm, which has arisen as a more user-friendly tool
than artificial neural networks (e.g., Burges, 1998; Cristianini and Shawe-Taylor, 2000). Tradition-
ally, SVM have been applied to pattern recognition problems (e.g., text categorization, face recogni-
tion), but over the years their use has extended to nonlinear regression models. A key property of
SVM is that training SVM boils down to a linearly constrained quadratic programming problem,
whose solution is unique and globally optimal. Applications of SVM to forecasting are fairly recent
and have dealt primarily with financial and energy issues (e.g., Tay and Kao, 2001, Kim, 2003; Dong
et al., 2005; Huang et al., 2005; Lu and Wang, 2005).

Our study focuses on forecasting the value of shipments of the US manufacturing industry for the
period January 1958 to December 2000. Some of the categories analyzed include Durable goods,
Nondurable goods, Automotive equipment, Consumer staples, Business supplies, and Construction
supplies. Providing industry participants with reliable forecasting techniques is, in our view, central
to the decision-making process. In particular, an accurate prediction of the future value of shipments
can help managers to assess the profitability and growth potential of an ongoing business.

The contribution of our work is twofold. Firstly, we utilize two novel nonlinear forecasting tech-
niques, which are based on wavelet methods and support vector machines, along with two well-
known model specifications: seasonal multiplicative autoregressive integrated moving average
(ARIMA) and unobserved components. Secondly, we perform encompassing tests for various time
horizons. As Fang (2003) illustrates for the case of UK consumption expenditure, forecast encom-
passing tests are a useful tool to determine whether a composite forecast can be superior to indi-
vidual forecasts. In addition, forecast encompassing tests are potentially useful in model specification,
as forecast combination implicitly assumes the possibility of model misspecification. Our computa-
tions, carried out for different time series, show that the time horizon is a key element to decide
which model or combination of models can be more suitable in terms of forecast accuracy.

This article is organized as follows. The next section presents the four forecasting techniques
utilized in this article. The third section presents forecast accuracy and encompassing tests. The
fourth section describes the data, while the fifth section presents our estimation results. The sixth
section presents our main findings.

SOME NONLINEAR FORECASTING MODELS
Seasonal multiplicative ARIMA
We consider the parsimonious multiplicative seasonal ARIMA model utilized by Box et al. (1994,
Ch. 9) in their classical example of airline data. Specifically, let us consider a non-stationary y, time
series and a model which links its behavior one year apart:

Apy, = (1 — OL)g,

A similar model is used to link &s one month apart:



Ag = (1 - 6L,
The combination of the two models gives rise to a seasonal multiplicative model:
AApy, = (1= 6L)(1 — OL"?)v, ey

of order (0, 1, 1) x (0, 1, 1)5.
The parameters 6 and © are estimated by maximum likelihood.

Wavelets

Wavelets allow for decomposing a signal into fine and coarse resolution components (see,
for instance, Bruce and Gao, 1996; Percival and Walden, 2000). Wavelets can be classified into
father and mother wavelets. Father wavelets (@) represent the smooth and low-frequency parts
of a signal, whereas mother wavelets () characterize its detailed and high-frequency parts.
The most widely used wavelets are the orthogonal ones (i.e., haar, daublets, symmelets, and
coiflets). In particular, the orthogonal wavelet series approximation to a continuous signal f{(7) is
given by

A1) = zsf,k(P/,k )+ Zdj,kwj,k )+ Zdj—l,kvlj—l,k (O+...+ Zdl,kvll,k (1) (2)

where J is the number of multi-resolution components or scales, and k ranges from 1 to the number
of coefficients in the corresponding component. The coefficients s, djy, - - . , di; are the wavelet
transform coefficients, whereas the functions ¢;,(f) and yj(¢) are the approximating wavelet
functions.

