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Abstract. We consider incompressible 2d Navier-Stokes equations in the
whole plane with external nonconservative forces fields. The initial data and
external field are functions assumed to satisfy only slight integrability proper-
ties. We develop a probabilistic interpretation of these equations based on the
associated vortex equation, in order to construct a numerical particle method
to approximate the solutions. More precisely, we relate the vortex equation
with additional term to a nonlinear process with random space-time birth,

which provides a probabilistic description of the creation of vorticity. We
then introduce interacting particle systems defined for a regularized interac-
tion kernel, whose births are chosen randomly in time and space. By a coupling
method, we show that these systems are approximations of the nonlinear pro-
cess and obtain precise convergence estimates. From this result, we deduce
a stochastic numerical particle method to obtain the vorticity and also to
recover the velocity field. The results are either pathwise or of weak conver-
gence, depending on the integrability of the data. We illustrate our results
with simulations.

1. Introduction

The aim of this paper is to obtain an approximation particle method based on
the creation of vorticity to simulate solutions of Navier-Stokes equations with non-
conservative external forces. The Navier-Stokes equation for a homogeneous and
incompressible fluid in the whole plane subject to an external force field f is given
by

(1)

∂u
∂t + (u · ∇)u = ν∆u −∇p + f ;

div u(t, x) = 0; u(t, x) → 0 as |x| → ∞.

Here, u denotes the velocity field, p is the pressure function and ν > 0 is the
viscosity (constant) coefficient.

In absence of the external force field (or more generally, when f = ∇Ψ is a con-
servative field), a probabilistic interpretation of (1) has been known since the work
of Marchioro and Pulvirenti [16]. The probabilistic approach to (1) is based on the
associated vortex equation, i.e. the equation satisfied by the (scalar) vorticity field
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w := curlu, which is interpreted as a generalized McKean-Vlasov equation associ-
ated with a nonlinear diffusion process. This process can also be obtained as the
limit of interacting particle systems in mean field interaction, and this fact provides
stochastic approximations of the vortex equation associated with (1). Convergence
on the path space of these particles (or equivalently, propagation of chaos for the
system) has been proved in more recent works of Méléard [17] and [18].

In this work, we extend that approach to the case of the Navier-Stokes equation
with an external force field (1). The nonconservative external force introduces an
additive term in the vortex equation. More precisely, the vorticity field w = curl u
satisfies the scalar equation

(2)

∂w
∂t + (u · ∇)w = ν∆w + g;

w0(x) = curl u(0, x).

The external field g = curlf can be physically interpreted as the creation of vorticity.
In order to provide a probabilistic description of this phenomenon, we relate this
equation to a nonlinear process with random birth in space and time, according to
a law related to the initial vorticity w0 and the external field g.

We will first consider a mollified setting, working with regularized versions of
the Biot-Savart kernel and adapting classic McKean-Vlasov techniques to prove
the pathwise existence and uniqueness of a mollified nonlinear process. The family
of its time-marginal laws weighted by some function of the “space-time initial data”
gives a solution of the mollified vortex equation. We then construct a stochastic
interacting particle system whose births are chosen randomly in time and space and
prove propagation of chaos and its convergence to the mollified nonlinear process.

Then, we remove the regularization parameter, first under the assumption that
the data w0 and g are L1 ∩ Lp functions (for p > 4

3 ), in order to deal with the
singularity of the kernel K (this choice is suggested by the continuity properties
of the Biot and Savart operator). We take advantage of the volume preserving
property of the stochastic flow associated with the mollified nonlinear process to
obtain uniform Lp estimates. We deduce the existence of a global mild solution of
the vortex equation, and by analytic techniques we prove uniqueness and regularity
of this solution. Such regularity is essential to get pathwise existence and uniqueness
of the nonlinear process.

Moreover, we obtain pathwise convergence for the particle system in a strong
norm, improving previous results on the stochastic vortex method. Some conver-
gence estimates are given. We deduce an approximation result for the velocity field
u at an explicit rate, which also enlightens the case where f = 0.

We then extend these results to the L1-only initial condition and external field,
which are the natural probabilistic assumptions. The analytical part generalizes
to the case g �= 0 some arguments of Ben-Artzi [1] and Brezis [5] when g = 0.
We obtain as before existence, uniqueness and regularity of the mild solution of
the vortex equation, existence and uniqueness in law for the nonlinear process,
together with convergence in law of the particle approximations. The explosion of
the solution at time 0 prevents us in this case from obtaining pathwise results and
stronger convergence.

In the last section, we develop a numerical example, simulating vortices created
randomly in space and time. The law of these random births is computed from the



initial condition and the additive term curlf , as described in the theoretical setup.
Some numerical experiments are presented.

Let us point out that deterministic vortex creation methods have been developed
for bounded domains [9], but such creations are related to the boundary condition
(see also [14] for a probabilistic point of view). From a numerical point of view, an
interesting feature of our method is that it does not necessitate the use of a grid. It
is also worth noting that to our knowledge, no numerical method, either stochastic
or deterministic, has so far been developed in the context of the whole plane and
for general external force fields. We expect that the particle method we propose
will be of interest for numerical applications.

Throughout the paper we shall need the following notation and the version of
Gronwall’s lemma quoted below (and proved e.g. in [10]):

- C1,2 is the set of real valued functions on [0, T ]×R
2 with continuous deriva-

tives up to the first order in t ∈ [0, T ] and up to the second order in x ∈ R.
C1,2

b is the subspace of bounded functions in C1,2 with bounded derivatives.
- D is the space of of infinitely differentiable functions on R

2 having compact
support.

- For all 1 ≤ p ≤ ∞ we denote by Lp the space Lp(R2) of real valued functions
on R

2. By ‖ · ‖p we denote the corresponding norm and p∗ stands for the
Hölder conjugate of p. We write W i,p = W i,p(R2) for the Sobolev space of
functions in Lp with partial derivatives up to the i-th order in Lp.

- C and C(T ) are finite positive constants that may change from line to line.

Lemma 1.1. Let k : [0, T ] → R+ be a bounded measurable function and C, A ≥ 0
and θ > 0 constants such that

k(t) ≤ A + C

∫ t

0

(t − s)θ−1k(s) ds

for all t ≤ T . Then, supt≤T k(t) ≤ C(T )A for some C(T ) > 0 not depending on A.

2. The vortex equation with external force

and its probabilistic interpretation

Is is well known that given u a regular solution of the Navier-Stokes equation
with external force (1), the vorticity function w = curl u satisfies equation (2),
where g = curl f . By the divergence free property of u and the so-called Biot and
Savart law, we can write u = K ∗ w where

K(x) =
1
2π

(−x2, x1)
|x|2 , x ∈ R

2\{0},

is the so-called Biot-Savart kernel in R
2. For these facts and further background

on vorticity, we refer for instance to Chorin and Marsden [8], Ch. 1, or Bertozzi
and Majda [2].

We will fix for all the sequels an arbitrary finite time interval [0, T ].
In view of our probabilistic interpretation of equation (2), it will be natural to

assume that the functions w0 : R
2 → R and g : R+ × R

2 → R satisfy the minimal
integrability hypothesis:

• w0 ∈ L1(R2).
• g ∈ L1([0, T ] × R

2).



We denote by ‖g‖1,T the L1-norm of g on [0, T ] × R
2 :

‖g‖1,T =
∫ T

0

∫
R2

|g(s, x)|dx ds.

We are interested in weak solutions of (2) defined as follows.

Definition 2.1. A measurable function w : [0, T ] × R
2 → R is a weak solution of

the vortex equation (2) with initial condition w0 and external field g on the interval
[0, T ], if

(3)
∫

[0,T ]×R2
|K ∗ wt(x)||wt(x)|dxdt < ∞,

and for every function φ ∈ C1,2
b ([0, T ] × R

2) and t ≤ T ,

(4)
∫

R2
φ(t, x)wt(x)dx =

∫
R2

φ(0, x)w0(x)dx +
∫ t

0

∫
R2

φ(s, x)gs(x)dx ds

+
∫ t

0

∫
R2

[
∂φ(s, x)

∂s
+ ν�φ(s, x) + (K ∗ ws)(x)∇φ(s, x)

]
ws(x)dx.

For some analytic purposes we shall also need to deal with a mild form of equation
(2). We denote by

Gν
t (x) := (4πνt)−1e−|x|2/4νt

the heat kernel in R
2. The following are well known estimates, that are obtained

using Young’s inequality and the Gaussian bound for the space derivatives of the
heat kernel (see e.g. [11]).

Lemma 2.2. Let m ∈ [1,∞] and l ≥ m. There exist constants c(m, l), c′(m, l) > 0
such that for all f ∈ Lm

‖Gν
t ∗ f‖l ≤ c(m, l)t

1
l −

1
m ‖f‖m and ‖∇Gν

t ∗ f‖l ≤ c′(m, l)t−
1
2+ 1

l −
1
m ‖f‖m.

Definition 2.3. A measurable function w : [0, T ]×R
2 → R is called a mild solution

of the vortex equation with external field g if condition (3) holds and

(5) wt(x) = Gν
t ∗ w0(x) +

∫ t

0

Gν
t−s ∗ gs(x) ds +

∫ t

0

∇Gν
t−s ∗ [(K ∗ ws)ws] (x) ds

for all t ∈ [0, T ].

Remark 2.4. By taking for each fixed t > 0 and ψ ∈ D in equation (4) the function
φt(s, x) := Gν

t−s ∗ ψ(x) (which solves on [0, t[×R
2 the heat equation with final

condition ψ), and using Fubini’s theorem (thanks to (3)), we see that weak solutions
are always mild ones.

Now we shall relate the term involving the external field g with the creation of
vorticity in the whole space, and interpret equation (2) as a generalized McKean-
Vlasov equation, by introducing a nonlinear process with random space-time birth.

In Jourdain and Méléard [14], creation of vorticity on the boundary of a bounded
domain is shown to be related to a vortex equation with Neumann’s condition on the
boundary, and an analogous probabilistic setup is developed in the bounded domain.
Here, working in the whole space prevents us from using similar techniques.



Let us define the probability measure P0(dt, dx) on [0, T ] × R
2 by

P0(dt, dx) = δ0(dt)
|w0(x)|

‖w0‖1 + ‖g‖1,T
dx +

|gt(x)|
‖w0‖1 + ‖g‖1,T

dx dt

= δ0(dt)ω̄0(x)dx + ḡt(x)dx dt,(6)

together with the scalar weight function

(7) h(t, x) = 1{t=0}
w0(x)
|w0(x)| (‖w0‖1 + ‖g‖1,T ) +

gt(x)
|gt(x)| (‖w0‖1 + ‖g‖1,T )1{t>0}

with the convention “0
0 = 0” and 1 denoting the indicator function. We note that

|h(t, x)| = ‖w0‖1 + ‖g‖1,T or 0.

Remark 2.5. For any measurable bounded function φ on [0, T ] × R
2,∫

[0,T ]×R2
φ(t, x)h(t, x)P0(dx, dt) =

∫
R2

φ(0, x)w0(x)dx +
∫

[0,T ]×R2
φ(t, x)gt(x)dx dt.

In the sequel, (τ, (Xt)t∈[0,T ]) denotes the canonical process on the space CT :=
[0, T ] × C([0, T ], R2). With each probability measure Q on CT we associate a flow
of signed measures (Q̃t)t∈[0,T ] on R

2, defined for bounded measurable functions
f : R

2 → R by

(8) Q̃t(f) = EQ
(
f(Xt)h(τ, X0)1t≥τ

)
.

The total mass of Q̃t is bounded by ‖w0‖1 +‖g‖1,T . Moreover, if Q◦ (Xt)−1 has
a density, say ρt, then so does Q̃t.

We then denote the density of Q̃t by ρ̃t(x), and, when they exist, take versions
of ρt(x) and ρ̃t(x) that are measurable in (t, x) .

