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a b s t r a c t

We look at routing and scheduling problems on Kelly type networks where the injection
process is under the control of an adversary. The novelty of the model we consider is that
the adversary injects requests of distinct types. Resources are subject to switch-over delays
or setups when they begin servicing a new request class. In this new setting, we study
the behavior of sensible policies as introduced by Dai and Jennings [J. Dai, O. Jennings,
Stabilizing queueing networks with setups, Math. Oper. Res. (2004) 891–922].
We first show that the model is robust in the sense that under some mild conditions

universal stability of work conserving packet routing protocols is preserved for natural
variants of the underlyingmodel. Also, themodel’s equivalence to so called token networks
is established.
We adapt to the multi-type request and setup setting, standard arguments for proving

stability. Nevertheless, we provide counterexamples that show that for several reasonable
adaptations of contention resolution protocols to the multi-type case, stability results do
not carry over from the single-type scenario. Thismotivates us to explore fluidmodel based
arguments that could be used for proving stability for a given network. Specificallywe show
analogues of results obtained by Gamarnik [D. Gamarnik, Stability of adversarial queues via
fluid model, in: Proc. of the 39th Annual Symposium on Foundations of Computer Science,
1998, pp. 60–70] but in the multi-type request with setups scenario.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Manyprocesses in industry and elsewhere require completing a collection of taskswhile satisfying temporal and resource
constraints. Temporal constraints say that some tasks have to be finished before others can be started; resource constraints
say that two tasks requiring the same resource cannot be done simultaneously. Typically, resources are either machines,
shops, staff, etc. In many cases, it is natural to consider dynamic situations where jobs arise over time. This gives rise to an
on-line version of the job-shop scheduling problem. In such scenarios, setup costs are typically associated with resources
(e.g. a product might need painting — to change colors might require stopping, washing, loading new paint, and re-starting
the machine). A resource is not available to process requests during setup. When many requests vie for the same resource,
some type of contention resolution protocol is needed to choose which request to process while all others pile up in a queue
associatedwith the resource. In the aforementioned context the central issueworth analyzing concerns stability, i.e. whether
the number of unserviced requests remains bounded as the system runs for an arbitrarily long period of time.
Queuing theory studies thewaiting times, lengths, and other properties associatedwith queues. In the context of network

traffic and on-line job-shop scheduling (the areas of main concern to the ensuing discussion) some stochastic assumption
is often made about the request generation process. However, typical premises as say exponentially and independently
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distributed inter-arrival times are unrealistic in complex networks such as the Internet. In order to lift these hypotheses an
alternative elegant framework was proposed by Borodin et al. [9] and is referred to as Adversarial Queuing Theory (AQT). In
it, requests are generated by an adversary rather than by a stochastic process. Specifically, there is an underlying network
graph where links are assumed to be of fixed capacity. Events happen at discrete unit time intervals. At each time step the
adversary may inject requests, i.e. specify a route in the network that the request must traverse in order to be absorbed.
Once absorbed, the request is considered to have been completed and thus ‘‘disappears’’ from the network. Per time step,
each network link can process as many requests as its capacity. Packets waiting to cross an edge are said to be queued at the
edge. If an edge’s queue size is larger than the edge’s service capacity, then a scheduling protocol chooses which packet to
forward across the link.
In [9], a restriction on the adversary is proposed. Informally, the adversary is not allowed to inject (on average) more

requests than r ≤ 1 times the capacity of any edge (the parameter r is referred to as the adversaries rate). Thus, there are no
trivially identifiable ‘‘hot-spots’’ in the network. Themodel’s appeal and the great interest it has attracted is partly explained
by the fine balance between the predictability of traditional injection processes (as in classical queuing theory) and on the
other hand, unconstrained adversaries which can easily overload the system (as in competitive analysis).
The job-shop scenario mentioned at the start of this section encompasses the packet routing setting considered in [9].

Indeed, given a routing network onemay view each network link as a distinct shop and each packet as a job. Link queueswill
thus correspond to shop queues. The converse holds, i.e. packet routing encompasses the job-shop scenario, but now jobs
give rise to routes which might visit an edge multiple times. Say that a path is simple if it visits each network edge at most
once. Traditionally, and quite naturally for packet routing networks, the adversarial queuing literature has presupposed
packets visit each node at most once — hence, packets also follow simple paths. Nevertheless, for a given network G, any
initial configuration, and a rate r adversary Awhichmay inject packets along arbitrary paths, there is a network G′, a starting
configuration, and a rate r adversary A′ whose injection paths are simple, and such that the total number of packets in
G remains bounded independent of time if and only the total number of packets in G′ can be bounded independent of
time. (The crux of the proof argument required to establish the aforementioned folklore result is implicit in the proof of [3,
Theorem5.1].) Thus, in an adversarial setting, stability issues in online job-shopproblems are equivalent to stability of packet
routing networkswhere injection paths are simple. However, in the former class of problems, requirements typically belong
to distinct classes and setup costs are usually involved. In the language of packet routing this translates to multiple packet
types and latency penalties due to switching among servicing distinct packet types. We investigate stability issues in this
scenario. But in fact, we do more. To explain this, we first precisely describe the model we consider.