Applications of wavelet analysis usually utilize a discrete wavelet transform (DWT). The DWT
calculates the coefficients of the approximation in (2) for a discrete signal of final extent, f}, f5, . . .,
/- That is, it maps the vector f = (f}, f5, . . ., f,)’ to a vector @ of n wavelet coefficients, which con-
tains s, and d;, j =1, 2,..., J. The s;;s and d;;s are called the smooth and detail coefficients,
respectively. Intuitively, the smooth coefficients represent the underlying smooth behavior of the
data at the coarse scale 2’, whereas the detail coefficients provide the coarse-scale deviations from
it. When the length of the data n is divisible by 2/, there are n/2 coefficients d, , at the finest scale
2' = 2. At the next finest scale, there are n/2> coefficients dy,. Similarly, at the coarsest scale, there
are n/2’ coefficients each for d;; and s,;.

Expression (2) can be rewritten as

) = S t) + Dyt) + Doy (1) + ... + Dy (1) 3)

where S, (1) = Zs,,kq),,k (t)and D, (1) = Zdj,kl//,,k (t) are denominated the smooth and detail signals,
k

respectively.
The terms in expression (3) represent a multi-resolution decomposition (MRD) of the signal into
the orthogonal signal components S,(t), D,t), D,_(¢), . .., Dy(¢) at different scales. For instance,

when analyzing monthly data, wavelet scales are such that scale 1 is associated with 2- to 4-month
dynamics, scale 2 with 4- to 8-month dynamics, scale 3 with 8- to 16-month dynamics, scale 4 with
16- to 32-month dynamics, and so on.
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Figure 1. Seasonal decomposition of total manufacturing value of shipments. Notes: (1) STL: Cleveland
et al.’s (1990) trend decomposition procedure based on loess. (2) The wavelet filter utilized is ‘s8’

In order to decompose the time series of interest into its seasonal and trend components, we utilize
an MRD with seven scales and choose the least asymmetric filter (symmlet) ‘s8’. The seasonal
component is reconstructed from scales 1-2, whereas the trend component is obtained from scales
3-7. For illustrative purposes, Figure 1 depicts the seasonal component and the seasonally adjusted
series for total manufacturing obtained from wavelets and the STL (seasonal-trend decomposition
based on loess) procedure. The latter consists of Cleveland ef al.’s (1990) trend decomposition
procedure, which is based on a locally weighted regression smoother (loess). As we see, the wavelet-
based decomposition yields a smoother estimate of the seasonally adjusted series than STL. As a
result, a greater proportion of the high-frequency component of the time series is passed on to the
seasonal component, relative to STL.

Unobserved components (UC)
The basic univariate UC model is given by

yl‘:.u't+’}/t+§t 4



where 1, is the unobserved trend component, ¥, is the unobserved seasonal component, and ¢, is the
unobserved irregular component (see Harvey, 1993, Ch. 5, or Zivot and Wang, 2003, Ch. 14, for
details).

The non-stationary trend component g, takes the form of a local linear trend:

He = Uy +ﬁt +1;
ﬁt+1 = ﬁt +&

where 1, ~ N(0, 07) and €& ~ N(0, ;) are both white-noise processes, i, ~ N(O, ®) and B, ~
N(0, w), with w large. The stochastic seasonal component is given by

(&)

s—1
(+L+..+L7")y, =@, or y,==Y.7,+, (6)
j=1

where L is the lag operator, s is the number of seasons, and @, ~ N(0, 02) is a white-noise process.
If 07 =0, 1, follows a random-walk process with drift §,. If o5 = 07 =0, 1, is a deterministic trend.
Equations (4) and (5) are handled by expressing them in a state-space representation and estimating
them by the Kalman filter algorithm.