Definition 2.6. A probability measure P on CT is a solution to the nonlinear
martingale problem (MP) if

• P◦(τ, X0)−1 = P0 and P̃t has bi-measurable densities ρ̃t(x)
for (t, x) ∈ [0, T ] × R

2

• f(t, Xt) − f(τ, X0)
−

∫ t

0

[
∂f
∂s (s, Xs) + ν�f(s, Xs) + K ∗ ρ̃s(Xs)∇f(s, Xs)

]
1s≥τds,

0 ≤ t ≤ T, is a continuous P -martingale for all f ∈ C1,2
b w.r.t. the filtration

Ft = σ(τ, (Xs), s ≤ t).

The link between this problem and equation (2) is the following.

Lemma 2.7. Assume that the problem (MP) has a solution P which satisfies∫
[0,T ]×R2

|K ∗ ρ̃t(x)||ρ̃t(x)|dxdt < ∞.

Then w := ρ̃ is a weak solution of the vortex equation (2) with external field g.



Proof. Since the variable h(τ, X0)1{τ≤t} is measurable with respect to F0, by defi-
nition of (MP) the processes

f(t, Xt)h(τ, X0)1{τ≤t} − f(τ, X0)h(τ, X0)1{τ≤t}

−
∫ t

0

[
∂f

∂s
(s, Xs) + ν�f(s, Xs)ds + K ∗ ρ̃s(Xs)∇f(s, Xs)

]
h(τ, X0)1{s≥τ}ds

are seen to have vanishing expectation for all f ∈ C1,2
b . We take that expectation

and use Fubini’s theorem, and we conclude by Remark 2.5 and the definition of
ρ̃. �

Remark 2.8. By a standard argument using the semi-martingale decomposition
of the coordinate processes Xi and their products XiXj , we obtain that for f ∈
C1,2

b , the martingale part of f(t, Xt) in (MP) is given by the stochastic integral√
2ν

∫ t

0
∇f(s, Xs)1{s≥τ}dBs, with respect to a Brownian motion B defined on some

extension of the canonical space.
Consequently, on the random interval [0, τ ], the martingales in (MP) are null

and Xt = X0.
It follows that the second condition in (MP) is equivalent to the fact that

f(t, Xt) − f(0, X0) −
∫ t

0

∂f

∂s
(s, Xs)ds(9)

−
∫ t

0

[ν�f(s, Xs) + K ∗ ρ̃s(Xs)∇f(s, Xs)]1{s≥τ}ds

is a continuous P -martingale with respect to (Ft) for all f ∈ C1,2
b .

3. The particle system

In a first stage we deal with a regularized version of the kernel K. Let ϕ : R
2 → R

be a bounded and smooth function with bounded derivatives with ‖ϕ‖1 = 1. For
ε > 0 define

Kε = K ∗ ϕε,

where ϕε(x) = 1
ε2 ϕ(x

ε ). The function ¡Kε is bounded and smooth, and has bounded
derivatives. We denote by Mε its sup-norm on R

2 and by Lε a Lipschitz constant,
that respectively behave like 1

ε2 and 1
ε3 when ε << 1. Notice that div Kε =

(div K) ∗ ϕε = 0.
In this section we fix ε > 0, and consider a “mollified” version of equation (2):

(10) ∂v
∂t + (Kε ∗ v · ∇)v = ν∆v + g.

We will adapt the usual McKean-Vlasov approach to give a probabilistic inter-
pretation to (10) and construct an approximating stochastic particle system.

3.1. The nonlinear mollified process. Consider on some given probability space
a 2-dimensional Brownian motion B and a R+×R

2 valued random variable (τ, X0)
independent of B with law P0.

Theorem 3.1. There is existence and uniqueness, trajectorial and in law, for the
following nonlinear stochastic differential equation in the sense of McKean:

(11) Xε
t = X0 +

√
2ν

∫ t

0

1s≥τdBs +
∫ t

0

Kε ∗ P̃ ε
s (Xε

s )1s≥τds, t > 0,



under the conditions law(τ, X0) = P0 and law(τ, Xε) = P ε.

Proof. The proof is easily adapted from Theorem 1.1 in [21]. Denote by dT the
Kantorovich-Wasserstein distance on CT

dT (Q1, Q2) := inf
{∫

(CT )2

[
sup

t∈[0,T ]

(|x(t) − y(t)| ∧ 1) + |α− β|
]
Π(dα, dx, dβ, dy) :

Π has marginal laws Q1 and Q2

}
,

and by C0
T the closed subspace C0

T = {Q ∈ P(CT ) : Q◦(τ, X0)−1 = P0}. Define a
mapping Θ : C0

T → C0
T associating with Q the law Θ(Q) of the unique solution of

XQ
t = X0 +

√
2ν

∫ t

0

1s≥τdBs +
∫ t

0

Kε ∗ Q̃s(XQ
s )1s≥τds.

By trajectorial considerations, one can show that for each t ≤ T ,

dt(Θ(Q1), Θ(Q2)) ≤ C(T )
∫ t

0

ds(Q1, Q2)ds

(with dt(Q1, Q2) the distance between the projections of Q1 and Q2 to Ct). We
deduce the existence of a unique fixed point for Θ and hence a unique solution in
law. The trajectorial statement then follows from the Lipschitz property of Kε (see
[21] for details). �

We shall need in the sequel the stochastic flow associated with the nonlinear
process (11)

(12) ξε
s,t(x) = x +

√
2ν(Bt − Bs) +

∫ t

s

Kε ∗ P̃ ε
r (ξε

s,r(x))dr, x ∈ R
2, 0 ≤ s ≤ t.

The regularity properties of Kε ∗ P̃ ε
s (x) imply the existence of a continuous

version (s, t, x) �→ ξε
s,t(x) such that x �→ ξε

s,t(x) is continuously differentiable for all
(s, t) (cf. Kunita [15]). Since Xε

t = X0 for all t ≤ τ , we have that

Xε
t = ξε

τ,t(X0)1{t≥τ} + X01{t<τ}.

Denote by
Gε(s, x; t, y), (s, x, t, y) ∈ (R+ × R

2)2, s < t,

the density of ξε
s,t(x) (which is a continuous function of (s, x, t, y); see [11]). Con-

ditioning with respect to (τ, X0), we obtain for bounded functions f that

E(f(Xε
t )) =E

[
f(ξε

τ,t(Xτ ))1{t≥τ}
]
+ E

[
f(X0)1{t<τ}

]
=

∫ t

0

∫
(R2)2

f(y)Gε(s, x; y, t)dyP0(ds, dx) +
∫ T

t

∫
R2

f(x)P0(ds, dx)

=
∫

R2
f(x)w̄0(x)dx +

∫ t

0

∫
R2

[∫
R2

f(y)Gε(s, x; t, y)dy

]
ḡs(x)dx ds

+
∫ T

t

∫
R2

f(x)ḡs(x)dxds,

where the notation w̄0 and ḡs have been introduced in (6).



We deduce that for each t ∈]0, T ], Xε
t has a bi-measurable density ρε

t (y). Simi-
larly, we have∫

R2
f(x)P̃ ε

t (dx) =E[f(ξε
τ,t(X0))h(τ, X0)1{τ≤t}] + E[f(X0)h(τ, X0)1{τ>t}]

=
∫

R2
f(x)w0(x)dx +

∫ t

0

∫
R2

[∫
R2

f(y)Gε(s, x; t, y)dy

]
gs(x)dx ds

+
∫ T

t

∫
R2

f(x)gs(x)dxds

and then P̃ ε
t (dy) has a bi-measurable density ρ̃ε

t (y).

Remark 3.2. By construction,

(13) sup
ε>0

sup
t∈[0,T ]

‖ρ̃ε
t‖1 ≤ ‖w0‖1 + ‖g‖1,T .

Corollary 3.3. The function ρ̃ε is the unique weak solution of equation (10) in
L∞([0, T ], L1).

Proof. Write Itô’s formula for φ(t, Xε
t ) and proceed as in Lemma 2.7 (the bound-

edness of Kε provides the required integrability condition). We obtain that ρ̃ε
t ∈

L∞([0, T ], L1) solves

(14)
∫

R2
φ(t, x)ρ̃ε

t (x)dx =
∫

R2
φ(0, x)w0(x)dx +

∫ t

0

∫
R2

φ(s, x)gs(x)dx ds

+
∫ t

0

∫
R2

[
∂φ(s, x)

∂s
+ ν�φ(s, x) + Kε ∗ ρ̃ε

s(x)∇φ(s, x)
]

ρ̃ε
s(x)dxds

for all φ ∈ C1,2
b ([0, T ]×R

2). Using the boundedness of Kε to proceed as in Remark
2.4, we check next that ρ̃ε is a solution in L∞([0, T ], L1) of the mollified mild
equation
(15)

wε
t (x) = Gν

t ∗w0(x)+
∫ t

0

Gν
t−s ∗gs(x) ds+

∫ t

0

∇Gν
t−s ∗ [(Kε ∗ wε

s)w
ε
s] (x) ds, ε ≥ 0.

If v is another solution of (15), from Lemma 2.2 with l = ∞, m = 1 we get

‖ρ̃ε
t − vt‖1 ≤ C(ε)

∫ t

0

(t − s)−
1
2 ‖ρ̃ε

s − vs‖1ds

and conclude uniqueness using Lemma 1.1.
�

3.2. Stochastic particle approximations. We now define an interacting particle
system which is naturally associated with the nonlinear process studied above. The
system takes into account the random space-time births. Its pathwise existence and
uniqueness can be proved by adapting standard arguments.

Definition 3.4. Consider a sequence (Bi)i∈N of independent Brownian motions on
R

2 and a sequence of independent variables (τ i, Xi
0)i∈N with values in [0, T ] × R

2

distributed according to P0, and independent of the Brownian motions. For a fixed



ε > 0, for each n ∈ N
∗, let us consider the interacting processes defined for 1 ≤ i ≤ n

by

(16) Xin,ε
t = Xi

0 +
√

2ν

∫ t

0

1{s≥τi}dBi
s +

∫ t

0

1{s≥τi}Kε ∗ µ̃n,ε
s (Xin,ε

s )ds

where

µ̃n,ε
s =

1
n

n∑
j=1

h(τ j , Xj
0)1{s≥τj}δXjn,ε

s

is the weighted empirical measure of the system at time s and

Kε ∗ µ̃n,ε
s (z) =

1
n

n∑
j=1

h(τ j , Xj
0)1{s≥τj}Kε(z − Xjn,ε

s ).

Hence, particles either have birth at time 0 or at a random time, and evolve
thereafter as diffusive particles that interact following a mean field depending on
the parameter ε. We introduce a coupling between these interacting processes and
some independent copies of the limiting process defined in (11):

Definition 3.5. For i ≥ 1, we define X̄i,ε by

X̄i,ε
t = Xi

0 +
√

2ν

∫ t

0

1{s≥τi}dBi
s +

∫ t

0

1{s≥τi}Kε ∗ ρ̃ε
s(X̄

i,ε
s )ds.(17)

By an adaptation of the proof of Proposition 2.2 in [13], we can show the following
proposition.

Proposition 3.6. There exist positive constants C1, C2 such that for all n ∈ N,
1 ≤ i ≤ n and ε ∈]0, 1[,

(18) E(sup
t≤T

|Xin,ε
t − X̄i,ε

t |) ≤ C1ε√
n

exp(C2(‖w0‖1 + ‖g‖1,T )(ε−2)T ).

Remark 3.7. The function h being bounded, is is not hard to deduce from the
previous theorem that for all continuous bounded f : R

2 → R and ε > 0,

E

∣∣∣∣〈µ̃n,ε
t , f〉 −

∫
R2

f(x)ρ̃ε
t (x)dx

∣∣∣∣ → 0 when n → ∞.

3.3. Density estimates. Due to the bad behavior of K in the space L1, it is
necessary to obtain additional Lp estimates for some p > 1 in order to study
the convergence of our scheme when ε → 0. We present an argument based on
the properties of the stochastic flow, and on a “stochastic version” of Liouville’s
theorem. In [6], Busnello also relied on the stochastic flow to obtain uniform in
time estimates for some solutions to the vortex equation, but for the case without
external field and under regularity of the initial condition.

Lemma 3.8. Let Jξε
s,t = det(∇xξε

s,t) be the Jacobian of the function ξε
s,t : R

2 → R
2.

Then

Jξε
s,t(x) = 1 +

∫ t

s

div
[
Kε ∗ P̃ ε

r (ξε
s,r(x))

]
Jξε

s,rdr.

