Critical points of the regular part of the harmonic Green's function with Robin boundary condition

Michał Kowalczyk,
Universidad de Chile

2nd Workshop on Elliptic and Parabolic PDE, Celebrating the 60th Birthday of Prof. Manuel Elgueta, 3-7 September 2007
J. Dávila (U. Chile) and M. Montenegro (Unicamp)

Consider the fundamental solution of the
Laplacian in Ω with Robin boundary condition:

$$
\left\{\begin{array}{rlrl}
-\Delta G_{\lambda} & =d_{N} \delta_{y}, & & \text { in } \Omega, \tag{1}\\
\frac{\partial G_{\lambda}}{\partial \nu}+\lambda b(x) G_{\lambda} & =0, & \text { on } \partial \Omega,
\end{array}\right.
$$

ν unit normal, $\lambda>0$ a parameter, $b(x)>0$,

$$
d_{N}= \begin{cases}2 \pi, & N=2 \\ N(N-2) \omega_{N}, & N \geq 3\end{cases}
$$

Let Γ be the fundamental solution to Δ in \mathbb{R}^{N} i.e.

$$
\Gamma(x-y)=\left\{\begin{array}{l}
-\log |x-y|, \quad N=2 \\
\frac{1}{|x-y|^{N-2}}, \quad N>2
\end{array}\right.
$$

The regular part of G_{λ} is:

$$
\begin{equation*}
S_{\lambda}(x, y)=G_{\lambda}(x, y)-\Gamma(x-y) \tag{2}
\end{equation*}
$$

The Robin function is

$$
\begin{equation*}
R_{\lambda}(x)=S_{\lambda}(x, x) \tag{3}
\end{equation*}
$$

We are interested in the asymptotic behavior of R_{λ} as $\lambda \rightarrow+\infty$, and in particular the number and location of its critical points.

Formally, R_{∞} corresponds to the Robin function of Δ with Dirichlet boundary conditions.
It turns out that R_{∞} plays an important role in applications.
We expect that $R_{\lambda}, \lambda<\infty$ plays a similar role when Robin boundary conditions are imposed.

Consider Liouville's equation in a bounded smooth domain $\Omega \subset \mathbb{R}^{2}$

$$
-\Delta u=\varepsilon^{2} e^{u} \quad \text { in } \Omega, \quad u=0 \quad \text { on } \partial \Omega
$$

where $\varepsilon>0$.
Suppose u_{ε} is a familiy of solutions that as $\varepsilon \rightarrow 0$ concentrates at a point $\xi \in \Omega$ in the sense that

$$
\varepsilon^{2} e^{u_{\varepsilon}} \rightarrow a \delta_{\xi}
$$

Then $a=8 \pi$ and

$$
\nabla R_{\infty}(\xi)=0
$$

If u_{ε} is a family of solutions to $-\Delta u=\varepsilon^{2} e^{u}$ in
$\Omega \subset \mathbb{R}^{2}, u=0$ on $\partial \Omega$, that concentrates at m points ξ_{1}, \ldots, ξ_{m} then ξ_{1}, \ldots, ξ_{m} is a critical point of

$$
\varphi\left(y_{1}, \ldots, y_{m}\right)=\sum_{j=1}^{m} R_{\infty}\left(y_{j}\right)+\sum_{i \neq j} G_{\infty}\left(y_{i}, y_{j}\right)
$$

K. Nagasaki, T. Suzuki, 1990
H. Brezis, F. Merle, 1991
T. Suzuki, 1992
Y.-Y. Li, I. Shafrir, 1994
L. Ma, J, Wei, 2001
C.-C. Chen, C.-S. Lin, 2003
P. Esposito, M. Grossi, A. Pistoia, 2005
M. del Pino, M. Kowalczyk, M. Musso, 2005 J. Wei, D. Ye, F. Zhou, 2005

$$
\begin{aligned}
\Delta u+u^{\frac{N+2}{N-2}-\varepsilon} & =0 \text { in } \Omega \subset \mathbb{R}^{N}, N>2 \\
u>0 & \text { in } \Omega \\
u & =0 \text { on } \partial \Omega
\end{aligned}
$$

Bubbling occurs at the critical points of R_{∞}. H. Brezis, B. Peletier, 1989
Z.-C. Han, 1991
O. Rey, 1990
J. Wei, 1996
survey M. del Pino, M. Musso, 2006

