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Abstract

We say that a square matrix M is a degree matrix of a given graph G if there is
a so called equitable partition of its vertices into r blocks such that whenever two
vertices belong to the same block, they have the same number of neighbors inside
any block.

We ask now whether for a given degree matrix M , there exists a graph G such
that M is a degree matrix of G, and in addition, for any two edges e, f spanning
between the same pair of blocks there exists an automorphism of G that sends e
to f . In this work, we fully characterize the matrices for which such a graph exists
and show a way to construct one.
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1 Introduction

Definition 1.1 We call a square matrix M of order r a degree matrix of a
graph G if there is a partition (that we will call equitable partition or simply
block partition) of V (G) into blocks G = (G1, . . . , Gr) such that, for every i
and every v ∈ Gi, we have:

∀j : |NG(v) ∩ Gj| = mi,j.

Degree matrices are fully characterized in the following way [1]:

Lemma 1.2 A non-negative integer square matrix M of order r is a degree
matrix if and only if the following conditions are satisfied simultaneously:

(i) (Plus-symmetry) For every 1 ≤ i, j ≤ r, mi,j = 0 =⇒ mj,i = 0.

(ii) (Cycle product identity) For every sequence of indices i1, i2, . . . , ik, ik+1,
k ≥ 2, such that ik+1 = i1,

k∏
j=1

mij ,ij+1
=

k∏
j=1

mij+1,ij .

Definition 1.3 We say that a graph G with degree matrix M of order r and
block partition G is block transitive, if for each pair of edges e and f connecting
nodes from the same pair of blocks, there exists an automorphism ϕ of G that
preserves the partition, i.e., if v ∈ Gi, then ϕ(v) ∈ Gi, and that sends e to f .

The main result in this work is that the answer is always positive. i.e. for
every matrix M ∈ M we can construct a block transitive graph that has M
as its degree matrix.

2 Block product

Definition 2.1 Let G and H be graphs with block partition G and H respec-
tively, both of size r. We construct the block product graph J = G ⊗ H
associated to the partitions G and H as follows:

(i) V (J) = (G1 × H1) ∪ (G2 × H2) ∪ . . . ∪ (Gr × Hr).

(ii) E(J) = {(u, x)(v, y) |uv ∈ E(G), xy ∈ E(H)}.
In other words, G ⊗ H is the subgraph of G × H induced by

⋃r
i=1 Gi × Hi.

We denote by G⊗H the natural partition of V (J) induced by this product,
i.e. G ⊗ H = (G1 × H1, G2 × H2, . . . , Gr × Hr). Note that the number of



neighbors of any node (u, x) in Gi × Hi is exactly the product of the number
of neighbors of u in Gi with the number of neighbors of x in Hi. Consequently,
this partition is a degree partition and the following observation holds:

Claim 2.2 If G is a graph with degree matrix M of order r associated to a
partition G, and H is a graph with degree matrix N of order r associated to a
partition H then, G ⊗H is a block partition of G ⊗ H, and the degree matrix
associated to this partition is the coordinate product M ⊗ N , defined as:

∀i, j : (M ⊗ N)i,j = Mi,jNi,j

We show that this product behaves well with respect to block transitivity.

Theorem 2.3 Let G and H be two block transitive graphs with block partitions
of size r, and degree matrices M and N , then G⊗H is also a block transitive
graph with degree matrix M ⊗ N .

Proof. Let G and H, respectively, be the block partition associated to the
graph G and H, resp., with degree matrix M and N , resp.

Let e1 = (u, x)(v, y) and e2 = (ū, x̄)(v̄, ȳ) be two edges of G ⊗ H be-
tween the same pair of blocks of the partition, say (u, x), (ū, x̄) ∈ Gi ×Hi and
(v, y), (v̄, ȳ) ∈ Gj × Hj. Since G is block transitive, there exists an automor-
phism ϕ ∈ Aut(G) that sends uv to ūv̄. Similarly there is ψ ∈ Aut(H) that
sends xy to x̄ȳ. Let’s consider the function ϕ ⊗ ψ from the set V (G ⊗ H) to
itself defined by:

(ϕ ⊗ ψ)(w, z) = (ϕ(w), ψ(z))

It is straightforward to verify that ϕ ⊗ ψ is an automorphism and, by
construction, it sends e1 to e2. �

3 Construction of block transitive graphs

Due to space restrictions some proofs are sketched or omitted in the sequel.

Lemma 3.1 Let M be a degree matrix with 0’s outside the diagonal. Then
we can replace the 0’s outside the diagonal with appropriate positive numbers
in a way that the resulting matrix M ′ is a degree matrix.