Since div Kε ∗ P̃ ε
r (ξε

s,r(x)) = 0 we have that Jξε
s,t(x) = 1 for all (s, t, x).

The proof is similar as the classic version (e.g. [8] Ch. 1), since the diffusion
coefficient in (12) is constant.



Lemma 3.9. Let ρε and ρ̃ε be, respectively, the family of densities of X under P ε

and the family of weighted densities associated with P ε through (8). Let p ∈ [1,∞]
and assume that w0 ∈ Lp and g ∈ L1([0, T ], Lp). Then, for all ε > 0 and t ∈ [0, T ],
we have

i) ‖ρ̃ε
t‖p ≤ ‖w0‖p +

∫ t

0

‖gs‖p ds,

ii) ‖ρε
t‖p ≤

‖w0‖p +
∫ T

0
‖gs‖p ds

‖w0‖1 +
∫ T

0
‖gs‖1 ds

.

Proof. Consider a fixed function ψ ∈ D and t > 0. By the Feynman-Kac formula,
the function φt(s, x) := E(ψ(ξε

s,t(x))) is the unique solution of the Cauchy problem
∂φ(s,x)

∂s + ν�φ(s, x) + Kε ∗ ρ̃ε
s(x)∇φ(s, x) = 0 for all (s, x) ∈ [0, t[×R

2,
φ(t, x) = ψ.

Replacing φt in the weak equation (14) and using Fubini’s theorem, we obtain∫
R2

ψ(x)ρ̃ε
t (x)dx =

∫
R2

φt(0, x)w0(x)dx +
∫ t

0

∫
R2

φt(s, x)gs(x)dx ds

= E

(∫
R2

[
ψ(ξε

0,t(x))w0(x)
]
dx

)

+
∫ t

0

E

(∫
R2

[
ψ(ξε

s,t(x))gs(x)
]
dx

)
ds

and so∣∣ ∫
R2

ψ(x)ρ̃ε
t (x)dx

∣∣ ≤ E
[
‖ψ(ξε

0,t(· ))‖p∗
]
‖w0‖p +

∫ t

0

E
[
‖ψ(ξε

s,t(· ))‖p∗
]
‖gs‖pds.

Thanks to Lemma 3.8, we conclude that∣∣ ∫
R2

ψ(x)ρ̃ε
t (x)dx

∣∣ ≤ ‖ψ‖p∗

(
‖w0‖p +

∫ t

0

‖gs‖pds

)
which proves i). To prove ii), define a sub-probability density ρ̂ε

t by
∫

R2 ψ(x)ρ̂ε
t (x)dx

= E(ψ(Xε
t )1{t≥τ}). Writing Itô’s formula for f(t, Xε

t ), multiplying by 1{t≥τ} and
taking expectations, we check that∫

R2
φt(x)ρ̂ε

t (x)dx =
∫

R2
φ(0, x)w̄0(x)dx +

∫ t

0

∫
R2

φ(s, x)ḡs(x)dx ds

+
∫ t

0

∫
R2

[
∂φ(s, x)

∂s
+ ν�φ(s, x) + Kε ∗ ρ̃ε

s(x)∇φ(s, x)
]

ρ̂ε
s(x)dxds.

We deduce as previously that∣∣ ∫
R2

ψ(x)ρ̂ε
t (x)dx

∣∣ ≤ ‖ψ‖p∗

‖w0‖1 + ‖g‖1,T

(
‖w0‖p +

∫ t

0

‖gs‖pds

)
.

The desired estimate for ρε
t follows from here, since

E(ψ(Xε
t )1{t<τ}) = E(ψ(X0)1{t<τ}) =

∫ T

t

∫
R2

ψ(x)
|gs(x)|

‖w0‖1 + ‖g‖1,T
dx ds.



�

4. L1 ∩ Lp
data: Existence, uniqueness and pathwise approximation

The main goal of this section is to construct the pathwise unique nonlinear
process related to the true Biot-Savart kernel, as a limit of the mollified nonlinear
processes, when ε → 0. We shall need fundamental continuity properties of the
operator f �→ K ∗f and regularity estimates on the solution of the vortex equation.

Lemma 4.1. Let p ∈ (1, 2) and 1
q = 1

p −
1
2 . For each f ∈ Lp and x ∈ R

2 the integral
K ∗ f(x) is absolutely convergent. Furthermore, there is a constant Cp,q > 0 such
that

i)

(19) ‖K ∗ f‖q ≤ Cp,q‖f‖p for all ∈ f ∈ Lp.

ii)

(20) ‖K ∗ f‖W 1,q ≤ Cp,q‖f‖W 1,p for all ∈ f ∈ W 1,p.

Proof. The absolute convergence of K ∗ f(x) and statement i) follow from the
analogous results for the Riesz transform

(21) f ∈ Lp �→
∫

R2

f(y)
|x − y|dy ∈ Lq(dx)

(cf. Theorem 1, Ch. 5, in Stein [20]). To prove ii), using i) we need only to check
that K∗ commutes with derivatives on D. This is easy by dominated convergence.

�
Remark 4.2. Lemma 4.1 with the same constants applies to each mollified kernel
Kε.

We now introduce the adequate spaces to work in. For measurable w : [0, T ] ×
R

2 → R and real numbers p ∈ [1,∞] and r ≥ p we introduce the norms
• |||w|||0,p,T = sup

0≤t≤T
‖wt‖p,

• |||w|||0,r,(T ;p) = sup
0≤t≤T

{
t

1
p− 1

r ‖wt‖r

}
,

and we denote the associated Banach spaces, respectively, by

F0,p,T and F0,r,(T ;p).

We write K0 = K, and for each ε ≥ 0, we define the bilinear operator Bε on
measurable functions v, w : [0, T ] × R

2 → R, by

(22) Bε(v, w)(t, x) =
∫ t

0

∫
R2

∇Gν
t−s(x − y) · Kε ∗ vs(y)ws(y)dy ds.

Accordingly, we also write B = B0.
We denote by W0 the function

W0(t, x) = Gν
t ∗ w0(x) +

∫ t

0

Gν
t−s ∗ gs(x)ds.

Lemma 4.3. i) Let p ∈ [1,∞] and assume w0 ∈ Lp and g ∈ F0,p,T . Then,
we have

W0 ∈ F0,r,(T ;p) for all r ≥ p.



ii) For each r ≥ 4
3 , v, w ∈ F0,r,T , and each t ≤ T , we have

(23) sup
ε≥0

‖Kε ∗ v(t)w(t)‖ 2r
4−r

≤ C‖v(t)‖r‖w(t)‖r.

iii) If 4
3 ≤ p < 2, p ≤ r < 2 and 2r

4−r ≤ r′ < r
2−r , then Bε : (F0,r,(T ;p))2 →

F0,r′,(T ;p) is well defined for each ε ≥ 0, and for all v, w ∈ F0,r,(T ;p),

sup
ε≥0

|||Bε(v, w)|||0,r′,(T ;p) ≤ CT 1− 1
p |||v|||0,r,(T ;p)|||w|||0,r,(T ;p).

iv) If 4
3 ≤ p < 2, w0 ∈ Lp and g ∈ F0,p,T , we have for all r ∈ [p, 2p

2−p ]

sup
ε≥0

|||ρ̃ε|||0,r,(T ;p) < ∞.

Proof. Part i) follows from Lemma 2.2, and the estimate

(24)
∥∥∥∥
∫ t

0

Gν
t−s ∗ gs ds

∥∥∥∥
r

≤ C(p, r)t1+
1
r −

1
p

(
sup

t∈[0,T ]

‖gt‖p

)

for some constant C(p, r) > 0 since 1/p < 1/r + 1.
ii) Notice that 1 ≤ 2r

4−r . Equation (23) is immediately obtained from Lemma
4.1, Remark 4.2 and Hölder’s inequality.

iii) By (23), noticing that 1 ≤ 2r
4−r ≤ r′ and by Lemma 2.2 and Lemma 4.1, we

have

‖Bε(v, w)t‖r′ ≤C

∫ t

0

(t − s)
1
r′ − 2

r ‖vs‖r‖ws‖r ds

≤C|||v|||0,r,(T ;p)|||w|||0,r,(T ;p)

∫ t

0

(t − s)
1
r′ − 2

r s
2
r −

2
p ds

=Ct1+
1
r′ − 2

p |||v|||0,r,(T ;p)|||w|||0,r,(T ;p)

(25)

with constants that do not depend on ε ≥ 0. In the last step we have used the fact
that 1

r − 1
p > −1

2 because r < 2 < 2p
2−p . The statement follows.

iv) By Lemma 3.9, we have

sup
ε≥0

|||ρ̃ε|||0,p,T < ∞.

Observe that p
2−p ≥ 2. We define p1 := 4p

2+p ∈ (p, 2) and apply iii) to r = p and
r′ = p1 which yields supε≥0 |||ρ̃ε|||0,p1,(T ;p) < ∞, considering equation (15) and i).
We now apply iii) to r = p1 and some r′ ∈ [ 2p1

4−p1
, p1

2−p1
) = [p, 2p

2−p ) and conclude in
a similar way.

To get the conclusion for the limiting value 2p
2−p we observe that for ε > 0 small

enough, we can now apply the previous arguments, first to r = p + ε ∈ [p, 2) and
r′ = p2 := 4(p+ε)

2+p+ε ∈ (p, 2), and then to r = p2 and r′ = 2p
2−p ∈ [p + ε, 2(p+ε)

2−(p+ε) ). �

In the sequel we shall make the following type of assumption on the data:
(Hp):

w0 ∈ Lp(R2) and g ∈ F0,p,T .

In view of the continuity property of the Biot-Savart operator, and of part iii) of
the previous lemma, we will always consider

p = 1 or p ∈ [
4
3
, 2).



4.1. Convergence of the mollified solutions for L1 ∩ Lp data. For technical
reasons, we will make a particular choice of approximating kernels Kε(x) = K ∗
ϕε(x). We take ϕ as the cutoff function with radial symmetry given by Raviart [19]
in a general context of approximations, and proposed by Bossy [3] for a numerical
study of the vortex algorithm:

ϕ(x) =
2(2 − r2)
π(1 + r2)4

, r = |x|.

The following is proved in [18].

Lemma 4.4. For each l ∈ [1, 2) and a positive constant C depending only on l, we
have

‖Kε − K‖l ≤ Cε
2−l

l .

Proposition 4.5. Assume that (Hp) holds, with p ∈ [ 43 , 2). There exists a solution
w ∈ F0,p,T , the mild vortex equation (5). Moreover, for any l ∈ [1, 2) and ε > 0 it
holds that

sup
t≤T

‖ρ̃ε
t − wt‖p ≤ Clε

2−l
l .(26)

Proof. By Lemma 4.4, for 1 ≥ l < 2 and ε > ε′ > 0 we have ‖Kε − Kε′‖l ≤ Cε
2−l

l .
In view of (15), Lemma 2.2 and Lemma 4.3, we have, for t ≤ T ,

‖ρ̃ε
t − ρ̃ε′

t ‖p ≤
∫ t

0

‖∇Gν
t−s ∗ [(Kε ∗ ρ̃ε

s)ρ̃
ε
s − (Kε′ ∗ ρ̃ε′

s )ρ̃ε′

s ‖p ds

≤ C

∫ t

0

(t − s)−
1
p (‖(Kε ∗ ρ̃ε

s)ρ̃
ε
s − (Kε′ ∗ ρ̃ε

s)ρ̃
ε
s‖ 2p

4−p

+‖(Kε′ ∗ ρ̃ε
s)ρ̃

ε
s − (Kε′ ∗ ρ̃ε′

s )ρ̃ε
s‖ 2p

4−p

+‖(Kε′ ∗ ρ̃ε′

s )(ρ̃ε
s − ρ̃ε′

s )‖ 2p
4−p

) ds

≤ C|||ρ̃ε|||0,p,T ‖Kε′ − Kε‖l|||ρ̃ε|||0,r,(T ;p)

∫ t

0

(t − s)−
1
p s

1
r −

1
p ds

+C
(
|||ρ̃ε|||0,p,T + |||ρ̃ε′

|||0,p,T

) ∫ t

0

(t − s)−
1
p ‖ρ̃ε

s − ρ̃ε′

s ‖p ds,(27)

with r ∈ (p, 2p
2−p ] given by the relation 1

p − 1
2 = 1

r + 1
l − 1. The last inequality

follows from Young’s inequality for the first term and from (23) for the last two
terms. Since 1

r − 1
p + 1 > 0, Lemmas 4.3 iv) and Lemma 4.4 imply that

(28)

‖ρ̃ε
t − ρ̃ε′

t ‖p ≤ C sup
ε

|||ρ̃ε|||0,p,T

(
ε

2−l
l sup

ε
|||ρ̃ε|||0,r,(T ;p) +C

∫ t

0

(t−s)−
1
p ‖ρ̃ε

s − ρ̃ε′

s ‖p ds

)

which together with Lemma 1.1 yields supt≤T ‖ρ̃ε
t − ρ̃ε′

t ‖p ≤ Cε
2−l

l . The result
follows.