A single vortex in the Ginzurg-Landau equation (F. Bethuel, H. Brezis, Helein, 1994 , M. del Pino, M. Kowalczyk, M. Musso, 2006)

The plasma problem, A. Friedman 1988
Theory of diblock copolymer morphology, X . Ren, J. Wei, 2007, Chen, Oshita, 2007

Consider

$$
\begin{gathered}
\Delta u+\varepsilon^{2} e^{u}=0 \quad \text { in } \Omega \\
\frac{\partial u}{\partial \nu}+\lambda b(x) u=0 \quad \text { on } \partial \Omega
\end{gathered}
$$

where $\lambda, \varepsilon>0$ and $\Omega \subset \mathbb{R}^{2}$ is open, bounded, smooth set.

Theorem. For all $\varepsilon>0$ sufficiently small (depending on λ) the equation possesses solutions bubbling a single point as $\varepsilon \rightarrow 0$, corresponding to the critical points of R_{λ}.

What are the possible locations of the critical points of R_{λ} ?
Consider the Dirichlet Robin function $R_{\infty}(x) \equiv-h(x)$ in 2 dimensions. If $\zeta=f(z)$ is a conformal map of Ω into the unit disc such that $f\left(z_{0}\right)=0$ then $G\left(z, z_{0}\right)=-\log |f(z)|$. Using this one can show that

$$
\Delta h=4 e^{2 h}
$$

i.e. h is subharmonic.

The result of Caffarelli and Friedman (1985) shows then that in the case of strictly convex Ω, the level sets of h are strictly convex. Consequently function h has a unique critical point (a minimum).
We show that if $\lambda \gg 1$ but finite the structure of the set of the critical points of R_{λ} is much richer, even in convex domains.

Recall (4):

$$
\left\{\begin{align*}
-\Delta G_{\lambda}=d_{N} \delta_{y}, & \text { in } \Omega \tag{4}\\
\frac{\partial G_{\lambda}}{\partial \nu}+\lambda b(x) G_{\lambda} & =0,
\end{align*} \quad \text { on } \partial \Omega,\right.
$$

and

$$
R_{\lambda}(x)=\left.\left[G_{\lambda}(x, y)-\Gamma(x-y)\right]\right|_{y=x}
$$

Theorem 1. For λ sufficiently large R_{λ} has at least 3 different critical points. Two of them at distance $O\left(\lambda^{-1}\right)$ from $\partial \Omega$.

Theorem 2. Let $x_{0} \in \partial \Omega$ be a non-degenerate critical point of b. Then there exists a $\lambda_{0}>0$ such that for any $\lambda \geq \lambda_{0}$ there exists an $x_{\lambda} \in \Omega$ which is a critical point of R_{λ} such that

$$
\left|x_{\lambda}-x_{0}\right|=O\left(\lambda^{-\beta}\right) \text { for each } \beta \in(0,1) \text {. }
$$

Theorem 3. Assume $b \equiv 1$. Let $\kappa(x)$ denote the mean curvature of $\partial \Omega$ at x. If $x_{0} \in \partial \Omega$ is a non-degenerate critical point of κ then there exists a $\lambda_{0}>0$ such that for any $\lambda \geq \lambda_{0}$ there exists a critical point $x_{\lambda} \in \Omega$ of R_{λ} such that $\left|x_{\lambda}-x_{0}\right|=O\left(\lambda^{-\beta}\right)$ for each $\beta \in(0,1)$.

Interior critical point remains inside Ω when $\lambda \rightarrow \infty$

The Four Vertex Theorem implies that generically when $\Omega \subset \mathbb{R}^{2}$ there are at least 5 critical points of R_{λ}.

Consider

$$
\begin{aligned}
-\Delta u & =\varepsilon^{2} e^{u} & & \text { in } \Omega \\
\frac{\partial u}{\partial \nu}+\lambda u & =0 & & \text { on } \partial \Omega
\end{aligned}
$$

where $\lambda, \varepsilon>0$ and $\Omega \subset \mathbb{R}^{2}$ is open, bounded, smooth set.
Theorem. There exists $\lambda_{0}>0$ such that for all $\lambda>0$ the following holds: for any m and for $\varepsilon>0$ sufficiently small (depending on λ, m) there is a solution concentrating at m different points which are at distance $O(1 / \lambda)$ from $\partial \Omega$.