1.1. Model specification

A routing network is a directed graph of Kelly type, i.e. with unit link capacities. Time proceeds in discrete steps. A packet is
an atomic entity that resides at the queue of an edge at the end of any step. A packet travels along a path in the network from
its injection node (source) to its absorption node (destination). Formally, a packet is a triple (ID, P, t)where ID is some unique
identifier, P is the packet’s traversal path, and t is the time that the packet was injected into the network. An adversary is an
entity that at each time step generates a set of packet injections, i.e. source to destination paths traversed by each packet.
Our first departure from extant adversarial models is that the adversary will also specify, for each edge along a packet’s

injection path, a type (or class) chosen from a fix set of classes I. Formally, when a packet p is injected the adversary specifies
a traversal path e1 . . . e` and a traversal type function fp : {1, . . . , `} → I (throughout, we abuse notation and view a path
both as a multi-set and a sequence of edges). The traversal function should be interpreted as capturing the fact that as a
packet progresses through the network it might require being serviced by different resources, say resource fp(i) for edge ei.
This formalization captures the casewhere a fixed type is associated to a packet at injection, and also encompasses situations
where types might change as the packet moves through the network.
Remark 1. It is also natural to let fp take values not in I but in its power set (note that this is drastically different from
identifying a distinct type with each subset of I). An underlying motivation for such a general framework is one where
jobs (e.g. cars in an assembly line) move between shops some of which might handle indifferently certain collections of job
classes (e.g. distinct color cars in the assembly line example). Throughout this work we shall be concerned solely with the
case where traversal type functions take values in I.
The cases where I contains one and more than one element will be referred to as the single-class (or single-type) and

multi-class (or multi-type) case respectively. In the multi-type scenario, we also distinguish two situations depending on
whether or not the traversal functions associated with packets are constant functions. The non-constant case will be called
the dynamic multi-type case and the underlying adversary will be called a dynamic multi-type adversary. The non-dynamic
case will be called static. The static multi-type setting captures situations where the type of a packet is fixed once and for
all at its injection step. Even such a restricted scenario is of major practical relevance, e.g. in TCP/IP networks such as the
Internet packetsmay be classified according to their data load (e.g. audio, video, etc.) or destination port — this classification
remains fixed throughout the packet’s lifespan.
In the AQT model, the adversary is constrained by a pair (r, b) where b ≥ 1 is a natural number and 0 < r ≤ 1. The

restriction on the adversary is [9,5] such that for every edge e and all t1 < t2,
Ae(t1, t2) ≤ r(t2 − t1)+ b, (1)
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where Ae(t1, t2) denotes the number of packets injected by the adversary during time interval [t1, t2) that need to traverse
edge e in their source to destination routes (for an injection path crossing e several times each traversal is counted separately
by Ae(·)). The restriction specified in (1) will be referred to as load constraint — it is motivated by the fact that it inhibits the
adversary from trivially congesting the network. Roughly, this constraint asserts that for any time period of length t2 − t1
the number of packets injected that require crossing a given edge is bounded by r(t2 − t1) + b. Specifically, except for at
most b sporadic packets, nomore than r such packets are injected on average during each time step. An adversary satisfying
the load constraint will be referred to as an (r, b) adversary. Note that this adversarial model allows for injection patterns
that are ‘‘bursty’’ — the burst parameter being represented by b. The class of bounded rate adversaries is the collection of
(r, b) adversaries such that r < 1.
In a Kelly type routing network, if several packets try to cross an edge during the same step, then a packet scheduling

policy decides which one to send across the link. The other packets wait in the edge’s queue. Our second departure from the
standard adversarial model is that no queued packet that belongs to class i ∈ I may be chosen by the queuing policy if a
packet belonging to class j ∈ I, j 6= i, was sent across the link during the previous∆j,i time steps —where∆i,j’s are network
parameters henceforth called setup costs or latencies. We henceforth let ∆ denote the maximum of the ∆i,j’s taken over all
i, j ∈ I (we always assume ∆k,k = 0). Formally, denote by De,i(t1, t2) the number of type i packets crossing e during the
interval [t1, t2). The existence of setup costs is captured by the following setup constraint: for every edge e,

De,i(t, t + 1) > 0 H⇒ ∀j 6= i,De,j(t + 1, t + 1+∆i,j) = 0. (2)

We henceforth focus only in the case where∆i,j = ∆ for every i 6= j. We refer to∆ as the network setup cost or simply setup
cost.
A packet scheduling policy specifies, for each network edge and each time step, which packet waiting at the edge’s queue

is to be moved (if possible). Examples of natural policies are considered in [9], among them:

• First-In-First-Out — packets are served in the same order they arrive.
• Nearest-To-Go — each packet has a prescribed path and priority is given to the packet which has the smallest number
of edges still to be traversed.
• Farthest-To-Go — each packet has a prescribed path and priority is given to the packet which must still traverse the
largest number of edges until absorption.
• Shortest-In-System — a packet originates at a specified time and priority is given to the packet that has spent the least
amount of time in the network.
• Longest-In-System— a packet originates at a specified time and priority is given to the packet that has spent the largest
amount of time in the network.

A switching policy specifies, for each network edge and each time step, whether to keep servicing packets of the type serviced
during the preceding time step, or to start servicing (if possible) a newpacket type. In otherwords, a packet scheduling policy
specifies how priorities are assigned amongst packets of the same type while a switching policy specifies priorities among
distinct packet types. Examples of switching policies are:

• Largest-Queue— switch to serving the type that has the largest number of packets waiting at the queue (ties are broken
arbitrarily).
• Round-Robin— types are numbered 0, . . . , |I|−1, if type iwas last served, then switch to sending type (i+ 1) mod |I|.
• First-In-First-Out— switch to sending the type for which a packet first arrived at the queue (ties are broken arbitrarily).
• Priority — types are numbered 0, . . . , |I|−1, switch to serving the type whose value is smallest among all the packet
types awaiting at the queue.