�

Bringing together previous statements, we have the following result:

Theorem 4.6. Under (H1) and (Hp) with p ∈ [ 43 , 2) the mild vortex equation with
external force field (5) has a unique solution w in the space F0,p,T ∩ F0,1,T , which



moreover satisfies

(29) ‖w(t)‖p ≤ ‖w0‖p +
∫ t

0

‖gs‖pds.

Proof. Thanks to Proposition 4.5 and Lemma 3.9, we only need to check uniqueness
and the fact that w ∈ F0,1,T . The latter is proved by iteratively using Lemma 4.3
iii); see Lemma 2.4 in [10] for details. By arguments used in Lemma 4.3 ii) with
p = r = r′, we also get ‖wt − w′

t‖p ≤ C
∫ t

0
(t − s)−

1
p ‖ws − w′

s‖pds for two solutions
w, w′, and Lemma 1.1 yields uniqueness. �
Remark 4.7. The statement of Theorem 4.6 also holds for equation (15). Hence,
the unique solution wε ∈ F0,p,T ∩ F0,1,T (p ∈ [43 , 2)) of (15) is given by wε = ρ̃ε if
ε > 0, or by w0 = w.

4.2. Regularity estimates. To show strong existence and uniqueness for the lim-
iting process, and pathwise convergence of the mollified processes when ε → 0, we
need to prove some uniform (in ε) regularity properties for functions ρ̃ε.

For T > 0 and r ≥ p we introduce additional norms

• |||v|||1,r,(T ;p) = sup
0≤t≤T

{
t

1
p− 1

r ‖vt‖r + t
1
2+( 1

p− 1
r )‖∇vt‖r

}
,

• |||v|||1,p,T = |||v|||1,p,(T ;p) = sup
0≤t≤T

{
‖vt‖p + t

1
2 ‖∇vt‖p

}
,

and the associated Banach spaces

F1,r,(T ;p) and F1,p,T .

Lemma 4.8. i) Assume (Hp) with 4
3 ≤ p < 2. Then we have

W0 ∈ F1,r,(T ;p) for all r ∈ [p,
2p

2 − p
).

ii) If 4
3 ≤ p < 2, p ≤ r < 2 and 2r

4−r ≤ r′ < r
2−r , then Bε : (F1,r,(T ;p))2 →

F1,r′,(T ;p) is well defined for each ε ≥ 0 and

sup
ε≥0

|||Bε(v, u)|||1,r′,(T ;p) ≤ CT 1− 1
p |||v|||1,r,(T ;p)|||u|||1,r,(T ;p).

Proof. i) For p ∈ [1, 2) the function t �→ t−
1
2+ 1

r −
1
p is integrable in 0 if and only if

r < 2p
2−p . Taking the gradient of Gν

t−s ∗gs under the time integral and using Lemma
2.2 we obtain

(30)
∥∥∥∥∇

(∫ t

0

Gν
t−s ∗ gs ds

)∥∥∥∥
r

≤ C ′(p, r)t
1
2+ 1

r −
1
p

(
sup

t∈[0,T ]

‖gt‖p

)

for some constant C ′(p, r) > 0, which implies that W0 ∈ F1,r,(T ;p).
ii) It is enough to check the properties for B. If v, u ∈ F1,r,(T ;p), then (K ∗vt)ut ∈

W 1, 2r
4−r , and integrating by parts yields

B(v, u)(t, x) =
∫ t

0

∫
R2

Gν
t−s(x − y)(K ∗ vs)(y) · ∇us(y)dy ds.

By adapting arguments of Proposition 3.1 in [10], we can take the derivatives in x
on both sides of the previous equation. Then, using the fact that 2

r − 2
p − 1

2 > −1,
it is not hard to adapt the arguments of Lemma 4.3 iii) to get the required estimate
for the derivatives. We just notice that the “t−

1
2 -worst behavior at t = 0” of the



derivative of u is exactly compensated by the higher power of t required in the
derivative’s part of the norm ||| · |||1,r,(T ;p). �

Remark 4.9. By the previous lemma, and since 2p
4−p ≤ p < p

2−p , equation (15) in
the space F1,p,T , with 4

3 ≤ p < 2, is equivalent to the abstract equation

(31) wε = W0 + Bε(wε, wε).

Proposition 4.10. Let p ∈ [43 , 2). Then, there is a constant λp > 0 independent
of ε ≥ 0 such that for all θ > 0 and w0 ∈ Lp, g ∈ F0,p,θ satisfying

θ1− 1
p (‖w0‖p + θ|||g|||0,p,θ) < λp,

Equation (15) with ε ≥ 0, has a unique solution in F1,p,θ such that |||wε|||1,p,θ ≤
2|||W0|||1,p,θ.

Proof. From Lemma 4.8 ii) (with r = r′ = p′ = p), the operators Bε : (F1,p,θ)2 →
F1,p,θ are continuous with norm bounded by θ1− 1

p times a constant C(p) > 0 not
depending on θ or ε ≥ 0. Furthermore, from the proofs of Lemma 2.2 and Lemmas
4.3 i) and 4.8 i) there is C̃(p) > 0 such that

|||W0|||1,p,θ ≤ C̃(p) (‖w0‖p + θ|||g|||0,p,θ) .

Hence, by a standard fixed point argument for bilinear operators in Banach spaces
(see Cannone [7], Ch. 1), the asserted solution wε ∈ F1,p,θ to the abstract equation
(31) exists as soon as

4C(p)θ1− 1
p (‖w0‖p + θ|||g|||0,p,θ) C̃(p) < 1.

�

Theorem 4.11. Assume (H1) and (Hp) with p ∈ [43 , 2) and let wε ∈ F0,p,T ∩F0,1,T ,
ε ≥ 0, be the solution of (15).

i) We have
sup
ε≥0

|||wε|||1,p,T < ∞.

ii) For each r ∈ [p, 2p
2−p )

sup
ε≥0

|||wε|||1,r,(T ;p) < ∞.

Proof. i) We follow the lines of Lemma 4.4 in [10] to deal with wε at time 0. By
the semigroup property of Gν

t and the estimates of Lemma 2.2, it is checked that

(32) wε
r+t(x) = W ε

(r)(t, x) +
∫ t

0

∇Gν
t−s ∗

[
(Kε ∗ wε

r+s)w
ε
r+s

]
(x) ds,

for all t ∈ (0, T − r], where W ε
(r)(t, x) := Gν

t ∗ wε
r(x) +

∫ t

0
Gν

t−s ∗ gs+r(x) ds. Then,
as in the proof of Proposition 4.10 and with the same constant C̃(p), we have

(33) |||W ε
(r)|||1,p,θ ≤ C̃(p) (‖wε

r‖p + θ|||g·+r|||0,p,θ) ≤ C̃(p) (‖w0‖p + 2T |||g|||0,p,T )

for all θ ∈ [0, T − r], the last inequality owing to Lemma 3.9.
Now, thanks to Proposition 4.10, we can find some small enough θ0 ∈ [0, T ] such

that equation (32) has a solution, say vε
(r), in the space F1,p,θ0 . By uniqueness in



the space F0,p,θ0∧(T−r) holding for (32) and each r, we have that wε
r+·(·) = vε

(r) ∈
F1,p,θ0∧(T−r), with

(34) |||wε
r+·(·)|||1,p,θ0 ≤ 2|||W ε

(r)|||1,p,θ0 .

This of course implies that wε
t ∈ W 1,p for strictly positive t.

Now choose rk := k θ0
2 so that wε

rk+t = wε
rk−1+

θ0
2 +t

for t ∈ [0, θ0
2 ] and k ∈

{1, . . . , [2T
θ0

]}. For such t and k, we have by (34) and (33) that

(rk + t)
1
2 ‖∇wε

rk+t‖p ≤ θ
− 1

2
0 (rk + t)

1
2 (t +

θ0

2
)

1
2 ‖∇wε

(rk−1)+t+
θ0
2
‖p

≤ C

(
T

θ0

) 1
2

|||W(rk−1)|||1,p,θ0 ≤ C

(
T

θ0

) 1
2

(‖w0‖p + 2T |||g|||0,p,T ) .

This and (34) with r = 0 yield assertion i). The proof of ii) is done in a similar
way as in Lemma 4.3 iv), using Lemma 4.8. �

Corollary 4.12. Under the assumptions of Theorem 4.11, we have
i)

sup
ε≥0

sup
t∈[0,T ]

{
t

1
2

(
‖Kε ∗ wε

t ‖∞ + ‖Kε ∗ wε
t ‖C2− 2

p

)}
< ∞ ;

ii) for all r ∈ (2, 2p
2−p ],

sup
ε≥0

sup
t∈[0,T ]

{
t

1
2−

1
r + 1

p

(
‖∇Kε ∗ wε

t ‖∞ + ‖∇Kε ∗ wε
t ‖C1− 2

r

)}
< ∞.

Here, ‖ · ‖Cα is the Hölder norm of index α ∈ (0, 1).

Proof. We obtain part i) using the equi-continuity of the family of operators {Kε :
W 1,p → W 1,q}ε≥0 for p ∈ (1, 2) and q = 2p

2−p , the uniform boundedness of the wε’s

in F1,p,T , and the fact that W 1,q(R2) is continuously embedded into L∞(R2)∩C1− 2
q

since q > 2 (see e.g. [4]).
To prove ii) we use the fact that each distributional derivative of the velocity

field K ∗w is obtained by applying some singular integral operator on w (see e.g.
Bertozzi and Majda [2], p. 76). We can therefore adapt the arguments in Lemma 2.2
in [10] to check that the operators ∂

∂xi
Kj∗ : W 1,r → W 1,r are continuous. Moreover,

using the fact that the Fourier transform of ∂
∂xi

(Kε)j is pointwise bounded by that
of ∂

∂xi
Kj , we can follow the lines of Lemma 5.1 in [10] to prove that the family of

operators ∂
∂xi

(Kε)j∗ : W 1,r → W 1,r, ε ≥ 0 is equi-continuous.
We conclude ii) using the latter, the uniform estimate for wε in F1,r,(T ;p) when

r ∈ (2, 2p
2−p ) and the embedding of W 1,r(R2) into L∞(R2) ∩ C1− 2

r for r > 2. �

4.3. Pathwise convergence of the mollified processes. Throughout this sec-
tion, it is assumed that (H1) and (Hp) hold with p ∈ [43 , 2). Let us state the
existence and pathwise uniqueness of the nonlinear process related to the vortex
equation. The existence is obtained by approximation of the mollified nonlinear
processes, when ε → 0.

Definition 4.13. We denote by Pp,T the space of probability measures on CT =
[0, T ] × C([0, T ], R2) such that for each t ∈ [0, T ], the signed measure P̃t has a
density ρ̃t with respect to the Lebesgue measure and ρ̃ ∈ F0,p,T ∩ F0,1,T .



