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Abstract

The evolution of internal waves in a two-layer rotating circular lake was studied under nonlinear and weak
nonhydrostatic effects. Inclusion of nonlinear acceleration allowed the waves to steepen at the rear of the crest in
deep lakes, forming a front with time. The nonhydrostatic acceleration is shown to counteract this wave steeping,
leading to wave dispersion, and when the two effects are in balance, solitary-type waves can form. It is shown that
a Kelvin wave evolves by imparting energy primarily to submodes of the parent cyclonic wave by steepening and
to solitary-type waves. By contrast, a Poincaré wave is shown to evolve without shedding much of its energy to
other waves, and only a small fraction of the wave energy goes to other submodes, and this is not lost from the
parent wave but rather is periodically transferred back into the parent wave. When both Kelvin and Poincaré
waves were present simultaneously in the waterbody, then an interaction was observed when both waves were in
phase, which gave rise to additional wave components.

A common conceptual model, used to study motion in
stratified lakes (Fischer et al. 1979), is to simplify the
stratification into two, three, or more layers; this provides a
good approximation to the basin-scale internal waves
modes up to the number of fluid layers (Mortimer 1952;
Monismith 1985; Munnich et al. 1992). With this assump-
tion, the energy imparted by the wind enters the surface
layer and is then progressively distributed into the layers
below as the baroclinic pressure field sets up motions in the
lower layers (Imberger 1998; Wüest and Lorke 2003).

The interfacial response due to a surface shear stress, in a
non-rotating waterbody, was described by Spigel and
Imberger (1980), who extended the earlier analytic solution
developed by Heaps and Ramsbottom (1966). These
authors showed that, along the fetch, the steady-state
equilibrium could be described by a constant interfacial
slope Lxg2 ~ {�hh1 LWð Þ{1, in which the minus sign
signifies that the slope is in the opposite direction to the

imposed wind stress and g2 is the interfacial displacement
with respect to the unforced equilibrium, L is the length of
the basin, h1 is the equilibrium top layer thickness, hx is the
partial differential operator with respect to x, and

W ~
g0h1

2

u2
1L

ð1Þ

is the Wedderburn number. In Eq. 1, g0 ~ g r{1
0 r2 { r1ð Þ

is the reduced gravity, r1 and r2 are the layer densities, r0 is
the reference density, g is the acceleration due to gravity,
and u* is the shear velocity at the water surface. From this,
it follows immediately that the maximum nondimensional

displacement (g2 max

�
�hh1), is equal to (2W)21; W 5 0.5 is

thus the condition for full upwelling of the bottom water
(Thompson and Imberger 1980; Imberger and Hamblin
1982). The interfacial setup is achieved via internal waves
initiated at both the upwind and downwind boundaries,
propagating toward the interior, and arriving at the center
of the lake one quarter of an internal period Ti later
(Mortimer 1952; Spigel and Imberger 1980):

Ti ~
2L

c0
ð2Þ

where

c0 ~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g0

�hh1
�hh2

�hh1 z �hh2

s
ð3Þ

is the internal wave celerity and h2 is the equilibrium
bottom layer thickness (Mortimer 1952). Under the linear
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theory assumption, these waves keep propagating back and
forth across the length of the lake with a period Ti. For
motions initiated from an initial interface displacement, it is
convenient to define the Wedderburn number by (Horn et
al. 2001)

W ~
�hh1

2g0

ð4Þ

where g0 is the initial maximum displacement.
For a lake large enough that the time a wave takes to

propagate across the basin (Ti/2) is similar to or longer than
the time it takes the lake to turn through 360u, (2e)21

(where e is the Coriolis parameter), the waves will
obviously be strongly influenced by the Earth’s rotation.
The ratio of these two times is generally known as the
Burger Number (Gill 1982; Antenucci et al. 2000).

S ~
4

Ti f
ð5Þ

Two major classes of waves are possible for such rotating
basins. First, Kelvin, or cyclonic waves, in which the forces
balance in the direction of propagation, remains the same
as for nonrotating waves. The motion is essentially
unidirectional and the Coriolis acceleration, induced by
this unidirectional motion, is balanced by an oscillating
transverse pressure gradient. Second, Poincaré or anticy-
clonic waves, in which the Coriolis acceleration induces a
motion normal to the pressure gradient, causes anticyclonic
rotation of the interface displacement and fluid velocity
with nearly circular particle paths. For a particular basin
geometry, horizontal modes can be decomposed into
multiple fundamental modes oscillating in harmony side
by side (Gómez-Giraldo et al. 2006). In simple terms, those
modes are excited that match the spatial and temporal
distribution of the imposed wind stress (Csanady 1973;
Gómez-Giraldo et al. 2006; Shimizu et al. 2007).

The influence of the nonlinear inertia acceleration has
been investigated in some detail in the absence of rotation.
Advective acceleration leads to steepening of an initial
basin-scale wave (Ripa 1982; Horn et al. 2001; Boegman et
al. 2005a) over a characteristic time Ts, defined by Horn et
al. (2001).