For the sake of preciseness, we point out that once the switching policy determines to start servicing a different packet
type it cannot change its decision before ∆ steps have elapsed. So for example, an edge that has been idle for less than ∆
units of time will not be readily available for servicing an arbitrary request type.
We say that a switching policy is exhaustive if once it starts servicing packets of type i it must continue serving packets of

type i until none remain in the queue. In this work we only consider exhaustive switching policies. (For results concerning
exhaustive policies in the standard stochastic queueing theory setting the reader is referred to [28,21,23].)
Consider the permutation of I defined by π(i) = (i + 1) mod |I|. We say that a switching policy is shift-oblivious if

on a given queue state it chooses to serve next type j packets, then when every packet of type i is replaced by one of type
π(i), the switching policy will choose to serve next type π(j) packets. An example of a shift-oblivious switching policy
is Round-Robin. Switching policy Priority is an example of a policy which is not shift-oblivious. We say that a switching
policy is type-oblivous if the condition in the definition of shift-oblivious policy is satisfied for every permutationπ of I. Note
that any type-oblivious switching policy is also shift-oblivious. Examples of type-oblivious switching policies are Largest-
Queue and First-In-First-Out. Moreover, Round-Robin is an example of a switching policy that is shift-oblivious but not
type-oblivious.
A scheduling protocol is one that specifies both a packet scheduling and a switching policy. A greedy or work conserving

scheduling protocol is one that advances a packet through an edge provided the edge’s queue is not-empty and the edge
is not in a setup period. This notion coincides with that of work conserving packet scheduling protocols in the special case
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where all packets are of the same type. It is also worth to stop and discuss the case where the setup cost∆ is 0. In particular,
observe that even in this case the packet type is not irrelevant. Indeed, the exhaustiveness of the switching policy we focus
on requires that all packets of a given typewaiting to cross an edge be served before packets of a distinct type can start being
serviced.
Ourmain goal is to study stability of arbitrary and particular greedy scheduling protocols on various networks and against

restricted adversaries in the AQT with setup scenario described so far.
We define a network system as the tuple (G,∆, (P, S); A)where G is a routing network,∆ ≥ 0 is a setup cost, P is a packet

scheduling policy, S is a switching policy, and A is the adversary that specifies the packet injection pattern.
The state of packet p at time t , denoted statet(p), is the vector (p, t1, . . . , ts) where s is the number of time steps up to t

in which P has traversed an edge in its path and tj is the time of the jth such traversal. We define the packet configuration
PckCnf t(N ) of the network systemN = (G,∆, (P, S); A) at time t as the collection of statet(p) for which p is a packet that
is present in the network at time t . Note that the packet configuration implicitly specifies the location of packets in each
(edge) queue of the network. Analogously, we say that the state of an edge e at time t , denoted also statet(e), is the vector
(e, i0, . . . , is, t0, . . . , ts) where tj’s are the time steps up to t in which the switching policy specifies that edge e should
start servicing a packet type ij distinct than the one serviced during step tj − 1 (we always assume t0 = 0 and hence
i0 denotes the packet type serviced at t = 0). We define the switching configuration SwtCnf t(N ) of the network system
N = (G,∆, (P, S); A) at time t as the collection of statet(e) for all edges e of G. A packet and switching configuration pair at
time step t for a networkN , say (PckCnf t(N ), SwtCnf t(N )), will be called a network configuration and denoted by Cnf t(N )
or simply Cnf t whenN is clear from context.
In the standard AQTmodel it was argued early on [5, Lemma 2.9] that systemswith empty initial configurations (systems

for which at time zero there are no packets in the system) and systems with nonempty initial configurations are equivalent,
since any adversary in the latter can be transformed into an adversary in the former that behaves similarly. However, it is
important to remember that the construction used to establish such a result changes the network topology and creates a set
of packets with a specific age; therefore, as noted in [13], if the scheduling policy bases its queuing decision on its history
(e.g. in Longest-In-System) it is not clear if the above mentioned result remains valid. In the multi-type setting which is the
focus of this work, we will not dwell further on the empty versus non-empty initial configuration issue and simply work on
the more general non-empty initial configuration setting.

Definition 1. We say that the network system (G,∆, (P, S); A) is stable if for every initial network configuration Cnf 0 there
is a constant M (which may depend on the setup cost, the size of the network, the size of the initial configuration and
parameters of P , S and A) such thatwhen the network system is executedwith initial configuration Cnf 0, packets are injected
according to A’s strategy and routed according to the scheduling protocol (P, S), the number of packets in any queue remains
bounded above byM .

If the network system (G,∆, (P, S); A) is stable, we say that network Gwith setup cost∆ and scheduling protocol (P, S) is
stable against adversary A. So for example, a network system is stable against an (r, b) adversary if the long-run input rate r
of the system is matched by the long-run output rate. If the network system (G,∆, (P, S); A) is stable for a class of networks
G ∈ G and every∆, then we say that for the class G the scheduling protocol (P, S) is stable against adversary A.
We are particularly interested in determining whether a greedy protocol (P, S) is stable for every network G and setup

cost ∆ against any bounded rate adversary. Also, given a family of scheduling protocols, we would like to characterize the
networks that are stable against bounded rate adversaries. However, it is intuitively clear that for stability to hold, the
switching policies involved should have some mechanism to avoid frequently changing between which class of packets to
serve. In order not to unnaturally construe the collection of switching policies we consider, we study the aforementioned
properties under the sensible policy notion introduced by Dai and Jennings [17] — given a switching policy S and a parameter
θ let Sθ denote the policy that picks according to S which class to service next among all the ones that have at least θ packets
in the queue. If no class has at least θ packets waiting in the queue, then the policy may choose whatever class it prefers.
Switching policies of the form Sθ are called sensible policies.

