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Abstract

Copula modeling has become an increasingly popular tool in finance to model assets returns dependency. In essence, copulas
enable us to extract the dependence structure from the joint distribution function of a set of random variables and, at the same time,
to isolate such dependence structure from the univariate marginal behavior. In this study, based on US stock data, we illustrate
how tail-dependency tests may be misleading as a tool to select a copula that closely mimics the dependency structure of the data.
This problem becomes more severe when the data is scaled by conditional volatility and/or filtered out for serial correlation. The
discussion is complemented, under more general settings, with Monte Carlo simulations and portfolio management implications.
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1. Introduction

Modeling the dependence structure of assets returns has become an active line of research in the finance field
in recent years. In particular, some researchers have resorted to extreme-value theory to model tail dependency and
have concluded that the degree of such dependency is generally asymmetric (i.e., bearish (left tail) versus bullish
markets (right tail)). In addition, they have found that correlated conditional return volatilities may partially account
for extreme-value dependency (e.g., Poon, Rockinger, and Tawn [1] and [2]).

A more general methodology, which enables us to study not only the tail behavior but also the whole structure of
dependency of a set of random variables, is copula modeling. Specifically, copulas are joint distribution functions of
standard uniforms, which make it possible to extract the dependence structure from the joint probability distribution
function of a set of random variables and, simultaneously, to isolate such dependence structure from the univariate
marginal behavior. Examples of recent applications of copulas in finance are Cherubini and Luciano [3,4] and [5],
Embrechts, Lindskog, and McNeil [6], Giesecke [7], Panchenko [8] Junker, Szimayer, and Wagner [9], Rosenberg
and Schuermann [10], Mendes, Leal and Carvalhal-da-Silva [11], Fantazzini [12], Bartram, Taylor, and Wang [13],
and Fernandez [14], among others. The textbook by Cherubini, Luciano, and Vecchiato [15] provides a complete
discussion on the use of copulas in finance.
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In this article, we illustrate how tail-dependency tests may be misleading tools to select a suitable copula function.
This problem may become more severe when the data is scaled by volatility and/or filtered out for serial correlation.
The discussion is complemented under different scenarios by means of Monte Carlo simulations. In addition, Value-
at-Risk (VaR) and Expected Shortfall (ES) estimates are provided for alternative copula functions and marginal
specifications. Our research is somehow connected with a recent publication by Fantazzini [12], who studies the
impact of copula and marginal misspecification on VaR estimation. He concludes that biases in VaR estimates are
predominantly due to copula misspecification in large samples.

This article is organized as follows. Section 2 presents background material on tail-dependency tests and copulas.
Section 3 concentrates on an application of copula selection for daily data (June 1992–June 2006) of four US stock
indices elaborated by Morgan Stanley, namely, US Investable Market Value, US Large Cap 300, US Mid Cap 450, and
US Small Cap 1750. In a more general setting, the performance of tail-dependency tests in suggesting a proper copula
function is assessed by Monte Carlo simulations. In addition, the sensitivity of a portfolio VaR and ES to alternative
copula and marginal functions is illustrated. Section 4 concludes.

2. Methodology

2.1. Tail-dependency tests

2.1.1. Asymptotic dependence and asymptotic independence
Extreme-value theory (EVT) has arisen as one of the most important statistical disciplines for the applied sciences

over the past fifty years, and more recently for the finance field. The distinguishing feature of EVT is to quantify the
stochastic behavior of a process at unusually large or small levels. Specifically, EVT usually requires estimation of
the probability of events that are more extreme than any other that has been previously observed.

A customary approach in EVT, which is denominated as “Peaks over threshold” or POT, consists of modeling
the behavior of extreme values above a high threshold. Let X1, X2, . . . be a sequence of independent and identically
distributed random variables with unknown distribution function F . The excess distribution, above a threshold u, is
given by the conditional probability distribution

Fu(y) = Pr(X − u ≤ y|X > u) =
F(y + u) − F(u)

1 − F(u)
, y > 0. (1)

Under some regularity conditions, there exists a positive function β(u), for a large enough u, such that (1) is well
approximated by the generalized Pareto distribution (GPD):

Hζ,β(u)(y) =


1 −

(
1 +

ζ y

β(u)

)−1/ζ

ζ 6= 0

1 − exp
(

−
y

β(u)

)
ζ = 0,

(2)

where β(u) > 0, and y ≥ 0 when ζ ≥ 0, and 0 ≤ y ≤ −β(u)/ζ when ζ < 0 (e.g., Coles [16] or Embrechts,
Klüpperberg and Mikosch [17]). If ζ > 0, F is said to be in the Fréchet family and Hζ,β(u) is a Pareto distribution. In
most applications of risk management, the data comes from a heavy-tailed distribution, so that ζ > 0.