Support vector machines
SVM is a relatively recent technique within classification methods (e.g., Venables and Ripley, 2002,
Ch. 12; Chang and Lin, 2005). It consists of mapping a vector of attributes (i.e., regressors), X, into
a higher-dimensional space by a function ¢, and finding a linear maximum-margin hyperplane.' That
is, we seek a classifying hyperplane of the form f(x) = @’ ¢(x) + b = 0. The data points that are located
exactly the margin distance away from the hyperplane are denominated the support vectors.
Specifically, the e-support vector regression (e-SVR) solves the following quadratic programming
problem:

mg,%%w’wWZ(é; +&) ™

subject to
yi—(@ox)+b)y<e+ & Vi
(@(x)+b)—yise+ &
£&20,620

where C > 0 is a penalty parameter and b is a constant term.
The solution to this minimization problem is of the form

£ =Y (A=A K (x,.%)+b

' A maximum-margin hyperplane separates two clouds of points, and it is at equal distance from the two. The smallest
distance from the hyperplane is called the margin of separation.
>The distance of a point x; to the hyperplane is given by |0)’¢(x) +bl /|®|?. The margin distance is given by 2/|@|.



where A; and Af are the Lagrange multipliers associated with the constraints y; — (®'@(x;) + b) < €
+ & and (0'd(x;) + b) — y; < € + &, respectively. The function K(x;, X;) = ¢(x,)’¢(x;) represents a
kernel, which is the inner product of the two vectors X; and X; in the space ¢(x;) and @(x;). Well-
known kernel functions are K(x;, X;) = X/X; (linear), K(x;, X;) = ()/x X; + r)%, ¥ > 0 (polynomial), K(x;,
x;) = exp(—y || x; — x; | = tanh(yx/x; + r) (sigmoid). The
radial kernel is a popular choice in the SVM literature. Therefore our computations are based on
such a kernel.

is N

FORECASTING ACCURACY EVALUATION

We utilize as forecast evaluation statistics the root mean square error (RMSE) and the mean absolute
error (MAE):

RMSE (h) = \/ — IZMH,,‘, MAE (h) = \/ﬁZIM, (8)

where T is the sample size, / is the forecast step length and »n is the window length.
In order to decide which model is best, we resort to the Diebold—Mariano (1995) test:

S

DM=————23N(0,1)
v (d)” ©)
f— N —
where d = —Zd,, d = L(u}+h|,) - L(uf+,1‘,), L(.) is a loss function, and Irv(d) is a consistent estimate

of the long—ruﬁ_ 1asymptotic variance of d. In order to compute the latter, Diebold and Mariano rec-
ommend using the Newey—West estimator with a rectangular kernel function and a lag truncation
parameter equal to & — 1. For the RMSE, the loss function is given by L = (lftim‘,)z, whereas for the
MAE it is given by L = |12§+h|,| .

Under the null hypothesis of equal predictive accuracy, E(d,) = 0. For a left-sided test, under the
alternative hypothesis model 1 is more accurate than model 2 (i.e., E(d,) < 0). Conversely, for a
right-sided test, E(d,) > 0 and model 2 is preferable to model 1.

In order to accommodate heavy-tailed forecasting errors, Harvey et al. (1997) suggest utilizing a
modified version of the DM statistic:

T*+1-2h+h(h-1)/T\"
T*

HLN =DM (10)

which is distributed as #(7* — 1), T* =T —-n—h + 1.

In addition to the DM statistic, we resort to two forecasting evaluation techniques utilized by Fang
(2003): forecasting combination and encompassing. The former consists of combining each pair of
forecasts (both equally weighted) and computing the RMSE (and/or the MAE) for the combined
forecasts. If this is at least 5% less than those of the two corresponding individual forecasts, the
combination is preferable.



For forecasting encompassing, one of the specifications utilized by Fang is the following:

Ay = Bo + BiGi — y) + BBl — ¥) + s, (1)

where J,,., is the forecast of y,,;, based on information available at time ¢, and Ay, = Vi — Vi (The
difference operator is used due to non-stationarity of the time series).” When ; = 0 and f3, # 0, the
second model forecast encompasses the first one. Conversely, if B, # 0 and 5, = 0, the first model
forecast encompasses the second one. In the case that both forecasts contain independent information
for h-period-ahead forecasting of y,, both , and 3, should be different from zero. It is worth noting
that no constraint is imposed on the sum (f; + 3,).