Definition 2. Wesay that the networkG is stable forSwith respect to the adversary classA, if for every∆ ≥ 0, all (P, S) ∈ S
and any A ∈ A, there exists some θ ≥ 0 (which may depend on the setup cost, the size of the network, the size of the initial
configuration and parameters of P , S and A) for which the network system (G,∆, (P, Sθ ); A) is stable.

Definition 3. We say that the network G is universally stable with respect to the adversary classA, if G is stable for S with
respect toAwhere S denotes the class of greedy scheduling protocols.

Definition 4. We say that a scheduling protocol (P, S) is universally stable for Gwith respect to the adversary classA, if for
every G ∈ G, the network G is stable for (P, S)with respect to the adversary classA.

When the adversary class A is not mentioned, it is to be understood that it corresponds to the collection of bounded rate
adversaries.
As in [9] we view the packet routing problem as a game between an adversary and a scheduling protocol.
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1.2. Main contributions

In this work, we introduce an adversarial model that captures the natural scenarios where distinct types of network
resource requests are generated in a non-predictable (adversarial) way but without trivially overloading the network.
Specifically, we consider the case where an adversary injects packets into a network and associates classes (types) to each
packet. Two situations are considered depending on the size of the set of possible request types I: the single-class (or
single-type) and themulti-class (or multi-type) case. In themulti-type scenario, two situations are distinguished depending
on whether or not traversal functions are restricted to constant functions: the dynamic multi-type and the static case.
Our firstmain result shows that although constrained, the staticmulti-type scenario is of key importance. Indeed, stability

issues for the dynamicmulti-type casemay be addressed by focussing on the staticmodel. Specifically, in Section 2we show,
under some general conditions, that dynamicmulti-type network systems can be simulated by static ones in the adversarial
with setups model.
It is interesting to point out that dynamicmulti-type routing networkswith setups are ‘‘equivalent’’ to the so called token

routing networks introduced by Kiwi and Russell [25]. In Section 2 we also precisely state and prove this assertion.
The previous discussion justifies why we focus our study of AQT with setups to the static multi-type case. Indeed, from

Section 3 onwards the exposition concerns solely the static multi-type model.
In Section 3, we adapt arguments of [9,5] and establish stability of networks whose scheduling protocol relies on sensible

policies. First, we show an analogue in themulti-type setting of Borodin et al.’s [9, Theorem1] result about universal stability
of acyclic digraphs under work conserving policies. Then, we establish for the multi-type setting a result similar to that of
Andrew et al.’s [5, Theorem 3.7] which says that the unidirectional ring is universally stable under work conserving policies.
We conclude Section 3 with a characterization of universally stable networks in the multi-type adversarial setting.
One is tempted to conclude that if a networkG under a packet scheduling policy P is stable against an adversary A, then for

any switching policy S and any∆ there exists a θ for which (G,∆, (P, Sθ ); A) is also stable (the converse is obviously true).
In Section 4, we show that this is not the case for various natural switching policies. Among others, for sensible versions of
Largest-Queue, Round-Robin, and First-In-First-Out.
The state of affairs described above motivates us to explore general techniques that could be useful for proving stability

for given networks. Specifically, in Section 5 we show an analogue of Gamarnik’s [20, Theorem 1] result for the multi-type
with setups scenario. Through these results one can establish the stability of a given network by considering an associated
fluid model.

1.3. Related work

Cruz [14,15] proposed the ‘‘leaky-bucket’’ model, a predecessor of the AQT model [9,5]. The motivation underlying all
these proposals is to have goodmodels of heterogeneous networks such as for example Asynchronous Transfer Mode (ATM)
switching networks. The relevance of these networks partly explains the considerable amount of attention given to the AQT
model. Just for the sake of illustrationwename three active lines of research; (1) the problemof characterizing and efficiently
deciding whether a given network is universally stable was considered in [5,2], (2) in [4,5,19,27,29,8] the instability of the
FIFO protocol was analyzed, and (3) stability of networks whose topology is time dependent was studied in [1,6,7].
Stochastic queuing networks is another branch of research in queuing theory. Seminal works in this area were [31,30,28]

which established that load conditions are not sufficient for stability. Bramson [10] showed that FIFO is unstable for Poisson
arrivals and exponential service times. This result was complemented also by Bramson [11] who proved the instability of
FIFO at an arbitrary small ratio of arrival to service rates. This background of negative results motivated the development
of techniques through which stability results for specific networks could be ascertained. Specially noteworthy is the ‘‘fluid
model abstraction’’ developed by Dai [16] and Dai and May [18]. This abstraction’s analogue for adversarial networks was
formulated by Gamarnik [20]. The stochastic queuing network problem in the multi-class setting was first addressed by
Chen [12]. Dai and Jennings [17] generalized the results of [16] to the multi-class setting with setup costs. For classical texts
in queuing theory we refer the reader to [24,26].

2. Equivalences between models

In this section we first show that in the adversarial setting dynamic multi-type routing networks can be simulated by
static multi-type networks, and vice-versa. We also describe the notion of token networks introduced in [25] and show that
under some mild hypothesis they can be simulated by dynamic multi-type routing networks, and viceversa.

