# Block transitivity and degree matrices 

Jiří Fiala ${ }^{\text {a }}$, José Soto ${ }^{\text {b,1 }}$,<br>${ }^{\text {a }}$ KAM, DIMATIA and Institute for Theoretical Computer Science (ITI) Charles University, Faculty of Mathematics and Physics, Malostranské nám. 2/25, 11800 Prague, Czech Republic<br>Email: fiala@kam.mff.cuni.cz ${ }^{2}$<br>${ }^{\mathrm{b}}$ Depto. Ing. Matemtica, Univesidad de Chile<br>Correo 3, Santiago 170-3, Chile<br>Email: jsoto@dim.uchile.cl


#### Abstract

We say that a square matrix $M$ is a degree matrix of a given graph $G$ if there is a so called equitable partition of its vertices into $r$ blocks such that whenever two vertices belong to the same block, they have the same number of neighbors inside any block.

We ask now whether for a given degree matrix $M$, there exists a graph $G$ such that $M$ is a degree matrix of $G$, and in addition, for any two edges $e, f$ spanning between the same pair of blocks there exists an automorphism of $G$ that sends $e$ to $f$. In this work, we fully characterize the matrices for which such a graph exists and show a way to construct one.


Keywords: degree matrix, transitive graphs

[^0]
## 1 Introduction

Definition 1.1 We call a square matrix $M$ of order $r$ a degree matrix of a graph $G$ if there is a partition (that we will call equitable partition or simply block partition) of $V(G)$ into blocks $\mathcal{G}=\left(G_{1}, \ldots, G_{r}\right)$ such that, for every $i$ and every $v \in G_{i}$, we have:

$$
\forall j:\left|\mathcal{N}_{G}(v) \cap G_{j}\right|=m_{i, j} .
$$

Degree matrices are fully characterized in the following way [1]:
Lemma 1.2 A non-negative integer square matrix $M$ of order $r$ is a degree matrix if and only if the following conditions are satisfied simultaneously:
(i) (Plus-symmetry) For every $1 \leq i, j \leq r, m_{i, j}=0 \Longrightarrow m_{j, i}=0$.
(ii) (Cycle product identity) For every sequence of indices $i_{1}, i_{2}, \ldots, i_{k}, i_{k+1}$, $k \geq 2$, such that $i_{k+1}=i_{1}$,

$$
\prod_{j=1}^{k} m_{i_{j}, i_{j+1}}=\prod_{j=1}^{k} m_{i_{j+1}, i_{j}} .
$$

Definition 1.3 We say that a graph $G$ with degree matrix $M$ of order r and block partition $\mathcal{G}$ is block transitive, if for each pair of edges e and $f$ connecting nodes from the same pair of blocks, there exists an automorphism $\varphi$ of $G$ that preserves the partition, i.e., if $v \in G_{i}$, then $\varphi(v) \in G_{i}$, and that sends $e$ to $f$.

The main result in this work is that the answer is always positive. i.e. for every matrix $M \in \mathcal{M}$ we can construct a block transitive graph that has $M$ as its degree matrix.

## 2 Block product

Definition 2.1 Let $G$ and $H$ be graphs with block partition $\mathcal{G}$ and $\mathcal{H}$ respectively, both of size $r$. We construct the block product graph $J=G \otimes H$ associated to the partitions $\mathcal{G}$ and $\mathcal{H}$ as follows:
(i) $V(J)=\left(G_{1} \times H_{1}\right) \cup\left(G_{2} \times H_{2}\right) \cup \ldots \cup\left(G_{r} \times H_{r}\right)$.
(ii) $E(J)=\{(u, x)(v, y) \mid u v \in E(G), x y \in E(H)\}$.

In other words, $G \otimes H$ is the subgraph of $G \times H$ induced by $\bigcup_{i=1}^{r} G_{i} \times H_{i}$.
We denote by $\mathcal{G} \otimes \mathcal{H}$ the natural partition of $V(J)$ induced by this product, i.e. $\mathcal{G} \otimes \mathcal{H}=\left(G_{1} \times H_{1}, G_{2} \times H_{2}, \ldots, G_{r} \times H_{r}\right)$. Note that the number of
neighbors of any node $(u, x)$ in $G_{i} \times H_{i}$ is exactly the product of the number of neighbors of $u$ in $G_{i}$ with the number of neighbors of $x$ in $H_{i}$. Consequently, this partition is a degree partition and the following observation holds:

Claim 2.2 If $G$ is a graph with degree matrix $M$ of order $r$ associated to a partition $\mathcal{G}$, and $H$ is a graph with degree matrix $N$ of order $r$ associated to a partition $\mathcal{H}$ then, $\mathcal{G} \otimes \mathcal{H}$ is a block partition of $G \otimes H$, and the degree matrix associated to this partition is the coordinate product $M \otimes N$, defined as:

$$
\forall i, j: \quad(M \otimes N)_{i, j}=M_{i, j} N_{i, j}
$$

We show that this product behaves well with respect to block transitivity.