Ts ~
L

ag0

ð6Þ

a ~
3

2
c0

�hh2 { �hh1

�hh2
�hh1

ð7Þ

Steepening is followed by convective overturning (Fed-
erov and Melville 1995) and degeneration into solitons
(Grimshaw et al. 1998; Horn et al. 2001; Boegman et al.
2003). The nonlinear acceleration also causes transfer of
energy to higher basin-scale modes (Maxworthy 1983;
Melville et al. 1989; Fedorov and Melville 2000) and energy
transfers to and from background currents (Clark and
Imberger 1996; Riley and Lelong 2000).

Studies in an infinite domain have not shown whether
waves of permanent form, such as solitons in the
nonrotating case, exist for the rotating case (Grimshaw et
al. 1998; Helfrich 2007). Periodic growth of solitary-type
waves and their subsequent destruction in a rotating
stratified fluid have been discussed by Grimshaw et al.
(1998) and Helfrich (2007). Previously, steepening of
Kelvin waves in a rotating straight channel had been
shown by Bennett (1973) and Fedorov and Melville (1995),
and Renouard et al. (1986) had also demonstrated the
formation of solitary-type waves with a stable longitudinal
shape described by a squared hyperbolic secant (sech2)
profile. However, the degeneration of basin-scale waves in
a rotating enclosed basin does not appear to have been
investigated.

The main objective of this study is to improve the
understanding of the nonlinear steepening and nonhydro-
static wave dispersion on the propagation of basin-scale
internal waves in a two-layer, stratified, rotating enclosed
circular basin. A circular basin was chosen because analytic
solutions for the linear regime are available. The charac-
teristic numbers, such as W, Ti, S, and Ts, are combined to
provide a parameter space in which to discuss the analytical
and numerical results for the cases of a spatially uniform,
suddenly-imposed wind forcing and the free evolution of
the Kelvin, Poincaré, or both types of waves.

The paper is organized as follows. First, the analytic
solution for a circular basin with a two-layer stratification,
rederived by Stocker and Imberger (2003), is revisited to
understand the general features of the solution and to
display scaling that captures the motion. Then, the n-layer
model, used in this study (de la Fuente et al. 2006), is
described briefly. This is followed by the derivation of the
solution for a suddenly imposed wind on an n-layer fluid in
a circular basin and the free evolution from initial interface
displacement. The condition that defines the formation of
solitary-type waves and transfer of energy from initial
basin-scale waves to submodes and solitary-type waves is
then presented.

Linear approximation and scaling—Modal decomposi-
tion of the linear momentum and mass equations for an n-
layer system in a rotational frame of reference reduce to a
set of n-linear, independent, vertical modal equations, the
solutions of which are described by equations equivalent to
the shallow-water equations for a homogeneous basin
(Csanady 1968; Monismith 1985; Antenucci and Imberger.
2001). For a circular homogeneous basin with a two layer
stratification, forced by a suddenly imposed, spatially
uniform shear stress, Stocker and Imberger (2003) showed
that the flow velocities and vertical displacements of the
interface were linear functions of the inverse of the
Wedderburn number. Therefore, it is advantageous to
scale the vertical interfacial displacements g2 and layer-
averaged horizontal velocities ui so that

g
1
2 ~ 2W

g2

�hh1

u
1
i ~ 2W

ui

c0
ð8Þ

where the asterisk denotes nondimensional variables, W is
the Wedderburn number with L 5 2r0 for circular basins



(Eq. 1), and the radius and time are nondimensionalized
with respect to the radius of the basin r0 and the internal
wave period Ti (Eq. 2 with L 5 2r0), respectively. This
scaling allows the forcing to be removed from the
equations, leaving only the Burger Number and the ratios
of layer thicknesses as parameters.

The maximum interfacial displacements were computed
according to this analytic solution for different values of S
and the time t*, as is shown in Fig. 1. When the Burger
Number S is large, both the Kelvin and Poincaré waves
have the same wave shape and angular frequency, but they
rotate in opposite directions. Superposition of such
matching waves results in a fundamental standing internal
wave mode, as previously discovered by Antenucci and
Imberger (2001). The maximum displacements are pro-
duced first at t 5 0.42Ti, when the radial Kelvin and
Poincaré waves are in phase for the first time; this occurs
periodically every 0.84Ti. For medium rotation (S < 0.5),
Kelvin and Poincaré waves have similar amplitudes and
still produce the first local maximum when they become in
phase at about t 5 Ti/2 (see Fig. 1); however, this
maximum displacement does not occur at the upwind end
because the troughs of the two waves are displaced
progressively as S decreases because of the differences in
their natural periods. In the limit of small Burger Numbers,
the Kelvin wave dominates the response and the timescales
of the problems given by the period of the fundamental
mode Kelvin wave, Tk, which can easily be computed by
the polynomial fit presented by Antenucci and Imberger
(2001). For winds that have a duration longer than Ti or
Tk, the amplitudes show a periodic behavior with
maximum amplitudes itself oscillating because natural
angular frequencies of the modes do not occur in multiples
of the fundamental mode frequency.