Theorem 1. Let N = (G,∆, (P, S); A) be an arbitrary network system where (P, S) is a greedy scheduling protocol such that
S is shift-oblivious and A is an (r, b) dynamic multi-type adversary. Then, there is a N ′ = (G′,∆, (P, S); A′) multi-type routing
network where A′ is an (r, b) static adversary, and an injective mapping ϕ from configurations ofN to configurations ofN ′, such
that for any time step t, the configuration ofN is Cnf t if and only if the configuration ofN ′ is ϕ(Cnf t).

Proof. Without loss of generality assume that the collection of types I is {0, . . . , n − 1} where the type labels are chosen
such that if on a given queue state and while serving type i packets S chooses to serve next type j packets, then if every
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packet of type k is replaced by a type k+ l packet, we will have that when serving type i+ l packets S will choose to serve
next type j+ l packets. The existence of such labels is guaranteed by the fact that S is shift-oblivious.
Let V and E denote G’s node and edge set respectively. Network G′ will have V as node set. The edge set of G′ will consist

of n copies, say e(0), . . . , e(n−1) of each edge e ∈ E. The idea of the proof is to simulate the traversal in G of a packet p by n
packets p(0), . . . , p(n−1) going through G′. When p crosses edge e of G, each packet p(i) will traverse a distinct edge e(i) of G′
(the exact edge will depend on the type the adversary A assigns to packet pwhen traversing e).
The packet scheduling policy associated to G′ is the same as the one of G. The switching policy is also the same in G and

G′. The initial configuration of G′ specifies which type will be served by each edge at time step t = 0. In our case, the packet
type initially serviced by edge e(j) is (l+ j) mod nwhere l is the packet type initially serviced by edge e.
We now describe the adversary A′. To do so, consider a packet p that is injected in G at time t by adversary A along path

e1 . . . e` with a traversal type function fp : {1, . . . , `} → I. For k = 1, . . . , `, let ik denote the type assigned to the packet
when it wishes to traverse edge ek, i.e. ik = fp(k). In G′ adversary A′ will inject n packets at time t , say p(0), . . . , p(n−1). The
type of packet pj is fixed at injection and equals j. Using mod n arithmetic on superindices, the injection path of packet pj is
expressed as e(j−i1)1 . . . e(j−i`)` . Note that A′ is an (r, b) static adversary in G′.
Let ϕ be the map that associates to configuration (PckCnf t(N ), SwtCnf t(N )) of N at time step t the pair (Ct , St) such

that:

• Let Pt be the collection of packets present in network N at time step t . Thus, PckCnf t(N ) = (statet(p))p∈Pt . Then,
Ct = (statet(p(i)))p∈Pt ,i∈I, where statet(p

(i)) = (p(i), t1, . . . , ts) provided statet(p) = (p, t1, . . . , ts).
• If SwtCnf t(N ) = (statet(e))e∈E , then St = (statet(e(i)))e∈E,i∈I, where

statet(e(i)) = (e(i), (j0 + i) mod n, . . . , (js + i) mod n, t0, . . . , ts)

provided statet(e) = (e, j0, . . . , js, t0, . . . , ts).

Note that Ct as defined above corresponds to n ‘‘copies’’ of PckCnf t , say PckCnf
(0)
t , . . . , PckCnf

(n−1)
t , where PckCnf (i)t specifies

the collection of packets at the queue of edge e(i) for all e ∈ E (here we say that PckCnf (i)t is a copy of PckCnf t because there
is packet of type l in PckCnf t at e’s queue if and only if there is packet of type (l+ i) mod n in PckCnf

(i)
t at e(i)’s queue).

We claim that PckCnf t(N ′) = Ct and SwtCnf t(N ′) = St . The proof is by induction on t . By construction, it is immediate
that the claim holds for t = 0. By induction hypothesis and the fact that S is a shift oblivious policy, it follows that at time
step t − 1 a packet of type l crosses edge e of G if and only if for all i ∈ I a packet of type (l + i) mod n crosses edge e(i) of
G′. Hence, the claim also holds at time step t . �

In token networks, at each time step edges may posses a token. Only edges that hold a token in a given time step may be
traversed by a packet. Thus, tokens represent scarce resources (e.g. a computational resource) for which packets compete.
Edges that might hold a given token are said to be serviced by the token.
In particular, we consider networks where tokens ‘‘move’’ around, i.e. a token that at time t is at a given edge e can be

identified with a token that at time t ′ > t is at some edge e′. The network is said to have latency∆ if t ′ > t + ∆ whenever
e 6= e′. In such networks, in order for a token to move from an edge e to another edge e′ 6= e it must be absent from the
network for a time interval of length∆ ≥ 0.
Edges that hold a token every time step will be referred to as permanent edges. Non-permanent edges will be called

temporary edges.
A token switching policy specifies, for each token and each time step, the subset of edges that hold tokens. For example, a