Proof. Let S = (s1, s2, . . . , sr) be the minimal solution for the block sizes
problem associated to M . Given that M is a degree matrix we know that
there exists a graph G with partition G of sizes S and degree matrix M .
For each pair of different blocks Gi and Gj that are not connected (i.e., that



mi,j = mj,i = 0) we insert hi,j = gcd(si, sj) disjoint copies of the graph
K(si/hi,j),(sj/hi,j) using the vertices of Gi and Gj. The resulting graph will have
the following matrix M ′:

m′
i,j =

{
mi,j if mi,j 
= 0 or i = j.

sj/hi,j if mi,j = 0 and i 
= j.

�

Lemma 3.2 Every degree matrix M with zeros on the diagonal can be decom-
posed into coordinate product of matrices Si,j(m) and AI(m) of form:

(Si,j(m))k,l =

⎧⎪⎨
⎪⎩

0 if k = l.

m if {k, l} = {i, j}.
1 in other case.

(AI(m))k,l =

⎧⎪⎨
⎪⎩

0 if k = l.

m if k ∈ I, l 
∈ I.

1 in other case.

Proof. According to Lemma 3.1 we construct matrix M ′ and write

M = M ′ ⊗
⊗

i<j, mi,j=0

Si,j(0)

In addition, we expand

M ′ = M ′′ ⊗
⊗

i<j, gcd(m′
i,j ,m′

j,i)>1

Si,j(gcd(m′
i,j, m

′
j,i))

so in the resulting matrix M ′′ the symmetric entries are relative primes.

Let P = {p1, . . . , pk} be the set of prime divisors of elements of M ′′. If P
is empty then we are done, otherwise we further decompose

M ′′ =
⊗
p∈P

Mp

where (Mp)k,l is the greatest power of p dividing (M ′′)k,l.

It remains to disassemble each matrix Mp into coordinate product of ma-
trices of form AI(p). For that we iteratively repeat the following procedure:



1. Select I to be the set of indices of rows with an element divisible by p.

2. If I is empty then stop, otherwise divide coordinatewise Mp by AI(p) and
continue by step 1.

�

We now construct a block transitive graph with degree matrix Si,j(m).

We take V = [m + 1] × [r] and

E = {(a, k)(a, l) | {k, l} 
= {i, j}} ∪ {(a, i)(b, j) | a 
= b}.
In explanation the first set of edges is a disjoint union of m + 1 copies of
the graph Kr − e joined by the second set of edges that define a bipartite
complement of a (m + 1)-matching between the i-th and the j-th block.

Claim 3.3 The graph GS = (V, E) is block transitive and Si,j(m) is its degree
matrix.

Now we construct a block transitive graph with degree matrix AI(m).
Without loss of generality we may assume, that the set I is of size p and that
it contains the first p natural numbers, i.e. I = [p].

We take V = [1] × [r] ∪ [m] × [p] and

E = {(a, i)(a, j)} ∪ {(a, i)(1, j) | i ≤ p, j > p}.
In other words, this graph consists of m cliques Kp joined to a single clique
Kr−p by a complete bipartite graph.

Claim 3.4 The graph GA = (V, E) is block transitive and AI(m) is its degree
matrix.

4 Main Theorem

Theorem 4.1 For every matrix M ∈ M we can construct a block transitive
graph G with degree matrix M .

Proof. We first transform the given matrix M into a matrix M ′ such that
M ′ contains all non-diagonal entries of M .

As M ′ has zeros on the diagonal, we now decompose the matrix M ′

into coordinate product of matrices of form Si,j(m) and AI(m) according to
Lemma 3.2. By Theorem 2.3 we construct a block transitive graph G′ with
degree matrix M ′ according to this decomposition.

It remains to further modify G′ to incorporate all nonzero diagonal en-
tries of M . Without loss of generality assume that m1,1, m2,2, . . . , mk,k are all



nonzero diagonal entries of M , and put z = (m1,1 +1)(m2,2 +1) . . . (mk,k +1).
We take z copies of the graph G′ and distinguish the z copies u(j1,j2,...,jk) of
every vertex u by indices (j1, j2, . . . , jk) taking range [m1,1 + 1] × [m2,2 + 1] ×
· · · × [mk,k + 1].

Now for every index i = 1, . . . , k we join vertices from the block Gi by
z

mi,i+1
cliques Kmi,i+1 in the way that two vertices become connected if only

if they are copies of the same vertex and their indices differ only in the i-th
coordinate.

We claim that by this operation the resulting graph G remains block tran-
sitive and that M is its degree matrix. �
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