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Consider the fundamental solution of the
Laplacian in Ω with Robin boundary condition:







−∆Gλ = dNδy, in Ω,

∂Gλ

∂ν
+ λb(x)Gλ = 0, on ∂Ω,

(1)

ν unit normal, λ > 0 a parameter, b(x) > 0,

dN =

{

2π, N = 2,

N(N − 2)ωN , N ≥ 3



Let Γ be the fundamental solution to ∆ in R
N i.e.

Γ(x − y) =

{

− log |x − y|, N = 2,
1

|x−y|N−2 , N > 2.

The regular part of Gλ is:

Sλ(x, y) = Gλ(x, y) − Γ(x − y). (2)

The Robin function is

Rλ(x) = Sλ(x, x). (3)

Critical points of the regular part of the harmonic Green’s function with Robin boundary condition – p.



We are interested in the asymptotic behavior of
Rλ as λ → +∞, and in particular the number and
location of its critical points.

Formally, R∞ corresponds to the Robin
function of ∆ with Dirichlet boundary
conditions.

It turns out that R∞ plays an important role in
applications.

We expect that Rλ, λ < ∞ plays a similar role
when Robin boundary conditions are
imposed.



Consider Liouville’s equation in a bounded
smooth domain Ω ⊂ R

2

−∆u = ε2eu in Ω, u = 0 on ∂Ω

where ε > 0.
Suppose uε is a familiy of solutions that as ε → 0
concentrates at a point ξ ∈ Ω in the sense that

ε2euε → aδξ.

Then a = 8π and

∇R∞(ξ) = 0.



If uε is a family of solutions to −∆u = ε2eu in
Ω ⊂ R

2, u = 0 on ∂Ω, that concentrates at m
points ξ1, . . . , ξm then ξ1, . . . , ξm is a critical point
of

ϕ(y1, . . . , ym) =
m

∑

j=1

R∞(yj) +
∑

i6=j

G∞(yi, yj).
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∆u + u
N+2

N−2
−ε = 0 in Ω ⊂ R

N , N > 2

u > 0 in Ω

u = 0 on ∂Ω

Bubbling occurs at the critical points of R∞.
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Consider

∆u + ε2eu = 0 in Ω

∂u

∂ν
+ λb(x)u = 0 on ∂Ω

where λ, ε > 0 and Ω ⊂ R
2 is open, bounded,

smooth set.

Theorem. For all ε > 0 sufficiently small
(depending on λ) the equation possesses
solutions bubbling a single point as ε → 0,
corresponding to the critical points of Rλ.



What are the possible locations of the critical
points of Rλ ?

Consider the Dirichlet Robin function
R∞(x) ≡ −h(x) in 2 dimensions. If ζ = f(z) is a
conformal map of Ω into the unit disc such that
f(z0) = 0 then G(z, z0) = − log |f(z)|. Using this
one can show that

∆h = 4e 2h

i.e. h is subharmonic.



The result of Caffarelli and Friedman (1985)
shows then that in the case of strictly convex Ω,
the level sets of h are strictly convex.
Consequently function h has a unique critical
point (a minimum).

We show that if λ ≫ 1 but finite the structure of
the set of the critical points of Rλ is much richer,
even in convex domains.



Recall (4):






−∆Gλ = dNδy, in Ω,

∂Gλ

∂ν
+ λb(x)Gλ = 0, on ∂Ω,

(4)

and

Rλ(x) = [Gλ(x, y) − Γ(x − y)] |y=x

Theorem 1. For λ sufficiently large Rλ has at
least 3 different critical points. Two of them at
distance O(λ−1) from ∂Ω.



Theorem 2. Let x0 ∈ ∂Ω be a non-degenerate
critical point of b. Then there exists a λ0 > 0 such
that for any λ ≥ λ0 there exists an xλ ∈ Ω which
is a critical point of Rλ such that
|xλ − x0| = O(λ−β) for each β ∈ (0, 1).



Theorem 3. Assume b ≡ 1. Let κ(x) denote the
mean curvature of ∂Ω at x. If x0 ∈ ∂Ω is a
non-degenerate critical point of κ then there
exists a λ0 > 0 such that for any λ ≥ λ0 there
exists a critical point xλ ∈ Ω of Rλ such that
|xλ − x0| = O(λ−β) for each β ∈ (0, 1).

Interior critical point remains inside Ω when
λ → ∞

The Four Vertex Theorem implies that
generically when Ω ⊂ R

2 there are at least 5
critical points of Rλ.



Consider

−∆u = ε2eu in Ω

∂u

∂ν
+ λu = 0 on ∂Ω

where λ, ε > 0 and Ω ⊂ R
2 is open, bounded,

smooth set.
Theorem. There exists λ0 > 0 such that for all
λ > 0 the following holds: for any m and for ε > 0
sufficiently small (depending on λ, m) there is a
solution concentrating at m different points which
are at distance O(1/λ) from ∂Ω.



Indeed, we can minimize

ϕλ(y1, . . . , ym) =
m

∑

j=1

Rλ(yj) +
∑

i6=j

Gλ(yi, yj).

for yj near ∂Ω. On the other hand

ϕ∞(y1, . . . , ym) =
m

∑

j=1

R∞(yj) +
∑

i6=j

G∞(yi, yj).

has a critical point for any m only if Ω has
non-trivial topology (domain with a hole).



Let b ≡ const.

Asymptotic expansion of Rλ in terms of λ.

Main order of Rλ (Theorem 1 and Theorem
2):

Rλ(x) = λN−2
hλ(λd(x)) + O(λN−3)

where hλ(t) is an explicit function



The Green’s function in the half space






−∆Ga(x, y) = δy in H = {(x′, xN) : xN > 0}

−
∂Ga

∂xN

+ aGa = 0 on ∂H

is given explicitly by

Ga(x, y) =Γ(x − y) − Γ(x − y∗)

− 2

∫ ∞

0

e−as ∂

∂xN

Γ(x − y∗ + eNs) ds



Then it follows

hλ(t) = − log λ − log(2t) + 2

∫ ∞

0

e−s log(2t + s) ds,

when N = 2,

hλ(t) = (2t)2−N − 2

∫ ∞

0

e−s

(2t + s)N−2
ds,

when N > 2.

In either case hλ has a unique critical point
and hλ(+0) = +∞.



For Theorem 3 compute the next term in the
expansion

Rλ(x) = λN−2
hλ

(

λd(x)
)

+ λN−3(N − 1)κ(x̂)v
(

λd(x)
)

+ O(λN−3−α), 0 < α < 1

where κ is the mean curvature of ∂Ω and v is
some function depending only dimension and
x̂ is the projection of x onto ∂Ω.



When Ω = BR is a ball there is an explicit
Green’s function, if N = 2:

Gλ,R(x, y) = − log |x − y| + log
∣

∣

∣
(x − y∗)

|y|

R

∣

∣

∣
+

1

λR

+ 2

∫ R

0

(

1 −
s

R

)λR ∂

∂s
log

∣

∣

∣
x
(

1 −
s

R

)

− y∗
∣

∣

∣
ds

where y∗ is reflection across ∂BR (similarly for
N ≥ 3). By applying the previous expansion
when Ω is a ball and using the explicit Green’s
function we can find v.



Final step is a (tricky) topological degree
argument. Basically one needs to show that
h
′
λ(t) and v(t) do not have common zeros,

where (N = 2):

hλ(t) = − log λ − log(2t) + 2

∫ ∞

0

e−s log(2t + s) ds

v(t) = −
t

2
− 2t2

∫ ∞

0

e−s ds

(s + 2t)2
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