In Fig. 2, we show the total nondimensional energy of all
the wave components, partitioned into kinetic and avail-
able potential energy and work done by wind. The
nondimensionalization used for the different energy bins
was derived from the scaling introduced in Eq. 8 such that

TKE� ~
2W

c0r0u2
�VL

TKE TPE� ~
2W

c0r0u2
�VL

TPE

TE� ~
2W

c0r0u2
�VL

TE

ð9aÞ

Work
1

~
2W

c0r0u2
1

ð
V

t!su1
!dV ð9bÞ

where TKE*, TPE*, and TE* are the kinetic, available
potential, and total energy, respectively, integrated over the
basin, Work* is the work done by wind over the surface,
and V is the surface area.

For wind durations shorter than Ti/2 or Tk/2, the wind
does work on the lake, exciting the internal waves. The
supplied energy is primarily transferred to available
potential energy (about 75% of the total energy for weak
rotation and 50% for strong rotation). On the other hand,
during the second half of the period, the existing waves do
work on the wind because the direction of the wind now
opposes that of the surface velocity associated with the
wave. The wind thus periodically energizes and cancels the
internal seiches. The transfer to available potential energy
is less efficient under strong rotation in that the solution,
for that limit, is a pure Kelvin wave, which has an equi-
partitioning between kinetic and available potential energy,
whereas in the limit of weak rotation, the solution
approaches that for a nonrotating internal seiche, which
has the property that the energy is maximum when all the
energy is either all potential or all kinetic.

Governing equations and numerical scheme—The stan-
dard shallow-water equations with the Boussinesq approx-
imation and with the assumption of hydrostatic pressure
can be derived for an n-layer stratification by vertically

Fig. 2. (A) Time series of nondimensional surface rate of
work by or to the wind. (B) The nondimensional total energy of
the lake, TE* (solid line), and its partitioning between total kinetic
energy, TKE*, and total available potential energy, TPE* (dotted
and dashed lines, respectively), for S 5 0.5. Shaded areas show
periods when wind takes energy from the lake. The rate of
working and energies were nondimensionalized as in Eq. 9.

Fig. 1. Maximum interfacial displacement as a function of
time and Burger number (S). Displacement and time were
nondimensionalized as in Eq. 8 and by the internal period
Ti, respectively.



integrating the full equations of motion between z 5 zi+1 to
z 5 zi, where z is the vertical coordinate, and zi+1 and zi

correspond to the bottom and upper interfaces that define
the ith layer, respectively (Baines 1998). The three
governing equations for each layer can be written as

LUi

Lt
z

LF x
i

Lx
z

LF
y
i

Ly
~ Hi ð10Þ

where

Ui ~ ½hi, uihi, vihi�T ð11aÞ

F x
i ~

uihi

uiuihi

uivihi

0
B@

1
CA F

y
i ~

vihi

viuihi

vivihi

0
B@

1
CA ð11bÞ

and

Hi ~

0

{hig
Pi

j ~ 1

ej
Lzj

Lx
z

tx
i

r0
{

tx
i z 1

r0
z fvihi

{hig
Pi

j ~ 1

ej
Lzj

Ly
z

t
y
i

r0
{

t
y

i z 1

r0
{ fuihi

0
BBBBBBBB@

1
CCCCCCCCA

ð11cÞ

where ri, ui, and ni are the layer-averaged density and
velocities in x and y directions, respectively, tx

i and tx
i z 1

are the upper and bottom interfacial shear stresses in the x
direction, and r0ei 5 (ri 2 ri21) for i . 1 and r0e1 5 r1 for
i 5 1.

These equations were solved by the MUSCL–Hancock
method for hyperbolic equations of an n-layer system
(Bradford et al. 1997; Loose et al. 2005) (see Web Appendix
1, www.aslo.org/lo/toc/vol_53/issue_6/2738a1.pdf, for the
details). Benchmarks that validate the numerical scheme
were presented by de la Fuente et al. (2006). Because the
equations assume an inviscid fluid, shear stresses were only
considered at the water surface, and at the side walls, it was
assumed that no fluid crosses, but slip was allowed.