Indeed, we can minimize

$$
\varphi_{\lambda}\left(y_{1}, \ldots, y_{m}\right)=\sum_{j=1}^{m} R_{\lambda}\left(y_{j}\right)+\sum_{i \neq j} G_{\lambda}\left(y_{i}, y_{j}\right)
$$

for y_{j} near $\partial \Omega$. On the other hand

$$
\varphi_{\infty}\left(y_{1}, \ldots, y_{m}\right)=\sum_{j=1}^{m} R_{\infty}\left(y_{j}\right)+\sum_{i \neq j} G_{\infty}\left(y_{i}, y_{j}\right)
$$

has a critical point for any m only if Ω has non-trivial topology (domain with a hole).

Let $b \equiv$ const.
Asymptotic expansion of R_{λ} in terms of λ.
Main order of R_{λ} (Theorem 1 and Theorem 2):

$$
R_{\lambda}(x)=\lambda^{N-2} \mathrm{~h}_{\lambda}(\lambda d(x))+O\left(\lambda^{N-3}\right)
$$

where $h_{\lambda}(t)$ is an explicit function

The Green's function in the half space

$$
\left\{\begin{aligned}
-\Delta G_{a}(x, y)=\delta_{y} \quad \text { in } H=\left\{\left(x^{\prime}, x_{N}\right): x_{N}>0\right\} \\
-\frac{\partial G_{a}}{\partial x_{N}}+a G_{a}=0 \quad \text { on } \partial H
\end{aligned}\right.
$$

is given explicitly by

$$
\begin{aligned}
G_{a}(x, y)= & \Gamma(x-y)-\Gamma\left(x-y^{*}\right) \\
& -2 \int_{0}^{\infty} e^{-a s} \frac{\partial}{\partial x_{N}} \Gamma\left(x-y^{*}+e_{N} s\right) d s
\end{aligned}
$$

Then it follows

$$
\mathrm{h}_{\lambda}(t)=-\log \lambda-\log (2 t)+2 \int_{0}^{\infty} e^{-s} \log (2 t+s) d s
$$

$$
\text { when } N=2
$$

$$
\mathrm{h}_{\lambda}(t)=(2 t)^{2-N}-2 \int_{0}^{\infty} \frac{e^{-s}}{(2 t+s)^{N-2}} d s
$$

$$
\text { when } N>2
$$

In either case h_{λ} has a unique critical point and $h_{\lambda}(+0)=+\infty$.

For Theorem 3 compute the next term in the expansion

$$
\begin{aligned}
R_{\lambda}(x)= & \lambda^{N-2} \mathrm{~h}_{\lambda}(\lambda d(x)) \\
& +\lambda^{N-3}(N-1) \kappa(\hat{x}) \mathrm{v}(\lambda d(x)) \\
& +O\left(\lambda^{N-3-\alpha}\right), \quad 0<\alpha<1
\end{aligned}
$$

where κ is the mean curvature of $\partial \Omega$ and v is some function depending only dimension and \hat{x} is the projection of x onto $\partial \Omega$.

When $\Omega=B_{R}$ is a ball there is an explicit Green's function, if $N=2$:

$$
\begin{aligned}
& G_{\lambda, R}(x, y)=-\log |x-y|+\log \left|\left(x-y^{*}\right) \frac{|y|}{R}\right|+\frac{1}{\lambda R} \\
& +2 \int_{0}^{R}\left(1-\frac{s}{R}\right)^{\lambda R} \frac{\partial}{\partial s} \log \left|x\left(1-\frac{s}{R}\right)-y^{*}\right| d s
\end{aligned}
$$

where y^{*} is reflection across ∂B_{R} (similarly for $N \geq 3$). By applying the previous expansion when Ω is a ball and using the explicit Green's function we can find v.

Final step is a (tricky) topological degree argument. Basically one needs to show that $h_{\lambda}^{\prime}(t)$ and $v(t)$ do not have common zeros, where $(N=2)$:

$$
\begin{aligned}
\mathrm{h}_{\lambda}(t) & =-\log \lambda-\log (2 t)+2 \int_{0}^{\infty} e^{-s} \log (2 t+s) d s \\
\mathrm{v}(t) & =-\frac{t}{2}-2 t^{2} \int_{0}^{\infty} e^{-s} \frac{d s}{(s+2 t)^{2}}
\end{aligned}
$$