Theorem 4.14. Consider a R
2-Brownian motion B and a random variable (τ, X0)

in [0, T ] × R
2 with law P0 and independent of the Brownian motion.

a) There exists in Pp,T a unique solution P to the nonlinear martingale prob-
lem (MP). The corresponding function ρ̃ is the unique solution of the mild
equation (5) in the space F0,p,T ∩ F0,1,T .

b) There is a unique pathwise solution ((τ, X), P ) of the nonlinear s.d.e. (E):

i) The law P of (τ, X) belongs to Pp,T and P̃t(dx) = ρ̃t(x)dx.

ii) Xt = X0 +
√

2ν

∫ t

0

1{s≥τ}dBs +
∫ t

0

1{s≥τ}K ∗ ρ̃s(Xs)ds .(35)

c) For each ε > 0, let Xε be the mollified nonlinear processes constructed in
the same probability space as B and (τ, X0). Then, for each r ∈ (p, 2p

2−p ),

E

(
sup
t≤T

|Xε
t − Xt|

)
≤ C(p, r)ε2( 1

p− 1
r ).

Proof. The existence part of a) easily follows from b) by writing Itô’s formula for
f(t, Xt) and using Remark 2.8. On the other hand, by Lemma 2.7 for any solution
P ∈ Pp,T the associated ρ̃ is a solution of the weak equation. The fact that it also
is a mild solution then follows from Remark 2.4, observing that

(36)
∫ T

0

∫
R2

|K ∗ ρ̃s(x)||ρ̃s(x)|dx ds < ∞

by Hölder’s inequality since ρ̃ ∈ F0, 4
3 ,T (by interpolation) and K ∗ ρ̃ ∈ F0,4,T

by Lemma 4.1. Theorem 4.6 then implies that ρ̃ is uniquely determined, and so
P indeed solves a linear martingale problem. By Remark 2.8, it is also a weak
solution to a (linear) stochastic differential equation. Its pathwise uniqueness is
proved below, and this implies the uniqueness of P .

The rest of the proof consists of several steps:
Pathwise uniqueness for (E). Let (τ, Z1) and (τ, Z2) be two pathwise so-

lutions of (E), with laws respectively denoted by P 1, P 2 ∈ Pp,T . As in the pre-
vious step we obtain that ρ̃1 = ρ̃2 = w is the unique solution of (5) in the space
F0,p,T ∩ F0,1,T . Therefore, (τ, Z1) and (τ, Z2) are both solutions of an s.d.e. (Ew)
defined like (E), but with the known drift coefficient K ∗ ws instead of K ∗ ρ̃1

s or
K ∗ ρ̃2

s in (35).
By Corollary 4.12 ii), we get for all r ∈ (2, 2p

2−p ) and t ≤ T that

E(sup
u≤t

|Z1
u − Z2

u|) = E

(
sup
u≤t

∣∣∣∣
∫ u

0

(K ∗ ws(Z1
s ) − K ∗ ws(Z2

s ))ds

∣∣∣∣
)

≤
∫ t

0

s
1
r −

1
p− 1

2 E(sup
u≤s

|Z1
u − Z2

u|)ds.(37)

By Lemma 1.1, we conclude that E(supt≤T |Z1
t − Z2

t |) = 0.
Pathwise convergence. Let q be defined by 1

q = 1
p −

1
2 . We choose r ∈ (p, 2p

2−p )
and l ∈ (1, 2) such that 1

p −
1
2 = 1

q = 1
r + 1

l −1. We first prove the following estimate:
for each ε > ε′ ≥ 0,

(38) E

(∫ T

0

∣∣∣∣Kε ∗ ρ̃ε
s(X

ε
s ) − Kε′ ∗ ρ̃ε′

s (Xε
s )

∣∣∣∣ds

)
≤ Cε

2−l
l .



Write 1
q∗ = 1 − 1

q and observe that q∗ ∈ [1, p] so that by Lemma 3.9,

sup
ε>0

|||ρε|||0,q∗,T < ∞.

Since ρε
t is the density of Xε

t , we get for the left hand side of (38) that∫ T

0

E|Kε ∗ ρ̃ε
s(X

ε
s ) − Kε′ ∗ ρ̃ε′

s (Xε
s )|ds ≤

∫ T

0

‖Kε ∗ ρ̃ε
s − Kε′ ∗ ρ̃ε′

s ‖q‖ρε
s‖q∗ds

≤ C

∫ T

0

‖Kε ∗ ρ̃ε
t − Kε′ ∗ ρ̃ε

t‖q

+ ‖Kε′ ∗ ρ̃ε
t − Kε′ ∗ ρ̃ε′

t ‖qds.

By Young’s inequality, Lemma 4.4, and Lemma 4.3 iv) the first term in the last
integral is bounded by

‖Kε − Kε′‖l‖ρ̃ε
t‖r ≤ Cε

2−l
l ‖ρ̃ε

t‖r ≤ Cε
2−l

l t
1
r −

1
p .

By Lemma 4.1 and Proposition 4.5 the second term is bounded by Cε
2−l

l . Since
1
r − 1

p + 1 > 0, (38) follows. Next, for u ≤ T , we have

E

(
sup
v≤u

|Xε
v − Xε′

v |
)

≤ E

(∫ u

0

|Kε ∗ ρ̃ε
s(X

ε
s ) − Kε′ ∗ ρ̃ε′

s (Xε′

s )|ds

)

≤
∫ u

0

(
E|Kε ∗ ρ̃ε

s(X
ε
s ) − Kε′ ∗ ρ̃ε′

s (Xε
s )| + E|Kε′ ∗ ρ̃ε′

s (Xε
s ) − Kε′ ∗ ρ̃ε′

s (Xε′

s )|
)

ds

≤ Cε
2−l

l +
∫ u

0

s
1
r −

1
p− 1

2 E(sup
v≤s

|Xε
v − Xε′

v |)ds

(39)

by (38) and Corollary 4.12. We conclude by Lemma 1.1 (since 1
r − 1

p − 1
2 > −1)

that

E

(
sup
t≤T

|Xε
t − Xε′

t |
)

≤ Cε
2−l

l .(40)

The sequence (Xε) is hence Cauchy in the space L1
T := {Y : E(supt∈[0,T ] |Yt|) <

+∞} and converges therein at speed C(p, r)ε2( 1
p− 1

r ) to some process Xw.
We remark that, although Proposition 4.5 also allows us to obtain an estimate

(38) for l = 1, the last argument yielding estimate (40) does not hold anymore for
r = 2p

2−p .
The final step is:
Identification of the limit as a solution of (E). Taking ε′ = 0 in the

previous estimate we easily get that (τ, Xw) solves the s.d.e.

(41) Xw
t = X0 +

√
2ν

∫ t

0

1{s≥τ}dBs +
∫ t

0

1{s≥τ}K ∗ ws(Xw
s )ds.

Denote by Pw the law of Xw. We just need to verify that Xw is a solution of the
nonlinear s.d.e. (E). This amounts to checking that each of the signed measures
P̃w

t has a density which is equal to w. We have, for each f ∈ D and t ∈ [0, T ], that∣∣∣∣
∫

R2
f(x)ρ̃ε

t (x)dx − P̃w
t (f)

∣∣∣∣= ∣∣E(f(Xε
t )h(τ, X0)1{τ≤t})−E(f(Xw

t )h(τ, X0)1{τ≤t})
∣∣

≤C‖∇f‖∞E|Xε
t − Xw

t | → 0 when ε → 0.



This concludes the proof, since
∫

R2 f(x)ρ̃ε
t (x)dx →

∫
R2 f(x)wt(x)dx by Proposition

4.5.
�

4.4. The stochastic vortex method. From the results in the previous sections
we readily deduce

Corollary 4.15. Let T > 0 and assume that (H1) and (Hp) hold with p ∈ [ 43 , 2).
Consider a sequence εn → 0 in such a way that

C1εn√
n

exp(C2(‖w0‖1 + ‖g‖1,T )(ε−2
n )T ) → 0

when n → ∞, where C1 and C2 are the positive constants given in Proposition 3.6.
With the notation (3.4), we define for all n ∈ N and i = 1, . . . , n the system of

particles
Zin := Xin,εn

and consider on the same probability space the sequence of i.i.d. processes (X̄i)i∈N,
with X̄i the unique strong solution of

i) the law P of (τ i, X̄i) belongs to Pp,T and P̃t(dx) = ρ̃t(x)dx,

ii) X̄i
t = Xi

0 +
√

2ν

∫ t

0

1{s≥τi}dBi
s +

∫ t

0

1{s≥τi}K ∗ ρ̃s(X̄i
s)ds .(42)

Then, for all k ∈ N and any r ∈ (p, 2p
2−p ), we have

E

(
sup

t∈[0,T ]

k∑
i=1

|Zin
t − X̄i

t |
)

≤ kCε
2( 1

p− 1
r )

n + k
C1εn√

n
exp(C2(‖w0‖1 + ‖g‖1,T )(ε−2

n )T )

(the constant C depending on p, r and T ).

The following corollary shows the consistency of our method, to approximate
the solution of a Navier-Stokes equation with external force. We exhibit a rate of
convergence, which had not been proved even in the classic case.

Corollary 4.16. Consider α ∈]0, 1
2 [ and the sequence (εn) given by

εn :=
(

C2‖h‖∞T

α ln n

) 1
2

,

with a constant C2 > 0 as in Corollary 4.15. Consider moreover the weighted
empirical process

µ̃n,εn
s =

1
n

n∑
j=1

h(τ j , Xj
0)1{s≥τj}δZjn

s

and the approximate velocity field

Kεn
∗ µ̃n,εn

s (z) =
1
n

n∑
j=1

h(τ j, Xj
0)1{s≥τj}Kεn

(z − Zjn
s ).

Then, under the assumptions of Theorem 4.14, for all l ∈ (1, 2) we have

sup
x∈R2

E

(
sup

t∈[0,T ]

t
1
l |Kεn

∗ µ̃n,εn
t (x) − u(t, x)|

)
≤ C(l, α, T )

(
ln n

n
1
2−α

+
1

(α ln n)
2−l
2l

)
.



Proof. First we prove that for all l ∈ (1, 2), for some constant C(T ) depending on
l and T , it holds that for p ∈ [4/3, 2),

(43) sup
t≤T

t
1
2 ‖wε

t − wt‖W 1,p ≤ C(T )ε
2−l

l .

From Lemma 4.8 ii), for ε ≥ 0 the function ∇wε satisfies

∂wε
t

∂xi
(x) =

∂

∂xi
Gν

t ∗ w0(x) +
∂

∂xi

∫ t

0

Gν
t−s ∗ gs(x)ds

+
∫ t

0

∫
R2

∂Gν
t−s

∂xi
(x − y)(Kε ∗ wε

s)(y) · ∇wε
s(y)dy ds,

(44)

since divKε ∗ wε
s = 0. Proceeding as in Proposition 4.5, we deduce for r ∈ (p, 2p

2−p )
given by 1

p − 1
2 = 1

r + 1
l − 1 that

‖∇wε
t −∇wt‖p ≤ C

∫ t

0

(t − s)−
1
p (‖(Kε ∗ wε

s)∇wε
s − (K ∗ wε

s)∇wε
s‖ 2p

4−p

+‖(K ∗ wε
s)∇wε

s − (K ∗ ws)∇wε
s‖ 2p

4−p

+‖(K ∗ ws)(∇wε
s −∇ws‖ 2p

4−p
) ds

≤ C|||wε|||0,p,T ‖K − Kε‖l|||wε|||1,r,(T ;p)

∫ t

0

(t − s)−
1
p s

1
r −

1
p− 1

2 ds

+C|||wε|||1,p,T

∫ t

0

(t − s)−
1
p s−

1
2 ‖wε

s − ws‖p ds

+C|||w|||0,p,T

∫ t

0

(t − s)−
1
p ‖∇wε

s −∇ws‖p ds.(45)

Notice that 1
r − 1

p + 1
2 > 0. With the help of Lemma 4.4 and Proposition 4.5

(since ρ̃ε = wε), we deduce for all θ ≤ T and t ≤ θ that

t
1
2 ‖∇wε

t −∇wt‖p ≤ Cε
2−l

l t−
2
p + 1

r +1+Cε
2−l

l t1−
1
p +t1−

1
p C

{
sup
s≤θ

s
1
2 ‖∇wε

s −∇ws‖p

}
,

where all powers of t are nonnegative. It follows that{
sup
s≤θ

s
1
2 ‖∇wε

s −∇ws‖p

}
≤ C(T )ε

2−l
l + Cθ1− 1

p

{
sup
s≤θ

s
1
2 ‖∇wε

s −∇ws‖p

}
,

from where sups≤θ0
s

1
2 ‖∇wε

s −∇ws‖p ≤ C(T )ε
2−l

l for θ0 > 0 small enough.
By similar steps as before, starting from the equations satisfied by wε

·+θ0
and

w·+θ0 , and noting that these functions and their gradients are bounded in F0,p,T−θ0

and F0,r,(T ;p) uniformly in ε ≥ 0, we now obtain

‖∇wε
θ0+t −∇wθ0+t‖p ≤ Cε

2−l
l + Cε

2−l
l

∫ t

0

(t − s)−
1
p s

1
r −

1
p ds

+C

∫ t

0

(t − s)−
1
p ‖wε

θ0+s − wθ0+s‖p ds

+C

∫ t

0

(t − s)−
1
p ‖∇wε

θ0+s −∇wθ0+s‖p ds.(46)



Proposition 4.5 and Lemma 1.1 imply that supt≤T−θ0
‖∇wε

θ0+t − ∇wθ0+t‖p ≤
C(T )ε

2−l
l . From the previous estimates and Proposition 4.5 we get |||wε−w|||1,p,T ≤

Cε
2−l

l , from where (43) follows. Next, we have

|Kεn
∗ µ̃n,εn

t (x) − u(t, x)|

≤
∣∣∣∣Kεn

∗ µ̃n,εn

t (x) − 1
n

n∑
i=1

Kεn
(X̄i,εn

t − x)h(τ i, Xi
0)1{s≥τi}

∣∣∣∣
+

∣∣∣∣∣ 1
n

n∑
i=1

Kεn
(X̄i,εn

t − x)h(τ i, Xi
0)1{s≥τj} − Kεn

∗ wεn
t (x)

∣∣∣∣∣
+ |Kεn

∗ wεn
t (x) − K ∗ wt(x)|.