The weak nonhydrostatic effects were included in the
model proposed by Brandt et al. (1997), who kept the terms
of the order m2 5 h2L22, but neglected the terms of the
order e 5 ah21, where a is the wave amplitude scale and h
and L are the layer thickness and basin scale, respectively.
With this simplification, the nonhydrostatic terms in the
momentum equations for each layer can be included as
follows:

Lui
!hi

Lt
~ Bi +

! L
Lt

+:ui
!hi

� 
� �
z A
! ð12Þ

where

Bi ~

h2
1

6
i ~ 1

h2
2

3
z h1h2

2
i ~ 2

8<
: ð13Þ

and A
!

is the vector containing all the Fi and Hi terms of

Eqs. 11B,C. The nonhydrostatic terms of Eq. 12 were
solved numerically according to the method described in
Web Appendix 1. The above approximation includes the
assumption that h1 and h2 are constant in the conservation
of volume calculations (Eq. 12) (Tomasson and Melville
1992). However, as explained in Web Appendix 1, the final
scheme adopted here uses hi + g in place of hi because it
simplified the numerical scheme. The model results were
then compared with the experimental data from Horn et al.
(2001) for waves steeping in a nonrotating rectangular
channel; the model successfully reproduced the essential
features such as number and shape of solitary waves and
timing of their emergence (Fig. 3). Although the ampli-
tudes of solitary waves and the propagation velocity
showed some deviations from the experimental data
because of neglect of viscous damping (Horn et al. 2002),
they do not pose severe limitations for our analyses in that
we focus on the inviscid dynamics.

Interaction of internal waves and the imposed wind stress
forcing the motion—The model, once validated, was applied
to the case of a suddenly imposed wind over a circular
basin containing a two-layer stratification. The effects of
the weak nonlinearity and the inclusion of weak nonhy-
drostatic accelerations can be seen in Fig. 4, where this
model solution is compared with the linear solution

for the case S 5 0.5, W ~ g0�hh2
1 u2

12r0

� 
{1
~ 1:83, and

�hh1

�
�hh2 ~ 1:0; the forcing was strong enough to induce

nearly full upwelling at the first overshoot at t < Ti/2. The
trend of the kinetic, available potential, and total energy
were similar to the linear solution, although the nonlinea-

Fig. 3. Comparison of interfacial displacement between
simulation and experimental results in a two-layer, nonrotating
channel of length L. (A, C) Simulations and (B, D) experiments by
Horn et al. (2001). The waves were generated by initial linear tilt,
and resulting interfacial displacement was measured at L/2 and
3L/4.

http://www.aslo.org/lo/toc/vol_53/issue_6/2738a1.pdf
http://www.aslo.org/lo/toc/vol_53/issue_6/2738a1.pdf
http://www.aslo.org/lo/toc/vol_53/issue_6/2738a1.pdf
http://www.aslo.org/lo/toc/vol_53/issue_6/2738a1.pdf


rities allowed the wind to impart slightly more total energy
to the motion (Fig. 4A), which is also reflected in the
nondimensional interface displacement. Energy losses be-
cause of numerical dissipation were found to be ,10% of the
total energy, for the duration of the simulation (Fig. 4A).
Throughout this paper we assume that the kinetic energy due
to the vertical velocity is two orders of magnitude smaller
than the potential energy plus kinetic energy that is due to
horizontal velocities, and may thus be neglected.

The well-known effect of the layer depth ratio on the
nonlinear steepening (Horn et al. 2001) is shown in Fig. 5,
where the interfacial displacements, at the upwind end and
at the center of the basin, are shown for the depth ratios
�hh1

�
�hh2 ~ 1:0 and 0.1, with the same Burger and Wedder-

burn numbers as before. When the layer thicknesses were

equal, the inclusion of the nonlinear and nonhydrostatic
terms amplified the interfacial displacements, compared
with those from the linear solution, almost symmetrically.
However, for the small depth ratio, �hh1

�
�hh2 ~ 0:1, the waves

steepened more at the rear of the crest (Choi and Camassa
1999). Furthermore, at the center of the basin, an almost
stationary interface oscillation was observed to appear with
a period of about Ti/3 (Fig. 5B). The amplitude of this
displacement was much less for the simulation with
�hh1

�
�hh2 ~ 1:0 than for �hh1

�
�hh2 ~ 0:1.

The expected generation of solitary-type waves because
of steepening of the Kelvin wave is not observed, as seen in
Fig. 5A. The interaction between the wind and the waves
modulated the total energy as discussed above. The
steepening timescale, Eq. 6, defines when the nonlinear
effects become important for free oscillations with constant
energy in time (Horn et al. 2001). The suddenly imposed
wind problem analyzed here, however, imposes temporal
changes on the total energy with the timescale characterized
by Ti or Tk. The ratio between these two timescales,

Ts

Ti

~
1

3g0

h1h2

h2 { h1

ð14Þ

should indicate whether there is enough time to produce
steepening before the energy available for steepening is
extracted by the wind. To test this hypothesis, simulations
were carried out for S 5 0.5 and Ts/Ti 5 0.40, 0.48, 0.88,
and 1.29, and the results are shown in Fig. 6. The first case

considers �hh1

�
�hh2 ~ 0:05 and W 5 1.83, the second and

fourth cases were run with �hh1

�
�hh2 ~ 0:1 and W 5 1.83 and

3.66, respectively, whereas the third case was conducted

with W 5 1.83 and �hh1

�
�hh2 ~ 0:55. To calculate Ts/Ti, g0 was

taken as the maximum interfacial displacement at t < Ti/2t.
Note that the smaller ratios Ts/Ti are closer to the smaller

possible value of 0.3 for the limit h1 % h2 and g0 ? �hh1.
Figure 6H shows the total energy as a function of time,
indicating three maxima at approximately t/Ti 5 0.75, 1.8,
and 2.9, respectively.