Equation (11) can be estimated in principle by ordinary least squares, utilizing standard errors
robust to the presence of both heteroskedasticity and serial correlation. Nevertheless, if the two
forecast series are highly collinear, Fang advises to resort to ridge regression.

DATA

Our data are US manufacturers’ shipments obtained from the US Census Bureau website, www.
census.gov. The sectors under consideration are Total manufacturing (MTM), Durable goods total
(MDM), Nondurable goods total (MNM), Automotive equipment (AUE), Consumer staples (COS),
Business supplies (BUS), Construction supplies (CMS), Total capital goods (TCG), Household
durable goods (HDG), and Health care products (HCP). The sample period goes from January 1958
to December 2000. Some descriptive statistics of the seasonally unadjusted series are reported in
Table I. Augmented Dickey—Fuller (ADF) and Phillips—Perron unit-root tests show that, at a sig-
nificance level between 5% and 10%, we cannot reject the presence of a stochastic trend in any of
the (seasonally adjusted) time series under consideration.

Table I. Descriptive statistics of US manufacturers’ shipments: 1958-2000

MTM MDM MNM AUE COS BUS CMS TCG HDG  HCP

Mean 286,753 151,067 135,687 11,617 62,821 21,059 18,714 44,596 9,129 6,613
Median 301,950 154,873 147,242 11,632 67,740 23,710 19,299 44359 9,185 5,859

Q, 243,391 131,248 111,637 9,146 50,370 15,662 15,933 37,669 8,201 3,763
Qs 331,710 173,009 157,783 14,284 72,569 25,797 21,401 51,487 10,125 9,531
max 416,264 240,960 175,303 19,138 85,395 30,104 26,317 80,528 12,648 15,583
min 149,654 71,435 77,660 3,498 37,687 9,838 9,856 20,244 5,115 2,035
obs 516 516 516 516 516 516 516 516 516 516
Notes:

1. Figures are seasonally unadjusted and expressed in million US dollars of December 2000.

2. The data are measured at a monthly frequency.

3. The data source is the US Census Bureau, www.census.gov.

4. The shipments categories are Total manufacturing (MTM), Durable goods total (MDM), Nondurable goods total (MNM),
Automotive equipment (AUE), Consumer staples (COS), Business supplies (BUS), Construction supplies (CMS), Total
capital goods (TCG), Household durable goods (HDG), and Health care products (HCP).

5. Q, and Qs represent the first and third quartiles, respectively.

*Given that we utilize the natural logarithm of the shipments series, A,y,.;, = V.., — Y, represents the return on y between times
tand t + h.



ESTIMATION RESULTS

The estimation results reported in this section were obtained from routines written by the author in
S-Plus 7.0. In addition, the S+Wavelets 2.0 and S+Finmetrics 2.0 modules were utilized for imple-
menting the wavelet-based and unobserved component model spefications, whereas the libsvm S-
Plus library, written by David Meyer (based on C/C4++ code by Chih-Chung Chang and Chih-Jen
Lin from National Taiwan University), was utilized for implementing the SVM technique.*

For estimation purposes, the data are expressed in natural logarithms. The ARIMA and UC models
estimated are those presented earlier. In order to compute the wavelet-based forecast, we fit an
ARIMA(O, 1, 1)y, to the seasonal component and an ARIMA(1, 1, 0) to the trend component, which
are yielded by the MRD. These two functional forms seem reasonable approximations to the sea-
sonal- and trend-generating processes, respectively. The forecast series is computed as the sum of
the seasonal and trend forecasts. For the SVM method, we use 12 lags of the time series as the vector
of attributes. Once the separating hyperplane is determined, the fitted model is utilized for out-of-
sample forecasting. Given that 12 lags of the dependent variable are needed for forecasting, unknown
lagged values are replaced by one-step forecasts. For instance, for a two-step forecast (i.e., t + 2),
we use as attributes the r — 10, . . ., t — 1 observations, which are known at time ¢, in addition to the
one-step forecast for ¢ + 1, which is obtained from the model.