Theorem 2.3 Let $G$ and $H$ be two block transitive graphs with block partitions of size $r$, and degree matrices $M$ and $N$, then $G \otimes H$ is also a block transitive graph with degree matrix $M \otimes N$.

Proof. Let $\mathcal{G}$ and $\mathcal{H}$, respectively, be the block partition associated to the graph $G$ and $H$, resp., with degree matrix $M$ and $N$, resp.

Let $e_{1}=(u, x)(v, y)$ and $e_{2}=(\bar{u}, \bar{x})(\bar{v}, \bar{y})$ be two edges of $G \otimes H$ between the same pair of blocks of the partition, say $(u, x),(\bar{u}, \bar{x}) \in G_{i} \times H_{i}$ and $(v, y),(\bar{v}, \bar{y}) \in G_{j} \times H_{j}$. Since $G$ is block transitive, there exists an automorphism $\varphi \in \operatorname{Aut}(G)$ that sends $u v$ to $\bar{u} \bar{v}$. Similarly there is $\psi \in \operatorname{Aut}(H)$ that sends $x y$ to $\bar{x} \bar{y}$. Let's consider the function $\varphi \otimes \psi$ from the set $V(G \otimes H)$ to itself defined by:

$$
(\varphi \otimes \psi)(w, z)=(\varphi(w), \psi(z))
$$

It is straightforward to verify that $\varphi \otimes \psi$ is an automorphism and, by construction, it sends $e_{1}$ to $e_{2}$.

## 3 Construction of block transitive graphs

Due to space restrictions some proofs are sketched or omitted in the sequel.
Lemma 3.1 Let $M$ be a degree matrix with 0's outside the diagonal. Then we can replace the 0's outside the diagonal with appropriate positive numbers in a way that the resulting matrix $M^{\prime}$ is a degree matrix.

Proof. Let $S=\left(s_{1}, s_{2}, \ldots, s_{r}\right)$ be the minimal solution for the block sizes problem associated to $M$. Given that $M$ is a degree matrix we know that there exists a graph $G$ with partition $\mathcal{G}$ of sizes $S$ and degree matrix $M$. For each pair of different blocks $G_{i}$ and $G_{j}$ that are not connected (i.e., that
$\left.m_{i, j}=m_{j, i}=0\right)$ we insert $h_{i, j}=\operatorname{gcd}\left(s_{i}, s_{j}\right)$ disjoint copies of the graph $K_{\left(s_{i} / h_{i, j}\right),\left(s_{j} / h_{i, j}\right)}$ using the vertices of $G_{i}$ and $G_{j}$. The resulting graph will have the following matrix $M^{\prime}$ :

$$
m_{i, j}^{\prime}= \begin{cases}m_{i, j} & \text { if } m_{i, j} \neq 0 \text { or } i=j . \\ s_{j} / h_{i, j} & \text { if } m_{i, j}=0 \text { and } i \neq j .\end{cases}
$$

Lemma 3.2 Every degree matrix $M$ with zeros on the diagonal can be decomposed into coordinate product of matrices $S_{i, j}(m)$ and $A_{I}(m)$ of form:

$$
\begin{aligned}
\left(S_{i, j}(m)\right)_{k, l} & = \begin{cases}0 & \text { if } k=l . \\
m & \text { if }\{k, l\}=\{i, j\} . \\
1 & \text { in other case } .\end{cases} \\
\left(A_{I}(m)\right)_{k, l} & = \begin{cases}0 & \text { if } k=l . \\
m & \text { if } k \in I, l \notin I . \\
1 & \text { in other case. }\end{cases}
\end{aligned}
$$