Poon, Rockinger, and Tawn [1,2] introduce a special case of threshold modeling for the Fréchet family. In this
particular case, the tail of a random variable Z above a (high) threshold u can be approximated as

1 − F(z) = Pr(Z > z) ∼ z−1/ηL(z), for z > u (3)

where L(z) is a slowly varying function of z,1 and η > 0. If L(z) is treated as a constant for all z > u, such that
L(z) = c, and under the assumption of n independent observations, the maximum-likelihood estimators of η and c are

η̂ =
1

nu

nu∑
j=1

log
( z( j)

u

)
ĉ =

nu

n
u1/η̂, (4)

where z(1), . . . , z(nu), are the nu observations above the threshold u, and η̂ is known as the Hill estimator.

1 A function of L on (0, ∞) is slowly varying if limz→∞ L(t z)/L(z) = 1 for t > 0.



In order to study dependency of paired returns, Poon et al. suggest transforming the original variables to a common
marginal distribution. If (X, Y ) are bivariate returns with corresponding cumulative distribution functions FX and FY ,
the following transformation turns them into unit Fréchet marginals (S, T )2:

S = −
1

ln FX (X)
1 T = −

1
ln FY (Y )

S > 0, T > 0. (5)

Poon et al. define the following measure of asymptotic dependence:

χ = lim
s→∞

Pr(T > s|S > s) 0 ≤ χ ≤ 1. (6)

In particular, two random variables are called asymptotically dependent if χ > 0, and asymptotically independent if
χ = 0.

Coles, Heffernan and Tawn [18] point out that two random variables, which are asymptotically independent
(i.e., χ = 0), may show, however, different degrees of dependence for finite levels of s. Therefore, they propose
the following measure of asymptotic independence:

χ̄ = lim
s→∞

2 log(Pr(S > s))

log(Pr(S > s, T > s))
− 1 − 1 < χ̄ ≤ 1. (7)

Values of χ̄ > 0, χ̄ = 0 and χ̄ < 0 are an approximate measure of positive dependence, exact independence, and
negative dependence in the tails, respectively. In particular, χ̄ resembles a correlation coefficient, and it is identical to
the Pearson correlation coefficient under normality.

Poon et al.’s tail-dependence test is based on the (χ, χ̄) pair. Specifically, for asymptotically dependent variables,
χ̄ = 1 and the degree of dependence is measured by χ > 0. For asymptotic independent variables, χ = 0 and the
degree of dependence is measured by χ̄ .

The above tail-dependence test rests on the fact that

Pr(Z > z) = z−1/ζ L(z) for z > u, (8)

for some high threshold u, where Z = min(S, T ). Eq. (8) shows that ζ is the tail index of the univariate random
variable Z . Therefore, it can be computed by using the Hill estimator, constrained to the interval (0, 1]. Under the
assumption of independent observations on Z , Poon et al. show that

ˆ̄χ = 2ζ̂ − 1 =
2

nu

(
nu∑
j=1

log
( z( j)

u

))
− 1 Var( ˆ̄χ) =

( ˆ̄χ + 1)2

nu
, (9)

where ˆ̄χ is asymptotically normal.

The null hypothesis of asymptotic dependence (i.e., χ̄ = 1) is rejected if ˆ̄χ + 1.96
√

Var( ˆ̄χ) < 1. In that case, we
conclude that the two random variables are asymptotically independent (i.e., χ = 0), and the degree of dependency
is measured by χ̄ . Otherwise, if the null hypothesis cannot be rejected, χ is estimated under the assumption that
χ̄ = ξ = 1, where χ̂ =

unu
n and Var(χ̂) =

unu(n−nu)

n3 .

2.1.2. Threshold selection
In order to make Poon et al.’s statistic in (9) operational, one has to select an optimal threshold (u). A

straightforward and computationally fast algorithm suitable to that end is based on an exponential regression
model discussed in Matthys and Beirlant [19], Beirlant, Diercks, Goegebeur, and Matthys [20], and Matthys and
Beirlant [21]. This approach directly derives an estimator for u based on the representation of the asymptotic mean-
squared error (AMSE) of the Hill estimator, as outlined below.

2 Under this transformation, Pr(S > s) = Pr(T > s) ∼ s−1. As both S and T are on a common scale, the events {S > s} and {T > s}, for
large values of s, correspond to equally extreme events for each one. Given that Pr(S > s) → 0 as s → ∞, the focus of interest is the conditional
probability Pr(T > s|S > s), for large s. If (S, T ) are perfectly dependent, Pr(T > s|S > s) = 1. By contrast, if (S, T ) are exactly independent,
Pr(T > s|S > s) = Pr(T > s), which tends to zero as s → ∞.