(47)

Let Lεn
and Mεn

, respectively, be a Lipschitz constant for Kεn
and an upper bound

for its sup-norm, and C > 0 a constant such that Mεn
≤ C

ε2
n

and Lεn
≤ C

ε3
n

for n

large enough. By the choice of (εn), and Proposition 3.6, the expectation of the
first term is bounded by

Lεn
C1

εn√
n

exp(C2‖h‖∞(ε−2
n )T ) ≤ C

nα

√
nε2

n

≤ C
α ln n

‖h‖∞Tn
1
2−α

,

where ‖h‖∞ = ‖w0‖1 + ‖g‖1,T . On the other hand, independence of the processes
(τ i, Xiεn) implies that the expectation of the second term on the r.h.s. is bounded
above by

1√
n

2Mεn
‖h‖∞ ≤ C

α ln n

Tn
1
2

.

For the last term in (47), notice that by similar arguments as in the proof Corollary
4.12,

|Kεn
∗ wεn

t (x) − K ∗ wt(x)| ≤C‖Kεn
∗ wεn

t − Kεn
∗ wt‖

W
1,

2p
2−p

+ C‖Kεn
∗ wt − K ∗ wt‖

W
1,

2p
2−p

≤C‖wεn
t − wt‖W 1,p + ‖Kεn

− K‖l‖wt‖W 1,r

≤Cε
2−l

l
n t−

1
2 + Cε

2−l
l

n t
1
r −

1
p− 1

2 |||w|||1,r,(T ;p),

where l and r are chosen as before. Since 1
r − 1

p − 1
2 = 1

l , we conclude that

sup
x∈R2

E

(
sup

t∈[0,T ]

t
1
l |Kεn

∗ µ̃n,εn

t (x) − u(t, x)|
)

≤C

(
ln n

n
1
2−α

+ ε
2−l

l
n

)

≤C(l, α, T )

(
ln n

n
1
2−α

+
1

(α ln n)
2−l
2l

)
.

�



5. Extension to L1
initial condition and force field

In this section, we will remove the Lp, p > 1, assumption on the data, and present
the extension of the previous results to this setting.

5.1. Analytical results. The analytical part can be done to a large extent by
adapting some arguments developed by Ben-Artzi [1] and Brezis [5] (in the absence
of external fields). Thus, we shall only present in detail arguments that are different
from those works or from previous sections.

A key point for following [1] and [5] is the continuity in time of mild solutions.
This is why we will need the following hypothesis, assumed throughout the sequel:

(H′
1):

• w0 ∈ L1(R2) and
• g ∈ C([0, T ], L1(R2)).

For p ∈ [1,∞] and a measurable functions v : R
2 × [0, T ] → R define

• |||v|||�0,p,T = sup
0≤t≤T

{
t1−

1
p ‖vt‖p

}
,

• |||v|||�1,p,T = sup
0≤t≤T

{
t1−

1
p ‖vt‖p + t

3
2−

1
p ‖∇vt‖p

}
and let F �

0,p,T and F �
1,p,T be the associated Banach spaces.

Remark 5.1. i) By Lemma 2.2 we have Gν
t ∗w0 ∈ F0,1,T ∩F �

1,p,T for all p, and
(t, x) �→

∫ t

0
Gν

t−s∗g(s, x)ds belongs to F0,1,T ∩F �
1,p,T for p < 2. Furthermore,

from (H′
1) for all r ∈ [1, p] we get that W0 ∈ C([0, T ], Lr).

ii) It is not hard to check that for 4
3 ≤ p < 2 and 2p

4−p ≤ p′ < p
2−p ,

Bε : (C([0, T ], Lp))2 → (C([0, T ], Lp′
))

is well defined and continuous.
iii) Moreover, proceeding as in Lemma 4.3, one can check that

sup
ε≥0

|||Bε(v, u)|||�0,p′,T ≤ C|||v|||�0,p,T |||u|||
�
0,p,T

for all v, u ∈ F �
0,p,T and some constant C > 0.

As a consequence, we have

Lemma 5.2. Assume (H′
1) and (Hp) with p ∈ [43 , 2). Then, for each ε ≥ 0

the unique solution wε ∈ F0,1,T ∩ F0,p,T of the mild equation (15) belongs to
C([0, T ], Lp ∩ L1).

Proof. Using the continuity estimate of part iii) in Lemma 4.3 with p = r = r′,
we can proceed as in Proposition 4.10 to prove a local existence statement for (15)
in the space C([0, T ], Lp). From uniqueness in F0,p,T for the equation satisfied by
wε(θ + ·) we conclude that wε ∈ C([0, T ], Lp). By repeatedly using part ii) in
Remark 5.1 (and therein choosing adequate values of “p ”and “p′”) one can deduce
from here that wε ∈ C([0, T ], L1). �



The following lemma is the extension to our setting of a key observation in [1].

Lemma 5.3. Let Γ ⊆ L1(R2) be a pre-compact set and ΓT ⊆ F0,1,T a bounded set.
For each p ∈ (1, 2) there is an increasing function θ �→ δ(θ, p, Γ, ΓT ), going to 0
with θ such that

sup
ψ∈Γ,φ∈ΓT

|||Gν
· ∗ ψ +

∫ ·

0

Gν
·−s ∗ φ(s)ds|||�0,p,θ ≤ δ(θ, p, Γ, ΓT ).

Lemma 5.4. For ε ≥ 0 and each initial condition ψ ∈ L1 ∩ Lp and external field
φ ∈ F0,1,T ∩ F0,p,T let wε,ψ,φ denote the unique solution in F0,1,T ∩ F0,p,T of the
associated mollified mild equation (15).

Let Γ ⊆ L1 and ΓT ⊆ F0,1,T , respectively, be a pre-compact set and a bounded
set, such that moreover Γ ⊆ Lp(R2) and ΓT ⊆ F0,p,T for some p ∈ [43 , 2). Then,
for some T0 > 0

sup
ε≥0

sup
ψ∈Γ,φ∈ΓT

|||wε,ψ,φ|||�0,p,θ ≤ 2δ(θ, p, Γ, ΓT ) for all θ ≤ T0.

Proof. As in Lemma 4.3 iii), with r = r′ = p one checks that for t ≤ θ ≤ T ,

(48) ‖Bε(wε,ψ,φ, wε,ψ,φ)t‖p ≤ Cpt
1
p−1(|||wε,ψ,φ|||�0,p,θ)

2.

With this and Lemma 5.3 we deduce that the function fθ(s) := Cps
2 − s +

δ(θ, p, Γ, ΓT ) satisfies fθ(|||wε,ψ,φ|||0,p,θ) ≥ 0 for θ ≤ T . A careful study of fθ(s)
along the lines of [1], pages 350-351, using the continuity of θ′ �→ |||wε,ψ,φ|||�0,p,θ′ and
its convergence to 0 when θ′ → 0 yields the desired result. �

We next state the main analytical results needed in the current setting:

Theorem 5.5. Let p ∈ [43 , 2) be fixed and w0 and g be functions satisfying (H′
1).

a) For each ε ≥ 0, there exists a unique solution wε to the mild vortex equation
(15) in the space

C([0, T ], L1) ∩ C(]0, T ], Lp).

Moreover, we have

sup
ε≥0

|||wε|||�0,p,θ → 0 when θ → 0.

b) We denote w = w0. We have wε
t → wt in Lp for all t ∈]0, T ], and

sup
t∈[0,T ]

(
t

1
2 ‖wε

t − wt‖p

)
≤ C(p, T )ε

2−p
p .

Proof. a) We split the proof in several parts.
Uniqueness: We can follow without difficulty the argument of Brezis [5]. In

our case, we remark that for w ∈ C([0, T ], L1), the set Γ := {wr}r∈[0, T
2 ] ⊆ L1 is

pre-compact and the set ΓT/2 := {gr+·(·) : [0, T/2]×R
2 → R}r∈[0,T/2] is bounded in

F0,1, T
2
. Lemma 5.4 provides an increasing function δ(θ) not depending on r ∈ [0, T/

2], going to 0 with θ, such that

t1−
1
p ‖wr+t‖p ≤ δ(θ)

for small enough θ and all t ∈ (0, θ]. From here on the argument is exactly as in
[5].



Existence: Let wn
0 ∈ L1∩Lp and gn ∈ C([0, T ], L1∩Lp) be such that wn

0 → w0

in L1 and gn → g in C([0, T ], L1) when n → ∞. We write wε,n for the associated
solutions. Then,

Γ = {wn
0 }{n∈N} and ΓT = {gn}{n∈N}

are sets satisfying the hypothesis of Lemma 5.4. By standard Lp estimates for
Gν

t ∗ wn
0 and Gν

t−s ∗ gn
s , and proceeding as in (48), we have

‖wε,n
t − wε,m

t ‖p ≤ Ct
1
p−1‖wn

0 − wm
0 ‖1 + Ct

1
p |||gm − gn|||0,1,T

+ Ct
1
p−1(|||wε,n − wε,m|||�0,p,θ)

2

for all t ∈ [0, θ]. Thanks to Lemma 5.4, for θ small enough and all n, m ∈ N,

|||wε,n − wε,m|||�0,p,θ ≤ C‖wn
0 − wm

0 ‖1 + CT |||gm − gn|||0,1,T

+ Cδ(θ, p, Γ, ΓT )|||wε,n − wε,m|||�0,p,θ,

and wε,n is thus Cauchy in F �
0,p,T if θ is small enough. Then, from the mild

equation satisfied by the function wε,n
θ+·(·) we get that {wε,n

θ+·}n∈N is Cauchy in the
space F0,p,T−θ. Thus, {wε,n}n∈N converges in F �

0,p,T to some limit wε. Continuity
of Bε in F �

0,p,T (cf. Remark 5.1) implies that wε solves equation (15).
Continuity of t �→ wε

t ∈ L1 ∩ Lp on ]0, T ]: By Lemma 5.2, t → wε,n
θ+t ∈ Lp is

continuous for all n, which clearly implies that wε ∈ C(]0, T ], Lp). On the other
hand, is is not hard to establish that Bε : (F �

0,r,T ∩ C(]0, T ], Lr))2 → F �
0,r′,T ∩

C(]0, T ], Lr′
) is continuous when 4

3 ≤ r ≤ p, 2r
4−r ≤ r′ < r

2−r , and that W0 ∈
C(]0, T ], Lr) for all r ∈ [1, p]. By an iterative argument we can deduce that wε ∈
C(]0, T ], L1).