FIFO token switching policy is one where priority is given to the edge (among those that can grab a token) that has not held
a token for the largest amount of time. A token scheduling protocol is a (P, S) pair that specifies policies P and S for packet
and token switching, respectively.
Conceptually, one might distinguish tokens according to the edges they might service. Call a token switching policy (and

the associated scheduling protocol) disjoint if the collection of edges serviced by distinct tokens are disjoint.
For token networks, the adversarial model is exactly the one of AQT, but now, in order to prevent the adversary from

trivially congesting the network, one imposes the following load constraint on the adversary: for any time period [t1, t2) the
number of packets injected into the network that are destined to be serviced by a given token is bounded by r(t2 − t1) + b.
An adversary meeting such a constraint is also referred to as an (r, b) adversary. In analogy to network systems, we define a
disjoint token network system as the tuple (G,∆, (P, S); A)whereG is a tokennetworkwith latency∆, P is a packet scheduling
policy, S is a disjoint token scheduling protocol, and A is the adversary that specifies the packet injection pattern. Other
standard notions, such as for example stability, are easily adapted to the token network scenario.
Our next result formally establishes our claim concerning the simulatability of token networks by dynamic multi-type

routing networks. Intuitively, a token corresponds to a network ‘‘bottleneck’’. In our simulation of token networks bymulti-
type routing networkswemap all edges serviced by a token to a single ‘‘bottleneck’’ edge. Packets that in the original network
need to traverse distinct edges will be mapped to distinct types in the new routing network. The setup incurred by a token
when going from servicing one edge to another one in the token network will end up associated to a change of packet type
being serviced at the ‘‘bottleneck’’ edges of the multi-type routing network.
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Fig. 1. (a) Token network and token switching policy pair (G, S). Directed edges are shown as arrows. Tokens are denoted by A and B. The edges they service
are completely contained in the areas labeled A and B respectively. An injection path P is represented by a segmented line. (b) Multi-type routing network
and switching policy pair (G′, S ′). The injection path to which P gets mapped is represented by a segmented line and denoted P ′ .

Before precisely stating our simulatability claim, we accurately describe the transformation onwhich it relies, andwhich
maps a token network and token switching policy pair (G, S) into a multi-type routing network and switching policy pair
(G′, S ′). The network G′ is obtained from G by ‘‘collapsing’’ all edges serviced by a given token. The node set of G′ will be the
node set of G plus a special node v′. The edge set of G′ will correspond to the collection of: (i) permanent edges of G, (ii) one
loop on v′ for each of the tokens of G, (iii) edges uv′ for each edge uv of G such that v has a temporary edge emanating
from it in G, and (iv) edges v′v for each edge uv of G such that u has a temporary edge incident to it in G. See Fig. 1 for an
example of a (G′, S ′) obtained from a given pair (G, S). The collection of types of packets traversing G′ will be in one-to-one
correspondencewith the edges of G. The switching policy S ′ of G′ is obtained from the token switching policy S in the natural
way (i.e. a token moving from edge e to e′ in G is ‘‘simulated’’ by the edge associated to that token as going from servicing
type e to servicing type e′).
Note that a path P in G is mapped in a ‘‘natural’’ way to a path P ′ in G′, specifically, to the path that visits the same

sequence of nodes as P does, but where each head or tail of a temporary edge is replaced by the special node v′. Note that
the path P ′ may not be a simple path even if P is simple. Also note that P and P ′ have the same length.

Theorem 2. Let N = (G,∆, (P, S); A) be a disjoint token network where A is an (r, b) adversary. Then, there is a dynamic
multi-type (r, b) adversary A′ such that one can associate to the network systemN ′ = (G′,∆, (P, S ′); A′) an injective mapping
ϕ from packet configurations of N to packet configurations of N ′, such that for any time step t the packet configuration of N is
PckCnf t if and only if the packet configuration ofN ′ is ϕ(PckCnf t). Moreover, if (P, S) is work conserving, so is (P, S ′).

Proof. Associate to each edge of G a distinct type. In particular, denote by E the edge set of G, or equivalently the collection
of types of packets traversing G′.
For each packet injected along path P in the original network by adversaryA, a packetwill be injected byA′ inG′ along path

P ′. Observe that two packets that wish to traverse (in G) distinct edges serviced by a given token will be in correspondence
with a pair of packets of distinct types that wish to traverse the same edge of G′.
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Assume packet p is injected along path P = e1 . . . e` and that P ′ = e′1 . . . e
′

`. Consider the traversal type function
associated to p’s injection path in G′ given by f ′p : {1, . . . , `} → E such that f ′p(k) = ek. Now, let G

′’s packet scheduling
policy be the one of G.
The desired conclusion follows since at any given time step t a packet of type e ∈ E that wants to traverse edge e′ of G′ is

in one to one correspondence with a packet that at the same step t wishes to traverse edge e in G. Moreover, two packets of
distinct type e1, e2 ∈ E that wish to traverse edge e′ of G′ during time step t , correspond to two packets that wish to traverse
during the same step t distinct edges e1 and e2 of Gwhich are serviced by the same token. �

The converse of Theorem 2 is trivially true; simply replicate each network edge, once for each possible type, and associate
a single token to all copies of the same edge. The injection of a packet p in the original network can be simulated by an
injection of a packet p′ in the new network following the same sequence of nodes as p would travel. However, p′ traverses
the copy of an edge e associated to type i provided p is assigned type iwhen traversing e. The following result immediately
follows.

Theorem 3. Let N = (G,∆, (P, S); A) be a network system where A is a dynamic multi-type (r, b) adversary. Then, there is
a multi-type (r, b) adversary A′ to which one can associate a disjoint token network N ′ = (G′,∆, (P, S ′); A′) and an injective
mapping ϕ from packet configurations ofN to packet configurations ofN ′, such that for any time step t the packet configuration
ofN is PckCnf t if and only if the packet configuration ofN ′ is ϕ(PckCnf t). Moreover, if (P, S) is work conserving, so is (P, S ′).