Specifically, an exponential regression model for the log-spacings of upper statistics of a set of independent data
X1, X2, . . . , Xn coming from a heavy-tailed distribution has shown to be (see Beirlant et al. [20])

j (log(Xn− j+1,n) − log(Xn− j,n)) ∼

(
γ + bn,k

(
j

k + 1

)−ρ
)

f j 1 ≤ j ≤ k, (10)

where X1,n ≤ X2,n ≤ · · · ≤ Xn,n , bn,k ≡ b( n+1
k+1 ) is a positive rate function such that b(x) → 0 as x → ∞,

1 ≤ k ≤ n − 1, ( f1, f2, . . . , fk) is a vector of independent standard exponential random variables, γ > 0 and ρ ≤ 0
are real constants.

If the threshold u is fixed at the (k + 1)th largest observation, the Hill estimator can be rewritten as

Hn,k =
1
k

k∑
j=1

j (log(Xn− j+1,n) − log(Xn− j,n)) (11)

so that it boils down to the maximum-likelihood estimator of γ in the reduced model j (log(Xn− j+1,n) −

log(Xn− j,n)) ∼ γ f j , 1 ≤ j ≤ k.
From the above, the AMSE of the Hill estimator is shown to be

AMSEHk,n =

(
bn,k

1 − ρ

)2

+
γ 2

k
. (12)

The optimal threshold kopt
n is defined as the one that minimizes (12):

kopt
n ≡ arg min

k
(AMSEHk,n) = arg min

k

((
bn,k

1 − ρ

)2

+
γ 2

k

)
. (13)

This can be obtained as follows:

• In expression (10), fix ρ at ρ0 = −1 and calculate least-squares estimates γ̂k and b̂n,k for each k ∈ {3, . . . , n}.

• Determine AMSEHk,n =

(
b̂n,k

1−ρ̂k

)2

+
γ̂ 2

k
k for k ∈ {3, . . . , n}, with ρ̂k ≡ ρ0.3

• Determine k̂opt
n = arg min3≤k≤n(AMSE Hk,n) and estimate γ by Hk̂opt

n
.

The first step of the algorithm boils down to running a linear regression of j (log(Xn− j+1,n) − log(Xn− j,n)) on a
constant term and j (n+1)

(k+1)2 , for each k ∈ {3, . . . , n}.

2.2. Copula analysis

2.2.1. Basic concepts
A copula function is defined as a multivariate distribution function (df) F of random variables X1, . . . , Xn

with standard uniform marginal distribution functions F1, . . . , Fn (margins), i.e., X i ∼ Fi , i = 1, . . . , n.
Alternatively, it is defined as any function C: [0, 1]

n
→ [0, 1] that satisfies the following properties (e.g., Cherubini,

Luciano, and Vecchiato [3]; Frees and Valdez [22]): (i) C(x1, . . . , xn) is increasing in each component xi ; (ii)
C(1, . . . , 1, xi , 1, . . . , 1) = xi ∀i = 1, . . . , n, xi ∈ [0, 1]; (iii) ∀(a1, . . . , an), (b1, . . . , bn) ∈ [0, 1]

n , ai ≤ bi ,∑2
i1=1 · · ·

∑2
in=1(−1)i1+···+in C(x1i , . . . , xnin ) ≥ 0, x j1 = a j and x j2 = b j ∀ j ∈ {1, . . . , n}.

In general, let us consider an n × 1 random vector X with a joint df F and continuous margins Fi , which are not
necessarily standard uniform.4 Then

F(x1, . . . , xn) = Pr(X1 ≤ x1, . . . , Xn ≤ xn)

= Pr(F1(X1) ≤ F1(x1), . . . , Fn(Xn) ≤ Fn(xn))

= C(F1(x1), . . . , Fn(xn)). (14)

3 Matthys and Beirlant [19] point out that for many distributions the exponential-regression method works better, in MSE-sense, if the nuisance
parameter ρ is fixed at some value ρ0 rather than estimated.

4 A well-known result in statistics establishes that if Xi is a random variable with a continuous distribution function Fi , the random variable
Fi (Xi ) is standard-uniformly distributed, i.e., Fi (Xi ) ∼ U (0, 1).



Eq. (14) shows that the joint df, F , can be described by the margins F1, . . . , Fn and the copula C , which captures
the dependency structure among X1, . . . , Xn . The existence of the function C is established by Sklar’s theorem (see
Nelsen [23], Section 2.10). The density function of X1, . . . , Xn in turn can be expressed in terms of the density copula
and the marginal densities:

f (x1, x2, . . . , xn) =

(
∂nC(F1(x1), F2(x2), . . . , Fn(xn))

∂ F1(x1)∂ F2(x2) · · · ∂ Fn(xn)

)
∂ F1(x1)

∂x1

∂ F2(x2)

∂x2
· · ·

∂ Fn(xn)

∂xn

= c(F1(x1), F2(x2) . . . , Fn(xn))

n∏
i=1

fi (xi ). (15)