Behavior at θ = 0 of |||wε|||�0,p,θ: From Remark 5.1 iii) we deduce for each
4
3 ≤ r ≤ p, 2r

4−r ≤ r′ < r
2−r , and θ ≤ T that

|||wε|||�0,r′,θ ≤ |||W0|||�0,r′,θ + Cr,r′(|||wε|||�0,r,θ)
2,

for a constant Cr,r′ not depending on ε ≥ 0. By Lemma 5.3, if furthermore r′ �= 1,
we obtain for small enough θ > 0 that

(49) |||wε|||�0,r′,θ ≤ δ(θ, r′, Γ, ΓT ) + Cr,r′(|||wε|||�0,r,θ)
2.

Taking r = r′ = p and proceeding as in Lemma 5.4, we conclude for small enough
θ that

(50) sup
ε≥0

|||wε|||�0,p,θ ≤ 2δ(θ, p, Γ, ΓT ).

Continuity of t �→ wε(t) ∈ L1 in t = 0: a) By (49), if |||wε|||�0,r,θ → 0 when
θ → 0, then also |||wε|||�0,r′,θ → 0. An iterative argument using (49), starting from
(50) and suitably choosing consequent values of r and r′, shows that |||wε|||�

0, 4
3 ,θ

→ 0.

Taking p′ = 1 in Remark 5.1 ii) and the value 4
3 in place of p yields

‖wε(t) − w0‖1 ≤ ‖Gν
t ∗ w0 − w0‖1 + t|||g|||0,1,T + C(|||wε|||�

0, 4
3 ,t

)2 → 0 when t → 0.

b) Thanks to Remark 5.1 iii), we have that supε≥0 |||wε|||�0,2,T < ∞. Consequently,
taking l = p in Lemma 4.4 and using Young’s inequality we obtain, for 1

q = 1
p − 1

2 ,



that

(51) ‖Kε ∗ wε
s − K ∗ wε

s‖q ≤ ‖Kε − K‖p‖wε
s‖2 ≤ Cs−

1
2 ε

2−p
p .

By standard estimates, the previous considerations and (50), we deduce that for
t ≤ θ

‖wε
t − wt‖p ≤C

∫ t

0

(t − s)−
1
p ‖wε

s − ws‖p (‖wε
s‖p + ‖ws‖p) ds

+ C

∫ t

0

(t − s)−
1
p ‖Kε ∗ ws − K ∗ ws‖q (‖wε

s‖p + ‖ws‖p) ds

≤Cδ(θ, p, Γ, ΓT )t−
1
2 sup

s∈[0,θ]

(
s

1
2 ‖wε

s − ws‖p

)
+ Cδ(θ, p, Γ, ΓT )ε

2−p
p t−

1
2 .

Therefore,

sup
t∈[0,θ]

(
t

1
2 ‖wε

t − wt‖p

)
≤ Cδ(θ, p, Γ, ΓT )

[
sup

t∈[0,θ]

(
t

1
2 ‖wε

t − wt‖p

)
+ ε

2−p
p

]
,

and so for some small enough θ > 0 we have

sup
t∈[0,θ]

(
t

1
2 ‖wε

t − wt‖p

)
≤ Cδ(θ)ε

2−p
p .

From this estimate and the mild equations satisfied by wε
θ+· and wθ+·, and arguing

as in Proposition 4.5, we get |||wε
θ+·−wθ+·|||0,p,T−θ ≤ Cε

2−p
p . The last two estimates

prove b). �

The following result states additional regularity properties of the solutions of the
mollified equations, needed to study the martingale problem. We omit the proof,
which is similar as in the case of L1 ∩ Lp data, with the help of the same local
existence result. Some additional technical difficulties arising can be treated as
previously in the current section.

Theorem 5.6. For each p ∈ [43 , 2) we have supε≥0 |||wε|||�1,p,T < ∞.

By similar arguments as in Corollary 4.12 i), we deduce that

Corollary 5.7. For the same values of p, we have

sup
ε≥0

sup
t∈[0,T ]

{
t

3
2−

1
p

(
‖Kε ∗ wε

t‖∞ + ‖Kε ∗ wε
t‖C2− 2

p

)}
< ∞.

5.2. The nonlinear process and particle approximations. Let us now gen-
eralize the previous probabilistic interpretation to the L1-setting and show weak
convergence of the mollified particle system. The explosion of the solution at time
0 will prevent us from obtaining pathwise results.

Definition 5.8. For p ∈ [43 , 2), we denote by P ′
p,T the space of probability measures

on CT = [0, T ] × C([0, T ], R2) such that for each t ∈ [0, T ], the signed measure P̃t

has a density ρ̃t with respect to the Lebesgue measure and ρ̃ ∈ C([0, T ], L1) ∩
C(]0, T ], Lp) ∩ F �

0,p,T .



Theorem 5.9. Assume (H′
1).

a) For each p ∈ [43 , 2), there exists in the class P ′
p,T a unique solution P to

the nonlinear martingale problem (MP). The corresponding function ρ̃ is
equal to the unique solution w ∈ C([0, T ], L1) ∩C(]0, T ], Lp)∩ F �

0,p,T of the
mild equation (5).

b) The solution P ∈ P ′
p,T is the limit in law when ε → 0 of the laws Pε of the

mollified processes (Xε).

Proof. We proceed in several steps.
Uniqueness. Let P ∈ P ′

p,T be a solution of (MP). By the interpolation

inequality ‖f‖
4
3
4
3
≤ ‖f‖1 + ‖f‖p

p applied to f = tρ̃t (and multiplying then by t−1),

we see that ρ̃ ∈ F �

0, 4
3 ,T

. Therefore, as for (36), we obtain∫
[0,T ]×R2

|K ∗ ρ̃t(x)||ρ̃t(x)|dxdt < ∞.

By standard arguments we deduce that ρ̃ is a solution of (5) in the space

C([0, T ], L1) ∩ C(]0, T ], L
4
3 ) ∩ F �

0, 4
3 ,T

.

Consequently, for any two solutions P 1 and P 2 of (MP) the associated functions
ρ̃1 and ρ̃2 coincide by Theorem 5.5, and we write w = ρ̃2 = ρ̃1. Now define a family
(P̂ i

t )t∈[0,T ] of sub-probability measures P̂ i
t on R

2 by

(52)
∫

R2
f(x)P̂ i

t (dx) = EP i (
f(Xt)1{τ≤t}

)
with (τ, X) the canonical process. It is not immediate whether each P̂ i

t has a
density. Denote by Dn, n ∈ N\{0}, the shift operator in the canonical space
[0, T ] × C([0, T ], R2),

Dn((τ, X)) =
(

(τ − 1
n

)+, X·+ 1
n

)
.

Under Qi
n := P i ◦D−1

n , i = 1, 2, the canonical variable (τ, X0) has law P i
1
n

given by∫
R2×[0,T− 1

n ]

f(t, x) P i
1
n
(dt, dx) =EP i

(
f((τ − 1

n
)+, X 1

n
)
)

=
∫ T

1
n

∫
R2

f(t − 1
n

, x)P0(dt, dx) +
∫

R2
f(0, x)P̂ i

1
n
(dx).

Thus, the canonical process (τ, X) solves under Qi
n the martingale problem

• Q ◦ (τ, X0)−1 = P i
1
n

,

• f(t, Xt) − f(τ, X0) −
∫ t

0

[
∂f
∂s (s, Xs) + ν�f(s, Xs)

+K ∗ ws+ 1
n
(Xs)∇f(s, Xs)

]
1s≥τds,

0 ≤ t ≤ T − 1
n , is a continuous Q-martingale for all f ∈ C1,2

b

w.r.t. the filtration Gt = Ft+ 1
n
.

(53)

Notice that if we prove that the “initial condition” Qi
n ◦ (τ, X0)−1 is uniquely

determined, we deduce that (MP) has a unique solution, remarking first that the



drift coefficient K ∗ws+ 1
n

is bounded (Corollary 5.7). Then, we can adapt standard
results on martingale problems to deduce that P 1 ◦D−1

n = P 2 ◦D−1
n for all n ∈ N,

and this implies that P 1 = P 2.
We therefore proceed to check that P 1

1
n

= P 2
1
n

, or equivalently (by (52)), that

P̂ 1
1
n

= P̂ 2
1
n

. Observe that for t > 0 the indicator function in the definition (52) can
be replaced by that of the event {τ < t}. Thus, it is not hard to check that for
t > 1

n it holds that

(54)
∫

f(x)P̂ i
t (dx) = EQi

n(f(Xt− 1
n
)1{τ<t− 1

n}).

On the other hand, since K ∗ ws+ 1
n

is bounded, by a standard argument based on
Girsanov’s theorem we can check that Qi

n is absolutely continuous (on [0, T − 1
n ]×

C([0, T − 1
n ], R2)) w.r.t. the law of the process (τ, X0 +

∫ t

0
1s≥τdBs), where (τ, X0)

has distribution P i
1
n

and B is an independent Brownian motion. From this and (54)

it follows that P̂ i
t (dx) has a density (independent of whether P i

1
n

does or not), and

so P̂ i
t has a density for all t.

We denote the density of P̂ i
t by ρ̂i

t. We just have to prove that ρ̂1
t = ρ̂2

t .
Following similar arguments as in the proof of Lemma 3.9 ii), and using the fact

that ∫
[0,T ]×R2

|K ∗ wt(x)|ρ̂i
t(x)dx dt <

∫ T

0

‖K ∗ wt‖∞dt < ∞

by Corollary 5.7, we deduce that

ρ̂i
t(x) = Gν

t ∗ w̄0(x) +
∫ t

0

Gν
t−s ∗ ḡs(x) ds +

∫ t

0

∇Gν
t−s ∗

[
(K ∗ ws)ρ̂i

s

]
(x) ds

for all t ∈ [0, T ], where w̄0(x) = |w0(x)|
‖w0‖1+‖g‖1,T

and ḡs(x) = |gs(x)|
‖w0‖1+‖g‖1,T

. We take

L
4
3 norm and use the estimate ‖Kε ∗ w(s)ρ̂i

s‖1 ≤ Cs−
3
4 (following from Corollary

5.7) to get that

‖ρ̂i
t‖ 4

3
≤ Ct−

1
4 + C + C

∫ t

0

(t − s)−
3
4 s−

3
4 ds = Ct−

1
4 + C + Ct−

1
2 .

From here, supt∈[0,T ]

(
t

1
2 ‖ρ̂i

t‖ 4
3

)
< ∞, and by similar steps as in Theorem 5.5 b),

we obtain
sup

t∈[0,θ]

(
t

1
2 ‖ρ̂1

t − ρ̂2
t‖ 4

3

)
≤ Cδ(θ) sup

t∈[0,θ]

(
t

1
2 ‖ρ̂1

t − ρ̂2
t‖ 4

3

)
for small enough θ, and δ(θ) a function associated to w as in Theorem 5.5 a),
satisfying δ(θ) → 0 when θ → 0. This yields ρ̂1

t = ρ̂2
t for small enough t, and then

for all t by standard arguments.
Estimates for time-marginal laws of P ε. Let ρ̃ε be associated with the

mollified process Xε, and ρ̂ε the density of f �→ E(f(Xε
t )1{τ≤t}). For an arbitrary

p ∈ [43 , 2), we take the Lp norm in the mild equations satisfied by ρ̃ε. From the fact
that supt∈[0,T ] ‖(Kε ∗ ρ̃ε

t )ρ̃ε
t‖1 < C(ε) < ∞, and using Lemma 2.2 together with

Young’s inequality, we deduce that

sup
t∈[0,T ]

t1−
1
p ‖ρ̃ε

t‖p < ∞.



Similarly, starting from the mild equation satisfied by ρ̂ε,

(55) ρ̂ε
t (x) = Gν

t ∗ w̄0(x) +
∫ t

0

Gν
t−s ∗ ḡs(x) ds +

∫ t

0

∇Gν
t−s ∗ [(Kε ∗ ρ̃ε

s)ρ̂
ε
s] (x) ds,

and since supt∈[0,T ] ‖(Kε ∗ ρ̃ε
t )ρ̂

ε
t‖1 < C ′(ε) < ∞, we deduce that

sup
t∈[0,T ]

t1−
1
p ‖ρ̂ε

t‖p < ∞.