The three runs in which Ts , Ti (darkest lines) show
steepening of the rotating internal waves that were
modulated by energy extraction by the wind. The results
for Ts/Ti 5 0.40 and 0.48 (dotted and dashed lines) show
the energy peaking after the second maximum in total
energy (Fig. 6E), but this recedes as the wind drains the
energy from the basin-scale wave before solitary-type waves
can form (Fig. 6F). The magnitude of the steepening in
Fig. 6E is larger for Ts/Ti 5 0.40 than Ts/Ti 5 0.48. A
similar behavior was observed for Ts/Ti 5 0.88 (solid dark
line), whereas the results for Ts/Ti . 1 (light solid line) did
not show any steepening at all.

Free evolution of individual Kelvin and Poincaré waves—
The evolution of the monochromatic Kelvin and Poincaré
wave was also analyzed with the model by initializing the
simulations with the velocity and displacement field from
the linear solutions (Eq. 12). The interface displacements
from simulations for the initial Kelvin wave case, with
an amplitude equivalent to a Wedderburn number

Fig. 4. Comparison between simulation and analytic results
for S 5 0.5, W 5 2.3, and �hh1 ~ �hh2. (A) Time series for the total
energy and its partitioning between kinetic and available potential
energies. Shaded area shows the estimated numerical dissipation
of the simulation. (B) Linear (solid line) and nonlinear (dotted
line) time series of the maximum interfacial displacement.

Fig. 5. Time series of nondimensional interfacial displace-
ment for the linear case (dotted line) and nonlinear and weak
nonhydrostatic cases for �hh1

�
�hh2 ~ 1:0 (dashed line) and 0.1 (solid

line). (A) At the upwind end and (B) at the center of the basin. S 5
0.5 and W 5 1.83.



W ~ h1 2g0ð Þ{1
~ 0:6, h1=h2 ~ 0:1, and three Burger

Numbers are shown in Figs. 7, 8. The steepening of the
rear of the crest of the linear wave commences at
approximately t 5 Ts (t9 5 1.0); degeneration into a train

of solitary-type waves followed shortly after this time in all
the cases. When the nonhydrostatic term was switched off,
the initial basin-scale wave kept steepening until it formed a
steep front, confirming the well-known fact that the
formation of solitary-type waves requires the pressure
dispersion term (Fig. 8A,B). For a given value of S, the
following features, similar to solitary waves in nonrotating
flows (Grimshaw, et al. 1998; Ostrovsky and Stepanyants
2005; Helfrich and Melville 2006), were used to identified
the presence of the solitary-type waves: (1) The azimuthal
scale (wavelength) increased with the Wedderburn number,
as in nonrotating cases in which larger solitons have shorter
wave lengths (compare, e.g., Fig. 8A,C,E). (2) The azi-
muthal shape of the solitary-type waves closely follows the
squared hyperbolic secant profile for smaller ratios �hh1

�
�hh2

but turned into hyperbolic tangent profiles for relatively
deeper surface layers (e.g., compare solid and dashed lines
in Fig. 8B with the squared hyperbolic secant and
hyperbolic tangent profiles in Fig. 8H, respectively). This
is well known and follows when higher order terms are
included in the KdV equation (Lee and Beardsley 1974;
Ostrovsky and Stepanyant 2005; Helfrich and Melville
2006). (3) As is known from KdV theory, when the second-
order terms are included (Lee and Beardsley 1974), the
amplitude is limited, leading to a maximum amplitude. This
amplitude is proportional to the magnitude of the initial
perturbation and is a function of �hh1

�
�hh2 (Fig. 8G). Note

that, although these waves are not true solitons described
by the permanent squared hyperbolic secant shape, they
retain their form over simulated time (3Ts), large compared
with the travel time across a lake, and they can break at the
coast and dissipate their energy.

On the other hand, the results differed from the
nonrotating case because the effects of the Earth’s rotation
modified the maximum amplitude of these solitary-type
waves (Fig. 8G), in which smaller S (strong rotation) is
associated with smaller amplitudes.

Fig. 6. (A–G) Azimuthal profiles of the interfacial displace-
ment for simulations of the spatially uniform, suddenly imposed
wind problem in a circular basin for ratios Ts/Ti 5 0.40, 0.48, 0.88
(dashed, dotted, and solid dark lines, respectively), and 1.29 (light
solid line) from t 5 0 to t 5 3Ti, with a 0.5Ti interval. (H) The
time series of the total energy shown in Fig. 2, oriented along the
vertical direction from top (t 5 0) to bottom (t 5 3Ti).