In the bivariate case, which is the focus of this study, a copula function is defined on I 2
= [0, 1] × [0, 1], such

that F(x, y) = C(FX (x), FY (y)) ≡ C(u, v) = Pr(U ≤ u, V ≤ v), where U = FX (x) and V = FY (y) are standard
uniforms. The joint density function of X and Y can be expressed in terms of the copula density c(u, v) =

∂2

∂u∂v
C(u, v)

and the corresponding marginal densities of X and Y as a particular case of Eq. (15).
Upper- and lower-tail dependency measures are given by (see, for instance, Cherubini et al. [3], Section 3.1.5)

λu = lim
q→1−

Pr(U > q|V > q) = lim
q→1−

1 − 2q + C(q, q)

1 − q
(16a)

λl = lim
q→0+

Pr(U < q|V < q) = lim
q→0+

C(q, q)

q
. (16b)

C is said to have upper-tail dependence if and only if λu ∈ (0, 1], and no upper-tail dependence if and only if
λu = 0. Similarly, C is said to have lower-tail dependence if and only if λl ∈ (0, 1], and no lower-tail dependence if
and only if λl = 0.

Empirical counterparts of λu and λl can be obtained by plugging the empirical copula into Eqs. (16a) and (16b):

Ĉ

(
i

n
,

j

n

)
=

1
n

n∑
k=1

1{uk≤u(i),vk≤v( j)} i, j = 1, 2 . . . , n, (17)

where u(1) ≤ u(2) ≤ · · · ≤ u(n) and v(1) ≤ v(2) ≤ · · · ≤ v(n) are the order statistics.5

It is worth noticing that the coefficient χ in expression (6) can be generalized to

χ = lim
q→1−

Pr(U > q|V > q),

where U and V are the transformation of (X, Y ) to uniform margins (see Coles, Heffernan, and Twan [18]). Therefore,
under such a transformation, χ coincides with λu .

One of the most frequently used copulas in the finance field is the Gaussian. For the bivariate case, the Gaussian
copula boils down to

C(u, v) =

∫ Φ−1(u)

−∞

dx
∫ Φ−1(v)

−∞

dy
1

2π
√

1 − ρ2
exp

(
−

x2
− 2ρxy + y2

2(1 − ρ2)

)
= Φρ(Φ−1(u),Φ−1(v)), (18)

where Φρ is the joint df with correlation coefficient ρ.
One characteristic of the Gaussian copula is that it does not exhibit either lower- or upper-tail dependence unless

ρ = 1. That is to say,

λu = λl =

{
0 iff ρ < 1
1 iff ρ = 1.

5 In general, the empirical copula can be obtained as Ĉ
(

i1
n ,

i2
n , . . . ,

im
n

)
=

1
n
∑n

k=1 1{u1k≤u1(i1),u2k≤u2(i2),...,umk≤um (im )}, 1 ≤ j ≤ m, i j =

1, 2, . . . , n.



However, assets returns may exhibit extreme-value dependency in both tails. Therefore, recent studies have focused
on the Student’s t copula (e.g., Demarta and McNeil [24]; Mashal, Naldi, and Zeevi [25]). The bivariate t copula is
defined as

C(u, v) =

∫ t−1
υ (u)

−∞

dx
∫ t−1

υ (v)

−∞

dy
1

2π
√

1 − ρ2

(
1 +

x2
− 2ρxy + y2

υ(1 − ρ2)

)−
υ+2

2

= tρ,υ(t−1
υ (u), t−1

υ (v)), (19)

where tυ(x) =
∫ x
−∞

0((υ+1)/2)
√

πυ0(υ/2)

(
1 +

z2

υ

)−
υ+1

2
dz.

Provided that ρ > −1, the Student’s t copula exhibits asymptotic dependence in both tails, such that6

λu = λl = 2tυ+1

(
−

√
(υ + 1)(1 − ρ)

1 + ρ

)
.

The other two copulas considered in this study are the Gumbel and Clayton copulas, which belong to the family of
Archimedean copulas.7 The Gumbel copula exhibits only upper-tail dependency:

C(u, v) = exp{−[(− ln(u))δ + (− ln(v))δ]1/δ
}δ ≥ 1 (20)

λu = 2 − 21/δ

whereas the Clayton copula displays exclusively lower-tail dependency:

C(u, v) = (u−δ
+ v−δ

− 1)−1/δ 0 < δ < ∞ (21)

λl = 2−1/δ.

2.2.2. Maximum-likelihood estimation of a bivariate t copula
Fitting a Student’s t copula to the data is relatively cumbersome as it involves the estimation of two parameters,

ρ and υ, from a highly non-linear functional form. The optimization is hence conducted by maximum likelihood by
concentrating out the log-likelihood function of the data in terms of the parameter ρ.