Proof. According to Lemma 3.1 we construct matrix $M^{\prime}$ and write

$$
M=M^{\prime} \otimes \bigotimes_{i<j, m_{i, j}=0} S_{i, j}(0)
$$

In addition, we expand

$$
M^{\prime}=M^{\prime \prime} \otimes \bigotimes_{i<j, \operatorname{gcd}\left(m_{i, j}^{\prime}, m_{j, i}^{\prime}\right)>1} S_{i, j}\left(\operatorname{gcd}\left(m_{i, j}^{\prime}, m_{j, i}^{\prime}\right)\right)
$$

so in the resulting matrix $M^{\prime \prime}$ the symmetric entries are relative primes.
Let $P=\left\{p_{1}, \ldots, p_{k}\right\}$ be the set of prime divisors of elements of $M^{\prime \prime}$. If $P$ is empty then we are done, otherwise we further decompose

$$
M^{\prime \prime}=\bigotimes_{p \in P} M_{p}
$$

where $\left(M_{p}\right)_{k, l}$ is the greatest power of $p$ dividing $\left(M^{\prime \prime}\right)_{k, l}$.
It remains to disassemble each matrix $M_{p}$ into coordinate product of matrices of form $A_{I}(p)$. For that we iteratively repeat the following procedure:

1. Select $I$ to be the set of indices of rows with an element divisible by $p$.
2. If $I$ is empty then stop, otherwise divide coordinatewise $M_{p}$ by $A_{I}(p)$ and continue by step 1 .

We now construct a block transitive graph with degree matrix $S_{i, j}(m)$.
We take $V=[m+1] \times[r]$ and

$$
E=\{(a, k)(a, l) \mid\{k, l\} \neq\{i, j\}\} \cup\{(a, i)(b, j) \mid a \neq b\}
$$

In explanation the first set of edges is a disjoint union of $m+1$ copies of the graph $K_{r}-e$ joined by the second set of edges that define a bipartite complement of a $(m+1)$-matching between the $i$-th and the $j$-th block.
Claim 3.3 The graph $G_{S}=(V, E)$ is block transitive and $S_{i, j}(m)$ is its degree matrix.

Now we construct a block transitive graph with degree matrix $A_{I}(m)$. Without loss of generality we may assume, that the set $I$ is of size $p$ and that it contains the first $p$ natural numbers, i.e. $I=[p]$.

We take $V=[1] \times[r] \cup[m] \times[p]$ and

$$
E=\{(a, i)(a, j)\} \cup\{(a, i)(1, j) \mid i \leq p, j>p\}
$$

In other words, this graph consists of $m$ cliques $K_{p}$ joined to a single clique $K_{r-p}$ by a complete bipartite graph.

Claim 3.4 The graph $G_{A}=(V, E)$ is block transitive and $A_{I}(m)$ is its degree matrix.

## 4 Main Theorem

Theorem 4.1 For every matrix $M \in \mathcal{M}$ we can construct a block transitive graph $G$ with degree matrix $M$.

Proof. We first transform the given matrix $M$ into a matrix $M^{\prime}$ such that $M^{\prime}$ contains all non-diagonal entries of $M$.

As $M^{\prime}$ has zeros on the diagonal, we now decompose the matrix $M^{\prime}$ into coordinate product of matrices of form $S_{i, j}(m)$ and $A_{I}(m)$ according to Lemma 3.2. By Theorem 2.3 we construct a block transitive graph $G^{\prime}$ with degree matrix $M^{\prime}$ according to this decomposition.

It remains to further modify $G^{\prime}$ to incorporate all nonzero diagonal entries of $M$. Without loss of generality assume that $m_{1,1}, m_{2,2}, \ldots, m_{k, k}$ are all
nonzero diagonal entries of $M$, and put $z=\left(m_{1,1}+1\right)\left(m_{2,2}+1\right) \ldots\left(m_{k, k}+1\right)$. We take $z$ copies of the graph $G^{\prime}$ and distinguish the $z$ copies $u_{\left(j_{1}, j_{2}, \ldots, j_{k}\right)}$ of every vertex $u$ by indices $\left(j_{1}, j_{2}, \ldots, j_{k}\right)$ taking range $\left[m_{1,1}+1\right] \times\left[m_{2,2}+1\right] \times$ $\cdots \times\left[m_{k, k}+1\right]$.

Now for every index $i=1, \ldots, k$ we join vertices from the block $G_{i}$ by $\frac{z}{m_{i, i}+1}$ cliques $K_{m_{i, i}+1}$ in the way that two vertices become connected if only if they are copies of the same vertex and their indices differ only in the $i$-th coordinate.

We claim that by this operation the resulting graph $G$ remains block transitive and that $M$ is its degree matrix.

## References

[1] J. Fiala, D. Paulusma, J. Telle. Locally constrained graph homomorphism and equitable partitions (Preprint).


[^0]:    ${ }^{1}$ Gratefully acknowledges the support of Proyecto Anillo en Redes
    ${ }^{2}$ Supported by the Ministry of Education of the Czech Republic as project 1M0021620808.