Fig. 7. Evolution of the interfacial displacement with the nonhydrostatic terms for an initial
monochromatic Kelvin wave for W ~ h1(2g0){1 ~ 0:6. White circle on initial conditions shows
the Rossby radius measured from the shore, and white arrows are the layer-averaged velocity in
the upper layer. The waves rotate anticlockwise, as in the northern hemisphere t9 5 t/Ts.



Interestingly, the evolution of an initial Poincaré wave
showed significant difference from the Kelvin wave cases
(Fig. 9). Nonlinear steepening produced fronts steeper than
those for the Kelvin wave. However, this did not lead to
subsequent degeneration into solitary-type waves, as
described for the Kelvin waves (compare Figs. 7, 9). The
fronts appeared and disappeared periodically, which
modulated the wave structure but did not change the
amplitude and basic structure of the initial Poincaré wave
significantly (see subsequent section). The inclusion of the
nonlinear terms was necessary for the steepening, but the
results were almost insensitive to the inclusion of the
nonhydrostatic term.

Redistribution of energy—The energy contained in the
steepened waves and solitary-type waves can be analyzed
by fitting the analytical homogeneous solution for the
linear problem (i.e., normal modes) as a function of time as
in Shimizu et al. (2007); this is equivalent to using an energy
spectrum to capture the energy fluxes between different
wave numbers (Maxworthy 1983; Melville et al. 1989;
Fedorov and Melville 2000). Mathematically, it is possible
to express every wave in a convergent series of linear modes
(Shimizu et al. 2007). However, for the series expansion to
retain its physical meaning, the series was terminated when
the length scale reduced to that of the solitary-type waves.
As seen in Fig. 7, as the solitary-type waves steepened, their
amplitude increased and their length scale decreased;
clearly this means that the series fit will need to be
terminated so that the basin-scale waves and the solitary-
type waves remain separate.

As a first step, consider the estimate of the amount of
energy contained in such solitary-type waves. The energy
per soliton and per unit of width (radius) along r was
obtained from the theoretical solution of the KdV equation
(Boegman et al. 2005b) as a function of the soliton
amplitude. This energy was then summed over the observed
train of solitons obtained in the simulation. The energy per
soliton (TEs) is given by

Fig. 9. Same as Fig. 7 but for an initial monochromatic Poincaré wave.

Fig. 8. (A–F) The azimuthal profiles of the interfacial displace-
ment at t 51.5Ts; r 5 r0 for W ~ h1(2g0){1 ~ 0:6, 0.8, and 1.2;
ratio �hh1

�
�hh2 ~ 0:1 (solid line) and 1.0 (dashed line); and S 5 0.5(first

column) and 0.8 (right column). Thick lines in panels A and B show
the hydrostatic solution. (G) Temporal average amplitude of solitary-
type waves a as a function of S for W ~ h1(2g0){1 ~ 0:6, 0.8, and
1.2, and R ~ �hh1

�
�hh2 ~ 0:1 and 0.5. Note that the vertical axis is the

amplitude normalized by initial perturbation displacement since
2Wa�hh

�1
1 ~ a=g0. (H) The squared hyperbolic secant shape of the

first-order KdV equation (solid line) and hyperbolic tangent shape of
the second-order KdV equation (dashed line).
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where the amplitude a(r) was obtained from the simulation
results. The series expansion was then terminated at the
number of modes that contained the residual energy equal
to that in the train of solitons at a time equal to three
steepening times; this required four higher azimuthal
submodes of the Kelvin wave.

On the basis of the above criteria, the first 10 radial and
the first four azimuthal modes of cyclonic and anticy-
clonic waves were fitted. The energies contained in the
modes were grouped into four classes: leading wave
(Kelvin or Poincaré), high azimuthal submodes of the
leading wave (denoted in Fig. 10 as K s-mod. and P s-
mod., respectively), other modes (denoted as other in
Fig. 10), and the nonfitted energy that corresponds to
residual energy. The energy contained in the solitary-type
waves was also calculated by Eq. 15. Fig. 10 shows a
typical time series of the total energy evolution, normal-
ized by the total energy among the different categories for
W 5 0.6, �hh1

�
�hh2 ~ 0:1, and S 5 0.5 for an initial Kelvin

wave case (Fig. 10A) and S 5 0.2, 0.5, and 0.8 for an
initial Poincaré wave case (Fig. 10B–D, respectively). The
energy evolution for the initial Kelvin wave was insensi-
tive to S.

For the initial Kelvin wave case, the energy contained in
the leading wave was mainly transferred to the submodes
and the residual energy corresponding to energy contained
in solitary-type waves (Fig. 10A). At t 5 3Ts, the
submodes and solitary-type waves had about 20% and
30% of the total energy, respectively (Fig. 10A). By
contrast, for the initial Poincaré wave case (Fig. 10B–
D), the energy was transferred into submodes, and then
the transferred energy was observed to periodically return
to the parent wave forming a limit cycle. The period of
that interaction was about 1.2 times the natural period of
the Poincaré wave for all the runs. The maximum energy
transfer increases with the magnitude of S, being equal to
about 30% of the total energy for S 5 0.2, 50% of the total
energy for S 5 0.5, and 65% of the total energy for S 5
0.8, indicating that rotation suppresses steepening of a
Poincaré wave.