Specifically, the Student’s t copula density is given by

cρ,υ(u, v) = ρ−
1
2

0
(

υ+2
2

)
0
(

υ
2

)
0
(

υ+1
2

)2

(
1 +

κ2
1 +κ2

2 −2ρκ1κ2

υ(1−ρ2)

)−(υ+2)/2

2∏
j=1

(
1 +

κ2
j

υ

)−(υ+2)/2
, (22)

where κ1 = t−1
υ (u) and κ2 = t−1

υ (v) (see, for instance, Cherubini et al. [3], Section 3.2.2).
For a sample of n independent observations, estimates of ρ and υ can be obtained by maximizing the log-likelihood

function of the sample:

log L =

n∑
i=1

log(cρ,υ(ui , vi )). (23)

Given that both κ1,i = t−1
υ (ui ) and κ2,i = t−1

υ (vi ), i = 1, . . . , n, depend on the unknown parameter υ, a grid
search is conducted over υ and log L is maximized with respect to ρ, for every fixed value of υ. The solution is the
paired combination that maximizes log L .

6 When the number of degrees of freedom is large enough, the t copula will approximate a normal one.
7 Archimedean copulas are those that can be represented as C(u, v) = φ−1

{φ(u)+φ(v)}, where φ : I → R+ is a continuous, strictly decreasing,
convex function, which satisfies φ(1) = 0.



Table 1
Descriptive statistics of MSCI US returns: June 1992–June 2006

Statistic US Investable Market Value US Large Cap 300 US Mid Cap 450 US Small Cap 1750

Minimum −0.060 −0.072 −0.083 −0.063
Maximum 0.009 0.010 0.010 0.010
1st Q −0.004 −0.005 −0.004 −0.005
3rd Q 0.005 0.005 0.006 0.006
Mean 0.000 0.000 0.000 0.000
Std. dev 0.051 0.057 0.055 0.050
Skewness −0.183 −0.080 −0.302 −0.272
Kurtosis–3 3.974 4.324 4.458 2.994
Observations 3.674 3.674 3.674 3.674

Log-returns are daily.

3. Data and estimation results

3.1. Copula choice for set of US stock indices

Our data set comprises the following Morgan Stanley Capital Investment (MSCI) indices: US Investable Market
Value, US Large Cap 300, US Mid Cap 450, and US Small Cap 1750. The data is measured at a daily frequency and
covers 15 years: June 1992–June 2006. All the estimation process is carried out in S-Plus 7.0.

Some descriptive statistics are presented in Table 1. As previously found in other studies, returns exhibit excess
kurtosis and negative skewness. All returns series are comparably volatile, as measured by their standard deviation
and inter-quartile range.

The presence of extreme-value dependence can be informally assessed by transforming the original return series
into standard uniforms, so that they are in a common scale. Specifically, let (X t , Yt ), t = 2, . . . , T , be independent
observations of paired returns. The random variables ut = FX (X t ) and vt = FY (Yt ) are both distributed as standard
uniforms, where FX and FY are the marginal distribution functions. Given that FX and FY are both unknown, they
can be replaced by the corresponding empirical marginals. Fig. 1, Panels (a) and (b), presents scatter plots of the
transformed paired large/mid cap and investable market value/small cap return series. As we see, it seems that the
former exhibits more tail dependency than the latter judging by the clustering of points in the left-lower and right-
upper corners of each plot.

The above conjecture is supported by Fig. 1, Panels (c) and (d), which presents estimates of the left- and

right-tail indices for each pair based on their empirical copulas. Specifically, λ̂u = limq→1−
1−2q+Ĉ(q,q)

1−q and

λ̂l = limq→0+
Ĉ(q,q)

q , where the empirical copula is computed according to Eq. (17). For the large/mid cap pair,
the estimates of upper- and lower-tail dependence indices are around 0.64–0.68 and 0.68–0.71, respectively, as shown
in Panel (c) of Fig. 1. The estimated tail-dependency index parameters for the investable market value/small cap are
by contrast slightly smaller: around 0.43–0.44 in the upper tail and 0.52–0.55 in the lower tail (Panel (d)).

Table 2 reports the computation of Poon et al.’s tail-dependency test for both pairs based on the discussion of
Sections 2.1.1 and 2.1.2. As we see in Panel (a), extreme-value dependency is not rejected for the large/mid cap
pair in either tail, whereas for the investable market value/small cap, extreme-value dependency is accepted at the 5
percent significance level in the lower tail, but it is rejected in the upper tail at the 1 percent significance level. For
the large/mid cap pair, the estimated tail index parameters are 0.69 and 0.67 in the lower and upper tails, respectively.
These are fairly close to those reported above.

As shown in Panel (b) of Table 2, filtering the returns data by an AR(1)–GARCH(1, 1) model leads to rejecting
upper-tail dependency in both paired returns series. The null hypothesis of lower-tail dependency continues to be
accepted for the large/mid cap pair, whereas it is now rejected at a lower significance level for the investable market
value/small cap (i.e., 2% significance level).