The first exercise we carry out consists of fitting each model to the data series by using the three
last years of observations for one-step-ahead forecasting (i.e., 1998-2000). Specifically, at the first
stage, we use the observations belonging to 1958-1997 for estimation, and we next add an extra
observation at a time to re-estimate the models. We stop once we have utilized the whole sample
period for estimation. Our results are summarized in Table II. We observe two patterns. First, the
wavelet-based model outperforms the three others in terms of both RMSE and MAE. Second, SVM
exhibits the poorest performance, with the exceptions of MDM (Durable goods total) and HDG
(Household durable goods), for which the RMSE and MAE of SVM is similar to that of ARIMA.
However, if we carry out the HLN test, we find no strong statistical evidence in favor of any model
at the conventional significance levels.” Indeed, only by considering a 19-percent significance level,

Table II. Assessment statistics of one-step-ahead forecast errors

MTM MDM MNM AUE COS BUS CMS TCG HDG HCP

(a) RMSE

ARIMA 0014 0020 0011 0063 0011 0016 0020 0026 0031 0028
ucC 0012 0018 0011 0061 0013 0015 0020 0028 0033 0.028
Wavelet ~ 0.010 0013 0008 0043 0010 0011 0018 0018 0020 0022
SVM 0021 0021 0024 0085 0027 0022 0033 0036 0030 0035
(b) MAE

ARIMA 0012 0017 0009 0052 0009 0012 0016 0022 0024 0022
ucC 0011 0016 0009 0050 0010 0012 0016 0023 0026 0.021
Wavelet ~ 0.008 0010 0007 0.036 0008 0009 0014 0014 0017 0017
SVM 0016 0016 0020 0064 0022 0018 0022 0031 0024 0.027

*Examples on the use of the libsvm library are given in the textbook by Venables and Ripley (2002). Documentation on the
SVM technique can be found at Chih-Jen Lin’s website, www.csie.ntu.edu.tw/~cjlin/papers/.

When the time series of forecast errors is relatively short, as in this case (=36), the HLN test usually fails to reveal a
significance difference between the two models (see Enders, 2004, p. 92).



we would be able to conclude that wavelets outperform SVM for the case of MNM (Nondurable
goods total).

In order to have a more complete picture of the forecasting performance of the four models, we
next consider from one-step- to 12-step-ahead forecasts. This time, forecasts are computed by using
a rolling window of 32 years. Specifically, we hold the last 10 years of data for forecast evaluation
(i.e., 1990-2000), obtaining a time series of 132 forecast errors for A =1, 2, ..., 12.° In order to
evaluate the models, in addition to the HLN test, we consider Fang’s (2003) forecasting combination
and encompassing.

Figure 2 depicts the evolution of the RMSE of forecast errors as the time horizon increases for
Durable and Nondurable goods, Consumer staples and Construction supplies. For Durable goods,
wavelets outperform the three other specifications for & < 4, whereas SVM has the poorest forecast
performance for all time horizons. For Nondurable goods, SVM does a better job as it outperforms
UC for h > 6, while wavelets do worse than the three other methods for /2 > 4. For Consumer staples,
ARIMA ¢gives the best forecast performance for all 4 > 2, and SVM outperforms wavelets for i >
4. Similar results are obtained for Construction supplies, for which ARIMA and UC have almost
identical performance, and both do better than SVM and wavelets. Overall, we conclude that the
ARIMA and UC specifications tend to outperform the two others, while wavelets may be preferable
to SVM in some cases.

If we conduct the HLN test for each category depicted in Figure 2, our above conclusions are, in
general, supported. Indeed, for Consumer staples, SVM is rejected in favor of ARIMA and UC at
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Figure 2. RMSE at different forecasting horizons

The 12 forecasts are computed simultaneously at each iteration.




the 16% and 14% significance levels, respectively, at 7 = 6. For Construction supplies, the wavelet-
based specification is rejected in favor of ARIMA and UC at the 15% significance level at 2 =5 and
10, at the 12% significance level at i = 6, and at the 11% significance level at h =7, 8, and 9. For
Nondurable and Durable goods, the evidence provided by the HLN test in favor of a particular model
is weaker. Truly, for the former, the wavelet-based model is rejected in favor of ARIMA and UC
at the 16% significance level at h = 6, whereas for the latter ARIMA is preferred to SVM at the 17%
significance level at i = 6.