Coupling of free Kelvin and Poincaré waves—The
nonlinear interactions between basin-scale waves was
analyzed by initializing the simulation with the displace-
ment and velocity field described by the linear superposi-
tion of a Kelvin and a Poincaré waves that were in phase.
Their relative amplitudes were determined from the linear
solution of the suddenly imposed wind problem at t 5 (TK

2 TP)(TKTP)21, where TK and TP are the periods of Kelvin
and Poincaré waves, respectively. Time series of the
interfacial displacements at the upwind end and at the
center of the basin are shown in Fig. 11A for the cases S 5
0.5, W 5 0.6, and �hh1

�
�hh2 ~ 0:1. The energy decomposition

into the leading Kelvin and Poincaré waves and the higher
azimuthal Kelvin modes are shown in Fig. 11B.

The steepening and subsequent degeneration of the
Kelvin wave into solitary-type waves was similar to the
monochromatic Kelvin wave case (Fig. 11A); however, at
the center of the basin, a standing oscillation with a period
TKP 5 (TK 2 TP)(TKTP)21 (see triangles in the upper axis
in Fig. 11A) was excited when both the leading waves were

Fig. 11. (A) Time series of dimensionless interfacial displace-
ment at the upwind end (solid line) and at the center of the basin
(dashed line). (B) Time series of fitted modal energy nondimen-
sionalized by the total energy of the simulation for S 5 0.5,
W ~ h1(2g0){1 ~ 0:6 and �hh1

�
�hh2 ~ 0:1. Triangles in upper axis

mark TKP period.

Fig. 10. Time series of fitted modal energy nondimensional-
ized by the total energy of the simulation. (A) An initial Kelvin
wave case with S 5 0.5 and (B–D) initial Poincaré wave cases with
S 5 0.2, 0.5, and 0.8, respectively. Dark gray corresponds to the
leading wave (Poincaré or Kelvin), light gray the higher azimuthal
modes of the leading wave, black the energy contained in other
basin-scale modes (radial and azimuthal), and white the other
components that approximately corresponds to solitary-type
waves. White dots in the upper panel correspond to the estimated
energy of the solitons (see text) measured as is seen in the gray
bars. Triangles in panels B–D indicate the period of the leading
Poincaré waves.



in phase. The excitation of this oscillation at the center of
the basin explains that it was, in the suddenly imposed
problem, due to nonlinear interaction of the Kelvin and
Poincaré waves excited by the wind and not by the wind
forcing itself.

The energy decomposition into modes shows the
previously described pattern; that is, the energy in Kelvin
waves were transferred to its subazimuthal modes and
degenerated into solitary-type waves, whereas the energy
contained in Poincaré waves remained available for a
longer time. Nonlinear interaction between both waves
transferred energy to the standing wave with a period of
TKP, which was then not recycled back to the Poincaré or
Kelvin waves.

Triad nonlinear interaction was thought to explain the
excitation of the TKP standing wave (Phillips 1966). This
nonlinear interaction occurs when three wave components
satisfy the relationships v1 6 v2 6 v3 5 0 and k1 6 k2 6 k3

5 0, where v1, v2, and v3 are frequencies of the three
waves and k1, k2, and k3 are the corresponding wave
numbers. The energy can be transferred among the wave
components (Phillips 1966; Hammack and Henderson
1993). For the first-order problem, the governing equations
for the lower layer are
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where the superscripts (0) and (1) denote the leading waves
and first-order perturbation that describe weak nonlinear
effects. It is clear that the set of governing equations for the
first-order approximation is the same as the linear case (the
left-hand side of Eq. 16) but forced by the nonlinear
interaction of the linear solution (the right-hand side of
Eq. 16). The Kelvin–Poincaré interaction is at frequencies v
5 [2vK, 2vP, vK 2 vP, vK + vP], where vK and vP are the
natural frequencies of Kelvin and Poincaré waves, respec-
tively. Because the basin is circular (so that natural
frequencies do not occur in multiples of the fundamental
frequency) and natural frequencies of the system remain the
same as the linear waves, these forcing frequencies do not
match with any of the natural frequencies. Therefore, the
triad interaction is unlikely to be the excitation mechanism
of the wave with a period of TKP, even though the frequency
relationship holds.