Our next step consists of fitting a suitable copula to the data based on the dependency tests just reported. We
first focus on the raw data and then on the filtered data. Fig. 2 shows the result of fitting normal and Student’s t



Fig. 1. Tail dependence in the raw returns series. Notes: (1) In panels (a) and (b), the random variables u = FX (X) and v = FY (Y )

are both distributed as standard uniforms, where FX and FY are the marginal distribution functions, which are computed from the empirical
distribution functions of X and Y. (2) In panels (c) and (d), the upper- and left-tail dependence indices are computed, respectively, as λ̂u =

limq→1−(1 − 2q + Ĉ(q, q))/(1 − q) and λ̂l = limq→0+ Ĉ(q, q)/q , where the empirical copula is computed according to Ĉ
(

i
n ,

j
n

)
=

1
n
∑n

k=1 1{uk≤u(i),vk≤v( j)}, i, j = 1, 2 . . . , n.

Table 2
Extreme-value dependency test

Paired return Lower tail Upper tail
ρ k∗ χ̄ s.e t-test

χ̄ = 1
p-value χ s.e k∗ χ̄ s.e t-test

χ̄ = 1
p-value χ s.e

(a) Raw data
Large/mid cap 0.91 191 0.92 0.14 −0.61 0.27 0.69 0.05 250 0.96 0.12 −0.31 0.38 0.67 0.04
Value/small cap 0.81 299 0.83 0.11 −1.63 0.05 0.64 0.03 297 0.75 0.10 −2.48 0.01 0.59 0.03

(b) Filtered data

Large/mid cap 0.90 221 0.95 0.13 −0.35 0.36 0.68 0.04 299 0.77 0.10 −2.29 0.01 0.68 0.04
Value/small cap 0.80 231 0.76 0.12 −2.1 0.02 0.64 0.04 299 0.66 0.10 −3.5 0.00 0.55 0.03

(1) ρ is Pearson correlation coefficient for the whole sample period. (2) k∗ represents the optimal threshold obtained by an exponential-regression
procedure. (3) χ̄ is computed based on tail-index estimation of Fréchet transformed margins of co-exceedances of paired returns, Z = min(S, T ).
Asymptotic dependence cannot be rejected if χ̄ = 1. In that case, the degree of dependence is measured by χ > 0.



Fig. 2. Student’s t and normal copulas fitted to the investable market value and small cap pair.

copulas to the investable market value/small cap pairs.8 As a benchmark, the empirical copula is plotted along with
each parametric model. As previously discussed, Poon et al.’s test suggests that there is tail independence in this pair.
Therefore, a normal copula should be an appropriate choice (right-hand side panel of Fig. 2). However, a t copula
appears to be a better fit as it captures more accurately the dependence structure in the lower tail and in the center
of the bivariate distribution. (The degrees of freedom and correlation coefficient are computed by the method of
maximum likelihood, which was previously discussed). Indeed, based on the Akaike, Schwarz, and Hannan-Quinn
information criteria, the t copula outperforms the normal copula.9

We follow a similar procedure for the large/mid cap pair. Given that in this case Poon et al.’s test does not reject
lower- and upper-tail dependency, our choice is a t copula. As a matter of comparison, we also fit a normal copula. As
before, we conclude by computing the above three information criteria that a t copula provides a better fit.

Further evidence on the goodness of fit of the t copula is provided by Fig. 3, which depicts QQ-plots of actual and
simulated returns for the four indices. In general, we see that the simulated data resembles the actual returns to a great
extent.

As mentioned earlier, after filtering the raw data, lower- and upper-tail dependency is rejected for the investable
market value/small cap pair at the 5% significance level. Fig. 4, panel (b), shows that the estimates of the tail indices
are indeed smaller than in the raw data, particularly so in the upper tail. Therefore, a normal copula seems a suitable
choice in this case.10

For the large/mid cap paired returns, after filtering Poon et al.’s test suggests choosing a Clayton copula as it only
detects lower-tail dependency. As a matter of comparison, we also fit a t copula to the filtered data because panel (a)
of Fig. 4 indicates that the tail index is numerically similar in both tails and approximately equal to 0.6. Our estimation
results show that a t copula, with 6 degrees of freedom and a correlation coefficient of 0.9, mimics the dependency
pattern of the data more closely than a Clayton copula.11

In sum, for the investable market value/small cap pair filtering does have an impact on our choice of a suitable
copula. In particular, filtering washes away tail dependency and a t copula becomes unsuitable. By contrast, for the

8 Our S-Plus code draws from that developed by Dean Fantazzini in GAUSS, which is freely available at
http://economia.unipv.it/pagp/pagine personali/dean/programs/t copula simul est new.