3. Stability results

In this section we characterize stable networks. As in the standard AQT model, the characterization is based on the
universal stability of directed acyclic graphs and directed rings.
To establish the universal stability of directed acyclic graphs and directed rings we rely on potential function type

arguments similar to those used to prove [9, Theorem 1] and [5, Theorem 3.7]. As is usually the case for these types of proof
arguments,we upper bound the potentials by a termwhich is independent of time, thence obtaining the desired conclusions.
However, the bounds we derive need to take into account the setup cost∆. Intuitively, if an edge is not highly congested it
does notmattermuchwhat type of packet is being serviced. However, for congested edges, a switching policy should choose
to service a packet type if it allows for efficient use of the edge (transmit 1 packet per time step) for a sufficiently long time
interval. The length of the latter interval, say θ , will necessarily have to be a function of∆. A moment of though also allows
one to see that it must depend on the adversaries rate r and burst b parameters. Indeed, one expects that θ should be larger,
the larger r , b and ∆ are. A sensible switching policy Sθ , for sufficiently large θ , guarantees that the inefficiencies entailed
by setup costs will be amortized by an edge working at full capacity over a sufficiently long interval after the setup cost is
incurred. A sensible switching policy can thus avoid paying unnecessary setup costs and maintain network stability against
(r, b) adversaries for rates arbitrarily close to 1. The potential functions introduced in the next two sections are adaptations
of the potential functions defined in [9] and [5]. But, their derived upper bounds now also depend explicitly on the value of
θ , and hence indirectly on r , b, and∆.

3.1. Directed acyclic graphs

Borodin et al. [9] established that acyclic networks are universally stable in the adversarial setting. We generalize
their result to the multi-type with setups scenario. As mentioned before the argument we will use is a potential function
argument. In the context of acyclic networks it is natural to consider potential functionswhich take into account the network
state upstreamof any given network edge e. Specifically, wewill consider the total number of packets present in the network
that want to traverse a given edge e at a given time step t . We will show that such a quantity remains bounded over time. As
one might expect, the bound will depend on the structure of the network upstream of e. Specifically, we have the following
result:

Theorem 4. For every acyclic digraph G, all∆ ≥ 0, every greedy scheduling protocol (P, S), and every (r, b) adversary A where
r is strictly less than 1, there exists a θ > 0 such that (G,∆, (P, Sθ ); A) is stable.

Proof. For each edge e of G let Qe,i(t) be the number of packets of type i at e’s queue at time step t . Let Qe(t) denote the total
number of packets at e’s queue, i.e. Qe(t) =

∑
i∈I Qe,i(t). Furthermore, let θ be large enough so that r(θ + 2∆)+ b ≤ θ .

We inductively define the functionψ(·) as follows: for each edge e denote by f1, . . . , fk the edges incident to e’s tail node
and define

ψ(e) = max{(|I| + 1)θ,Qe(0)} +
k∑
j=1

ψ(fj).

Denote by Ne(t) the number of packets present in the network that want to traverse edge e and were injected by time
t . We claim that Ne(t) ≤ ψ(e) for all e and for all t = l(θ + 2∆) with l ∈ N. The desired result will follow once we prove
this claim. Indeed, since Ne(·) can grow only by injection of new packets, one has Ne(t ′) ≤ Ne(t) + r(θ + 2∆) + b for
t ≤ t ′ < t + (θ + 2∆). Since

∑
e ψ(e) is an upper bound on the total number of packets in the graph, the theorem follows.
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First we show that when e is a source edge and t = l(θ + 2∆),

Qe(t) ≤ max{(|I| + 1)θ,Qe(0)}. (3)

Indeed, consider the following two cases:

• Qe,i(t) ≥ θ for some i ∈ I: In this case, the number of packets z that cross e during the interval [t, t + θ + 2∆) is at least
θ ≥ r(θ + 2∆)+ b. We get that

Qe(t + (θ + 2∆)) ≤ Qe(t)+ r(θ + 2∆)+ b− z ≤ Qe(t).

• Qe,i(t) < θ for all i ∈ I: Clearly, Qe(t) ≤ |I|θ , so by the choice of θ and the induction hypothesis

Qe(t + (θ + 2∆)) ≤ Qe(t)+ r(θ + 2∆)+ b ≤ |I|θ + θ.

Now, to show that Ne(t) ≤ ψ(e) for all e and t = l(θ + 2∆)with l ∈ N, we proceed by induction on the maximum distance
of the tail of e to a source of G (i.e. the length of the longest directed path from any source to the tail of e). The base case of the
induction is when the tail of e is a source. In this case Ne(t) = Qe(t) and ψ(e) = max{(|I| + 1)θ,Qe(0)}. Hence, the claim
holds because of (3). Now, assume the maximum distance from a source of G to the tail of e is ` > 0. Let again f1, . . . , fk
denote the edges incident to e’s tail node. Consider the following two cases:

• Qe,i(t) ≥ θ for some i ∈ I: In this case, the number of packets z that cross e during the interval [t, t + θ + 2∆) is at least
θ ≥ r(θ + 2∆)+ b. We get that

Ne(t + (θ + 2∆)) ≤ Ne(t)+ r(θ + 2∆)+ b− z ≤ Ne(t).

• Qe,i(t) < θ for all i ∈ I: Clearly, Qe(t) ≤ |I|θ , so by the choice of θ

Ne(t + (θ + 2∆)) ≤ Qe(t)+ r(θ + 2∆)+ b+
k∑
j=1

Nfj(t)

≤ (|I| + 1)θ +
k∑
j=1

Nfj(t).