Another explanation investigated is that the observed
oscillation, in the center of the basin, is simply a forced
displacement and governed by Eq. 16. To show this, in
Fig. 12, we plot the temporal average of the energy (within
t 5 0 and 3Ts) contained in the fitted modes against the
frequency with both variables being obtained from the
modal decomposition shown in Figs. 10A,C, 11B. The

horizontal axis of Fig. 12 is the frequency v, of fitted linear
mode, normalized by f and divided by the azimuthal order
n. Division by the modal number highlights whether the
higher azimuthal modes are locked to the Kelvin, Poincaré,
or forcing frequencies, vKP 5 vK 2 vP and vPK 5 vK +
vP. A mode is locked by another one when both angular
velocities are equal. For example, the frequency of an
azimuthal mode 2 locked by the Kelvin wave, has twice the
Kelvin wave frequency and is its subharmonic. It is seen
from Fig. 12 that the observed frequencies of the azimuthal
mode 2 waves are almost equal to the forcing frequency,
explaining why, in Fig. 12, the frequencies vK, vP, vKP/2,
and vPK/2 are marked as forcing frequencies.

For a monochromatic Kelvin wave, the case shown in
Fig. 12A, we see that the azimuthal subharmonics of the
leading Kelvin wave are locked by the leading Kelvin wave
as the parent waves steepens. Through this representation it
is clear that all frequencies belong to the parent wave and
its subharmonics. A similar result was obtained for the
monochromatic Poincaré wave, the results for which are
shown in Fig. 12B with S 5 0.5. The frequencies of the first
two anticyclonic radial modes and their respectively
azimuthal submodes again belong to or are near the
leading Poincaré wave. A linear combination of Kelvin and
Poincaré waves gave rise to subharmonics of both the
parent Kelvin and Poincaré waves, as seen in Fig. 12C, but
also energy was observed at other frequencies. The exact
nature of these waves remains uncertain. That the observed

Fig. 12. Temporal average of the fitted energies of an initial
Kelvin wave (as in Fig. 10A), an initial Poincaré wave (Fig. 10C)
and an initial superposition of both waves (Fig. 11B), all for S 5
0.5, as a function of the computed frequencies on the fitting.
Circles denote cyclonic waves, triangles denote anticyclonic waves,
and shading indicates azimuthal modes. Marked frequencies are
for pure Kelvin and Poincaré waves (vK and vP, respectively),
and vKP/2 5 (vK 2 vP)/2 and vPK/2 5 (vK + vP)/2.



frequencies were not distinctively different from the natural
frequencies suggests that the remaining energy, as repre-
sented by these non-subharmonic waves, was merely the
manifestation of the nonlinear departure of the interface
displacements and thus an artifact of the modal least
squares fitting.

Discussion

Helfrich (2007) showed that an initial perturbation of the
form of solitons in a nonrotating fluid first degenerates by
radiating longer inertia-gravity waves that resteepen to
form new solitary-type waves that decay and reemerge
periodically. These observations are somewhat similar to
what was described above for Poincaré waves. For Kelvin
waves, our results are even more similar to those for a
nonrotating fluid, as shown by Renouard (1986), who
observed degeneration of Kelvin waves into solitary-type
waves that had a squared hyperbolic secant profile in a
rotating channel. The effect of rotation only modified the
transverse interface gradient and did not influence the
degeneration processes.

In previous research, two major groups of mechanism
for the damping of the basin-scale internal waves have been
identified: shear stress at the benthic boundary layer
(Wüest et al. 2000; Marti and Imberger 2006) and nonlinear
energy transfer into the high-frequency waves, which
radiate toward the boundary where they break on a sloping
bottom (Horn et al. 2001; Boegman et al. 2003; Boegman et
al. 2005a). Interior dissipation because of, for instance,
shear instabilities, is small relative to these effects and can
be neglected (Wüest et al. 2000).

The mechanisms of degeneration into high-frequency
waves have been investigated for nonrotating basins (Horn
et al. 2001), wherein the magnitude of the perturbation, W,
and the ratio �hh1

�
�hh2 were used as the parameters to

characterize the degeneration processes. Different studies
conjectured that rotation would reduce the relative
importance of the formation of solitary waves. Solitary
waves of permanent form, as obtained for nonrotating
flows (Grimshaw et al. 1998; Ostrovsky and Stepanyants
2005; Helfrich and Melville 2006), were unknown for
rotating flows. However, field measurements have clearly
shown the presence of solitary-type high-frequency waves
in rotating lakes, whose features can be explained on the
basis of the nonrotating theory (Boegman et al. 2003; Appt
et al. 2004). The degeneration processes described in this
paper provide an explanation for their presence, showing
that, for timescales ,3Ts, the evolution of the Kelvin wave
can be likened to a nonrotating long wave. A graphic
example of such waves, arising from Kelvin waves is
described in Appt et al. (2004) from observations in Upper
Lake Constance.

The inclusion of both nonlinear and nonhydrostatic
accelerations, when describing the response of a stratified
rotating lake, has shown that Kelvin waves quickly lose
their energy to subazimuthal modes and solitary-type
waves. By contrast, Poincaré waves do not lose much
energy to other modes or high-frequency waves but rather
exhibit a limit cycle behavior where energy is transferred

back and forth between the parent wave and its azimuthal
subharmonics. If a Kelvin and Poincaré wave co-exist in a
lake they become coupled and give rise to the same
azimuthal subharmonics, but in addition, energy is drained
into distortion of the interface because of nonlinearities.
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