9 For the normal copula the Akaike, Schwarz, and Hannan-Quinn information criteria are, respectively, −1.003, −1.001, and −1.002, whereas
for the t copula, they are, respectively, −1.092, −1.089, and −1.091.
10 When attempting to fit a t copula to the paired filtered returns, we faced numerical problems.
11 The computed Akaike, Schwarz, and Hannan-Quinn information criteria for the t copula are −1.690, −1.687, whereas for the Clayton copula,

they are −0.886, −0.885, and −0.886, respectively.

http://economia.unipv.it/pagp/pagine_personali/dean/programs/t_copula_simul_est_new


Fig. 3. QQ-plot of actual and simulated returns based on a Student’s t copula.

large/mid cap pair, filtering does not reduce tail dependency considerably and a t copula continues to provide the
best fit. The impact of filtering on tail dependency only translates into a greater estimate of the number of degrees of
freedom of the t copula. As to Poon et al.’s test, in the latter case it proves misleading by suggesting a Clayton copula,
whereas in the former case it correctly recommends using a normal copula.

3.2. An examination of the size and power of the extreme-value dependence test

In view of the above results, Poon et al.’s test may render unsatisfactory to unveil the true tail dependency in the
data. In order to examine this issue in a more general setting, we carry out six Monte Carlo experiments. The first two
experiments consist of generating two returns series of 1000 observations each from GARCH(1, 1) processes, whose
joint behavior is assumed to be adequately represented by a t copula with 5 degrees of freedom (υ) and moderate
and relatively high correlation coefficients (ρ) of 0.5 and 0.8, respectively (Panels (a) and (b)). In both cases, by
construction, the returns series exhibit asymptotic dependency in both tails and the null hypothesis holds. Specifically,
when υ = 5 and ρ = 0.5, λu = λl = 0.21, whereas when υ = 5 and ρ = 0.8, λu = λl = 0.45.



Fig. 4. Tail index parameters computed from empirical copulas of filtered returns. Note: The upper- and left-tail dependence indices are computed,
respectively, as λ̂u = limq→1−(1 − 2q + Ĉ(q, q))/(1 − q) and λ̂l = limq→0+ Ĉ(q, q)/q, where the empirical copula is computed according to
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)
=
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∑n

k=1 1{uk≤u(i),vk≤v( j)}, i, j = 1, 2 . . . , n.

The following two other experiments consist of taking normal copulas with the same correlation coefficients and
marginals as above (Panels (c) and (d)). In these two cases, by construction, the null hypothesis is false because the
normal copula does not exhibit either left- or right-tail dependency unless ρ = 1.

Finally, two other cases in which the paired returns exhibit either left- or right-tail dependency are considered. To
that end, the selected copulas are a Clayton with parameter δ = 0.5 and a Gumbel with parameter δ = 1.25. The tail
indices are, respectively, λl = 0.25, λu = 0 and λl = 0, λu = 0.26.

Each of the six Monte Carlo experiments is repeated 100 hundred times, and Poon et al.’s test is computed for
the lower and upper tails at each iteration.12 Our results are reported in Table 3, Panels (a) through (f). As we see,
Panel (a) suggests that Poon et al.’s test exhibits a severe size distortion for moderate left- and right-tail dependency.
For instance, at the nominal size (i.e., significance level) of 1%, the null hypothesis is rejected 58% and 55% of the
time in the upper and lower tail, respectively. Panel (b) in turn shows that the size distortion decreases considerably as
the correlation coefficient and, consequently, the left- and right-tail indices increase. That is to say, for given number
of degrees of freedom, Poon et al.’s test can discriminate a true hypothesis more effectively when the degree of co-
movement of the two series is stronger.

Panels (c) and (d) show power test computations based on a normal copula. For a small correlation coefficient,
the power of the test approaches 1. That is, the false null hypothesis is virtually always rejected. However, the power
of the test decreases to a great extent for a higher correlation coefficient. For instance, when ρ = 0.8, the power of
the test is only 33 and 28 percent in the lower and upper tail, respectively, for a one percent significance level. The

12 The necessary time to compute 100 iterations for each experiment is around 50 min on a Pentium 4 with 750 MB of RAM.



Table 3
Simulation of rejection rates of tail-dependency test

Percentage rejection rate of H0: tail dependence

1% significance level 5% significance level 10% significance level

(a) Data generating process: Student’s t copula (υ = 5, ρ = 0.5)

Lower tail 58 82 86
Upper tail 55 80 90

(b) Data generating process: Student’s t copula (υ = 5, ρ = 0.8)

Lower tail 4 16 29
Upper tail 4 16 30

(c) Data generating process: Normal copula (ρ = 0.5)

Lower tail 98 100 100
Upper tail 98 100 100

(d) Data generating process: Normal copula (ρ = 0.8)

Lower tail 33 65 78
Upper tail 28 65 82

(e) Data generating process: Clayton copula (δ = 0.5)

Lower tail 32 56 74
Upper tail 100 100 100

(f) Data generating process: Gumbel copula (δ = 1.25)

Lower tail 100 100 100
Upper tail 45 68 80

(1) Individual return series of 1000 observations each are generated from GARCH(1, 1) processes with variance equations σ 2
1t = 0.001+0.1ε2

t−1 +

0.8σ 2
t−1 and σ 2

2t = 0.001 + 0.2ε2
t−1 + 0.7σ 2

t−1. The marginal distribution functions of such GARCH(1, 1) processes are estimated according to
Carmona’s [26] semi-parametric procedure. (2) Results are obtained from 100 simulations.

reason is that the normal copula will exhibit asymptotic dependence when ρ = 1. So the test does not discriminate
well between high and perfectly positive dependency.