As we see, the HLN test helps us to discriminate between models only in some specific cases.
Therefore, forecast combination and encompassing arise as complementary tools to discriminate
between models. Forecast combination was computed for Total manufacturing, Business supplies,
Consumer staples, and Total Capital goods. Our results show that, in terms of RMSE, an equally
weighted average of wavelets and ARIMA forecasts can be superior to each single forecast at h =
3 (Total manufacturing, Business Supplies, and Consumer staples) and i = 4 (Total manufacturing,
Consumer staples, and Total capital goods). Likewise for the combination of wavelets and UC fore-
casts at 1 = 3 (Business supplies), & = 4 (Total manufacturing and Consumer staples) and 4 =5, 10
(Total capital goods); and for the combination of SVM and wavelets forecasts at 7 = 4 (Consumer
staples), 5 and 6 (Total manufacturing and Consumer staples).

Forecast-encompassing testing, based on equation (11), was carried out for six shipments
categories: Total manufacturing, Durable goods, Nondurable goods, Business supplies, Total capital
goods, and Household durable goods.” At h = 6, ARIMA encompasses UC for all shipment catego-
ries, while it encompasses SVM for all categories, except for Business supplies and Total capital
goods at the 5% significance level. UC in turn encompasses wavelets for Nondurable goods
and Business supplies and SVM for all categories except for Total capital goods. For other
pair-wise linear combinations, the two forecasts series are statistically significant, indicating
that both contain independent information that is useful to explain the variation in A,y,,. This is
the case, for instance, for UC and wavelets (Total manufacturing, Durable goods, Total capital
goods, and Household durable goods), and wavelets and SVM (Total manufacturing and
Business supplies).

At h = 9, ARIMA’s encompassing UC occurs only for Total capital goods. In most cases, the
two forecast series contain independent and relevant information. The wavelet-based method is
again encompassed by the three others for Nondurable goods and Business supplies. Meanwhile,
the performance of SVM relative to the other estimation techniques stays about the same, except for
Total capital goods, where it is encompassed by all the other methods at the 1% significance
level.

CONCLUSIONS

This article analyzes the forecast performance of four nonlinear methods: seasonal multiplicative
ARIMA, unobserved components, wavelets, and SVM. The first two models are well known in the
time series literature, whereas the second two models are based on mathematical techniques which

"In each case, we computed the condition number of the regressors matrix. This is obtained as the square root ratio of its
largest to its smallest characteristic root (after scaling each column so that it has unit length). A condition number exceeding
20 is indicative of the existence of multicollinearity. The greatest condition number we found in our data was around 15.
Therefore, we concluded that resorting to ridge regression was unnecessary.



have been developed in recent years. Specifically, wavelets have become popular in economics and
finance from the mid 1990s onwards, whereas SVM is a relatively new data classification technique,
which is considered as a more user-friendly tool than artificial neural networks.

Our sample is obtained from monthly statistics of US manufacturing shipments for the sample
period January 1958 to December 2000. Specifically, we focus on 10 shipment categories, which
include, among others, Total manufacturing, Durable goods, Nondurable goods and Consumer
staples. Our main findings can be summarized as follows. First, the time horizon is a key element
to decide which model or linear combination of models is best in terms of forecast performance.
In that regard, forecasting combination and encompassing testing shed more light than the Harvey—
Leybourne-Newbold test. Second, in general, the ARIMA and UC techniques are more likely to
encompass the wavelet and SVM ones. However, in some cases the latter provide valuable forecast-
ing information that it is not contained in the former. Therefore, pair-wise linear combinations of
forecasts can be more informative than those of either ARIMA or UC. Third, it appears that the
information provided by SVM forecasts seems most valuable when linear combinations of SVM and
wavelets forecasts are considered.
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