By standard arguments, the function ρ̃ε(t + ·) ∈ F0,p,T−t solves the mollified mild
equation with data satisfying (H′

1) and (Hp). From Lemma 5.2 we deduce that
ρ̃ε ∈ C([0, T ], L1)∩C(]0, T ], Lp) and therefore, by Theorem 5.5, ρ̃ε equals the unique
solution wε given therein. In particular, if we define

δ̃(θ) := sup
ε>0

sup
t∈[0,θ]

t1−
1
p ‖ρ̃ε

t‖p,

then δ̃(θ) converges to 0 when θ tends to 0. Moreover, taking Lp norm in (55) and
using Remark 5.1 we get

|||ρ̂ε|||�0,p,θ ≤ |||W̄0|||�0,p,θ + Cδ̃(θ)|||ρ̂ε|||�0,p,θ

with W̄0 defined in the natural way in terms of w̄0 anf ḡ. It follows that

(56) |||ρ̂ε|||�0,p,θ0
≤ 2|||W̄0|||�0,p,θ0

for θ0 > 0 small enough. Since supε≥0 |||ρ̃ε
θ0+·(·)|||0,p,T−θ0 < ∞ by Theorem 5.5, by

looking at the mild equations satisfied by the functions ρ̂ε
θ0+·, ε ≥ 0, which have

initial conditions ρ̂ε
θ0

(x) that are bounded in Lp uniformly in ε by (56), we conclude
that

|||ρ̂ε|||�0,p,T < ∞.

(This estimate will be used below in the particular case p = 4
3 ).

Tightness of the family (Pε). From Corollary 5.7, if 0 < η < 1 and S, R are
stopping times in the filtration of (τ, Xε) such that S ≤ R ≤ T and R − S ≤ η, we
have ∫ R

S

|Kε ∗ ρ̃ε
t (X

ε
t )|dt < Cη

1
p− 1

2

for a constant C > 0 independent of ε > 0. Tightness follows from the Aldous
criterion (p < 2).

Identification of accumulation points as solutions of (MP). Let P be
an accumulation point. By suitably approximating the function h by continuous
functions (cf. [12]), one can check that∫

R2
ψ(x)ρ̃ε

t (x)dx = E(ψ(Xε
t )h(τ, X0)1{t≥τ})

converges to EP (ψ(Xt)h(τ, X0)1{t≥τ}) when ε tends to 0 for every ψ ∈ D. Conse-
quently, since ρ̃ε = wε, we have by Theorem 5.5 b) that

P̃t(dx) = wt(x)dx,

with w the unique solution of the mild vortex equation in C([0, T ], L1)∩C(]0, T ], Lp).



Let us take f ∈ C1,2
b , 0 ≤ s1 ≤ · · · ≤ sm ≤ s < t ≤ T , and λ : [0, T ] × R

2m → R

a continuous bounded function. To show that P is a solution of (MP), it is enough
to prove that

(57) EP

[( ∫ t

s

{
∂f

∂r
(r, Xr) + ν∆f(r, Xr) + K ∗ wr(Xr)∇f(r, Xr)

}
1{r≥τ}dr

+ f(t, Xt) − f(s, Xs)
)
× λ(τ, Xs1, . . . , Xsm

)
]

= 0,

with (τ, X) being the canonical process. Define a function κ : [0, T ]×C([0, T ], R2) →
R by

(58)

κ(θ, ξ) =
( ∫ t

s

{
∂f

∂r
(r, ξ(r)) + ν∆f(r, ξ(r)) + K ∗ wr(ξ(r))∇f(r, ξ(r))

}
1{r≥θ} dr

+ f(t, ξ(t)) − f(s, ξ(s))
)
× λ(θ, ξ(s1), . . . , ξ(sm)).

Thanks to Corollary 5.7, κ is continuous and bounded, and consequently,

EP (κ(τ, X)) = lim
ε′→0

E(κ(τ, Xε′
))

for P ε′
the subsequence converging to P . We conclude by showing that this limit

is 0.
From the martingale problem satisfied by P ε′

we deduce that∣∣∣E(κ(τ, Xε′
))

∣∣∣
≤ CE

[∫ T

0

∣∣∣Kε′ ∗ ρ̃ε′

s (Xε′

s ) − K ∗ ws(Xε′

s )
∣∣∣1{s≥τ}ds

]

≤ C

∫ T

0

∫
R2

∣∣∣Kε′ ∗ ρ̃ε′

s (x) − K ∗ ws(x)
∣∣∣ ρ̂ε′

s (x)dx ds

≤ C

∫ T

0

(
‖Kε′ ∗ ρ̃ε′

s − Kε′ ∗ ws‖4 + ‖Kε′ ∗ ws − K ∗ ws‖4

)
‖ρ̂ε′

(s)‖ 4
3

ds

by Hölder’s inequality. By Lemma 4.1 with p = 4
3 and q = 4, Young’s inequality

and Lemma 4.4 with l = 4
3 , the latter is bounded above by

C sup
ε>0

|||ρ̂ε′
|||0, 4

3 ,T

∫ T

0

s−
1
4

[
‖ρ̃ε′

s − ws‖ 4
3

+ ‖K − Kε′‖ 4
3
‖ws‖2

]
ds

≤ C

∫ T

0

s−
1
4

[
‖ρ̃ε′

s − ws‖ 4
3

+ ‖K − Kε′‖ 4
3
‖ws‖2

]
ds,

the last inequality owing to (51) and to Theorem 5.5 b). Thus, when ε′ → 0, we
have ∣∣∣E(κ(τ, Xε′

))
∣∣∣ ≤ C(ε′)

1
2

∫ T

0

s−
1
4 s−

1
2 ds = CT

1
4 (ε′)

1
2 → 0. �



Corollary 5.10. Consider a sequence εn → 0 and the system of particles
(Zin)n∈N,i=1...n defined as in Corollary 4.15. Let p ∈ [ 43 , 2) and P ∈ P ′

p,T be the
law of the nonlinear processes associated with the unique solution w ∈ C([0, T ], L1)∩
C(]0, T ], Lp) of the vortex equation. Then, for each k ∈ N,

law(Z1n, . . . , Zkn) =⇒ P⊗k when n → ∞.

Proposition 5.11. Assume that (H′
1) holds, and recall that u(t, x) = K∗wt(x). Let

the weighted empirical process µ̃n,εn
s and the sequence εn be defined as in Corollary

4.16. Then,

sup
x∈R2

E
(
|Kεn

∗ µ̃n,εn
t (x) − u(t, x)|

)
→ 0

for all fixed t ∈]0, T ], as n tends to infinity, from which we deduce that

∫ T

0

sup
x∈R2

E
(
|Kεn

∗ µ̃n,εn

t (x) − u(t, x)|
)
dt → 0.

Proof. We follow the proof of Corollary 4.16. Under the weaker assumption (H′
1),

our solution however only belongs to F �
1,p,T (see Theorem 5.6), and we are not

able to extend the continuity properties of B used in Corollary 4.16 to some space
analogous to F1,r,(T ;p).

We thus consider the family of shifted solutions {wε
r+·}ε≥0 for r ∈]0, T ]. By

similar computations as in (45) we obtain that

|||wε
r+· − wr+·|||1,p,T ≤ C(r, T )ε

2−l
l + C ′(r, T )r−

1
2 ε

2−p
p ,

where the second term on the r.h.s. is due to the difference of the initial conditions
in the shifted versions of (44), controlled by Theorem 5.5 b). From this we deduce
that the third term on the r.h.s. of (47) goes to 0 for each fixed t ∈]0, T ]. As in the
proof of Corollary 4.16, the expectations of the two other terms are bounded and
go to 0 uniformly in x ∈ R

2 and t ∈ [0, T ]. This yields the first convergence result.
To apply dominated convergence, we use the fact that ‖Kε ∗ wε

t‖∞ ≤ C‖wε
t‖W 1,p

and Theorem 5.6. �

6. Numerical results

We assume that w0 and g satisfy the moment conditions
∫

R2 |x|2|w0(x)|dx < +∞
and

∫ T

0

∫
R2 |x|2|g(s, x)|dx ds < +∞. Taking φ(s, x) = 1 and φ(s, x) = |x|2 in

equation (4), and using the fact that div K ∗ w(s, x) = 0, we can check that

∫
R2

wt(x)dx =
∫

R2
w0(x)dx +

∫ t

0

∫
R2

gs(x)dx ds

and∫
R2

|x|2wt(x)dx =
∫

R2
|x|2w0(x)dx +

∫ t

0

∫
R2

|x|2gs(x)dx ds + 4ν

∫ t

0

∫
R2

ws(x)dxds.



These quantities are, respectively, called “total flux of vorticity” (TFV) and
“moment of fluid impulse” (MFI). Also from equation (4), the “barycenter”∫

R2 xiwt(x)dx is preserved.
For the simulations, we take w0 to be the centered Gaussian density in R

2 with
variance m0 = 2, and g(s, x) := γw0(x) with γ �= 0 to be fixed. We then have
‖w0‖1 + ‖g‖1,T = 1 + |γ|T .

Consider an equi-spaced partition {tk}N
k=0 of [0, T ]. We obtain from (6) that

P (τ = 0) =
1

1 + |γ|T ; P (τ ∈]tk−1, tk]) =
|γ|T

N(1 + |γ|T )

and

P (X0 ∈ dx
∣∣τ = 0) = P (X0 ∈ dx|τ ∈]tk−1, tk]) = w0(x)dx.

Moreover, we have h(0, x) = 1+|γ|T and h(t, x) = sign(γ)(1+|γ|T ) for t ∈]0, T ].
We take as a parameter p = P (τ = 0). Then, we have |γ| = 1−p

pT , P (τ ∈]tk−1, tk])

= (1−p)
N , h(0, x) = 1

p and h(t, x) = sign(γ) 1
p for t ∈]0, T ]. We obtain the expression

∫
R2

wt(x)dx = 1 + sign(γ)
(

1 − p

pT

)
t

and

m(t) :=
∫

R2
|x|2wt(x)dx = 2+

(
2sign(γ)

(
1 − p

pT

)
+ 4ν

)
t+2νsign(γ)

(
1 − p

pT

)
t2.

We empirically compute these two quantities at each time tk using the particle
vortex method. Choosing sign(γ) = −1, we simulate the Euler scheme of the
trajectory of each particle Xi,n

t = (Xi,n
t,1 , Xi,n

t,2 ) defined in (16), and obtain

(Xi,n
tk,1, X

i,n
tk,2){1≤i≤n ; 1≤k≤N}.

The empirical values of TFV and MFI are given by

1
pn

n∑
i=1

1{tk≥τi}(1{τi=0} − 1{τi �=0})

and

M(tk) :=
1
pn

n∑
i=1

(|Xi,n
tk,1|2 + |Xi,n

tk,2|2)1{tk≥τi}(1{τi=0} − 1{τi �=0}).

Since TFV depends only on the number of vortices “alive” at each time and
their “sign” (and not on their positions), the first graphic in Figure 1 illustrates the
law of large numbers for the random birth time τ . The second graphic in Figure 1
illustrates the preservation of the (null) barycenter.



Figure 1. ε = 10−4, ν = 5 × 10−7, n = 6000, T = 50,�t =
0.8, p = 2

3 , sign(γ) = −1.

Figure 2 shows the theoretical and empirical MFI and the relative error, com-
puted as |m(tk)−M(tk)|

M(tk) . The probabilistic vortex approach seems robust for very
small viscosities.

Figure 2. ε = 10−4, ν = 5 × 10−7, n = 6000, T = 50,�t =
0.8, p = 2

3 , sign(γ) = −1.

In Figure 3 we show the evolution of the velocity field in a regular grid. At
time t = 0 all vortices have positive sign, and then new vortices with negative
signs randomly appear. At each point the norm of the velocity field progressively
decreases, attains 0 and then increases, while its direction is progressively reversed.
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Figure 3. ε = 10−4, ν = 5 × 10−7, n = 1000, T = 100, �t =
1, p = 1

3 , sign(γ) = −1.
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