Finally, Panels (e) and (f) of Table 3 again suggest the existence of size distortions when either the left- or right-tail
dependency is moderate. However, Poon’s test correctly rejects one hundred percent of the time the null hypothesis of
extreme-value dependence in the left tail for the Gumbel copula and in the right tail for the Clayton copula.

In sum, we can conclude that when tail dependency is relatively weak, Poon et al.’s test exhibits size distortions or
low power, depending upon the case under analysis. Therefore, in empirical applications, it is advisable to complement
Poon’s et al. test with alternative tools in order to unveil the true data generating process, as illustrated in the previous
section.

Finally, Table 4, Panels (a) and (b), presents value-at-risk (VaR) and expected shortfall (ES) estimates for alternative
copula and marginal functions. The one-period log-return of an equally weighted two-asset portfolio is computed as
r = ln(ω1eX

+ ω2eY ), where X = ln(P1,t+1/P1t ) and Y = ln(P2,t+1/P2t ) are the log-returns on assets 1 and 2,
respectively. The VaR and ES are computed as VaRq = F−1

−r (q) and ESq = E(−r | − r > VaRq) for a given loss
probability of (1 − q) and distribution function Fr . For instance, in Panel (a), for the Clayton copula, with a 1%
probability, the portfolio could lose, on average, 3.4% in one period if the portfolio return was less than −2.9% per
period.

As we can see from Table 4, the impact of the copula choice on VaR and ES becomes more noticeable at the 95
and 99% confidence levels. In particularly, for the chosen parameter values and given that the Clayton copula displays
only lower-tail dependence, the VaR and ES turn out to be highest under this functional form. Panel (b) indicates that
VaR and ES are also sensitive to the assumption of GARCH effects in the data. In particularly, if one neglected such
effects, it would considerably underestimate the portfolio risk.



Table 4
Value-at-Risk (VaR) and Expected Shortfall (ES) estimates

Copula 90% VaR 90% ES 95% VaR 95% ES 99% VaR 99% ES

(a) Normal marginal returns

Clayton (δ = 0.25) 0.016 0.022 0.021 0.026 0.029 0.034
Gumbel (δ = 1.25) 0.015 0.020 0.019 0.023 0.026 0.030
Normal (ρ = 0.7) 0.015 0.021 0.019 0.024 0.027 0.032
t (υ = 5, ρ = 0.7) 0.015 0.021 0.019 0.025 0.028 0.033

(b) GARCH(1, 1) marginal returns

Clayton (δ = 0.25) 0.032 0.048 0.043 0.059 0.068 0.082
Gumbel (δ = 1.25) 0.035 0.049 0.046 0.059 0.067 0.079
Normal (ρ = 0.7) 0.036 0.051 0.047 0.061 0.070 0.083
t (υ = 5, ρ = 0.7) 0.036 0.052 0.047 0.064 0.073 0.089

(1) In Panel (a), the marginals are simulated from N(0.0003, 0.015) and N(0.0002, 0.011). (2) In Panel (b), the marginals are simulated from
GARCH(1,1) processes with variance equations σ 2

1t = 0.001+0.1ε2
t−1 +0.8σ 2

t−1 and σ 2
2t = 0.001+0.2ε2

t−1 +0.7σ 2
t−1. The marginal distribution

functions of such GARCH(1,1) processes are estimated according to Carmona’s [26] semi-parametric procedure. (3) In both panels, the sample
size is 1000 and the simulations are repeated 1000 times.

4. Conclusions

We discussed the choice of an optimal copula function of paired returns aimed at adequately capturing the co-
movement between two financial series. Our application focused on daily data of four Morgan Stanley US stock
indices: US Investable Market Value, US Large Cap 300, US Mid Cap 450, and US Small Cap 1750 for the sample
period June 1992–June 2006. Our estimation results showed that a Student’s t copula, which allows for lower- and
upper-tail dependency, works well in general, and that, filtering returns may have an impact on the choice of the most
suitable copula.

We also computed Poon et al.’s dependency test to complement our analysis, and found that this can be sometimes
misleading as a guidance to select a suitable copula. We further discussed this issue by means of Monte Carlo
simulations, which showed that Poon et al.’ s test may exhibit size distortions and low power. In addition, in line
with recent research, we concluded that the choice of a proper copula is essential to an accurate estimation of value-
at-risk and expected shortfall.
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