Since Ne(0) = Qe(0)+
∑k
j=1 Nfj(t) and by induction hypothesis, we conclude that for t = l(θ + 2∆),

Ne(t) ≤ max{(|I| + 1)θ,Qe(0)} +
k∑
j=1

Nfj(t) ≤ ψ(e). �

Corollary 1. Acyclic digraphs are universally stable.

3.2. Rings

Andrew et al. [5] established that the simplest non-acyclic networks (directed rings) are universally stable in the
adversarial setting. We extend their result to the multi-type with setups scenario. Roughly, the potential function we now
consider is the number of packets that needs to traverse an edge e and are on queues with at least θ packets of its same
type. By definition, there are few packets that need to traverse edge e that are not taken into account by such a potential.
The intuition is that the potential should not take arbitrary values given that all packets taken into account by it at a given
time step t are at queues of edges that in an interval close to t transmit one packet per time step.
Henceforth, let n > 1 and Rn denote the n-node directed ring. Without loss of generality, assume that Rn’s nodes are

labeled 0, 1, . . . , n−1 and that its edges are directed from i to i+1 (all arithmetic on labels ismodulo n). The edge emanating
from node iwill be referred to in what follows as edge i.

Theorem 5. Let ∆ ≥ 0. For every greedy scheduling protocol (P, S) and (r, b) adversary A where r is strictly less than 1, there
exists a θ > 0 such that (Rn,∆, (P, Sθ ); A) is stable.

Proof. Choose θ so that (r + ε) = θ/(θ + 2∆) for some ε > 0. Let Pe,i(t) be the collection of packets of a given type i ∈ I
which need to traverse edge e and at time step t (before injections take place) are on a queue with at least θ packets of type
i. Denote by Pe(t) the union over i ∈ I of all Pe,i(t)’s.
Let Q ′ be a constant large enough whose value will be fixed appropriately later on. For the sake of contradiction assume

that (Rn,∆, (P, Sθ ); A) is not stable. Hence, there must exist a T ′ such that |Ps(T ′)| > Q ′ for some s. Let T ′ be the smallest
such value and

Q = max
{
|Pe(t)| : e ∈ {0, . . . , n− 1}, t ∈ [T0, T ′)

}
.
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For q ∈ Ps(t) denote by lq the maximum positive integer j such that q ∈ Ps(t − j) for all j ∈ {0, 1, . . . , lq}. Let p be a packet
of Ps(T ′) such that lp = max{lq : q ∈ Ps(T ′)}. Let T0 = T ′ − lp and assume without loss of generality that p is at the queue
emanating from node 0 at time step T0. In other words, assume 0, 1, . . . , s is the sequence of nodes visited by p during the
interval [T0, T ′]. Denote by Te the moment at which p arrives at e’s queue. For the sake of convenience, let Ts+1 = T ′.
Note that for all e ∈ {0, 1, . . . , s} and t ∈ [Te, Te+1) it holds that Qe,i(t) ≥ θ for some type i. Hence for any subinterval of

[Te, Te+1) of length θ + 2∆ at least θ packets must cross e.
Consider now and edge e, a time step t ∈ [Te, Te+1), and let t ′ ≤ t . A packet p ∈ Pe(t) could either; (i) belong to Pe(t ′),

(ii) have been injected during the interval [t ′, t), or (iii) not belong to Pe(t ′) and by time t become part of a queue of size at
least θ of packets of the same type (either by joining such a queue or by arrival to its queue of other equal type packets). The
number of each of the latter group of packets is bounded by |Pe(t ′)|, r(t − t ′)+ b, and n|I|θ respectively. Hence,

|Pe(t)| ≤ |Pe(t ′)| + r(t − t ′)+ b+ n|I|θ − z, (4)
where z is the number of packets sent across edge e during the interval [t ′, t).
For e ∈ {0, . . . , n− 1} and t ≥ T0, define

f (e, t) =
{
Q + e(b+ n|I|θ), if t = T0,
Q − ε(t − T0)+ (e+ 1)(b+ n|I|θ), if t > T0.

Say that the pair (e, t) is applicable if either one of the following two conditions hold:

• e ∈ {0, 1, . . . , s} and t ∈ [T0, Te+1], or
• e > s and t ∈ [T0, T ′].

We claim that |Pe(t)| ≤ f (e, t) if the pair (e, t) is applicable.
Clearly, for all t ≥ t ′ > T0,

f (e, t) = f (e, T0)− ε(t − T0)+ b+ n|I|θ, (5)
f (e, t) = f (e, t ′)− ε(t − t ′). (6)

Moreover, if in addition e > 0,

f (e, t) = f (e− 1, t)+ b+ n|I|θ. (7)

By definition of f and Q we have that f (e, T0) = Q + e(b + n|I|θ) ≥ Q ≥ |Pe(T0)|. Hence, the claim holds for (e, t) when
t = T0.
Say that an applicable pair (e, t) is good if
t ′ ∈ [T0, t) H⇒ ∃i ∈ I,Qe,i(t ′) ≥ θ.

Assume (e, t) is a good applicable pair. By definition, for every t ′ ∈ [T0, t) there is a type i such that e’s queue contains at
least θ packets of type i. In particular, during a subinterval of [T0, t) of length θ + 2∆ and given that Sθ is sensible, at least
θ packets (of the same type) must cross e. Thus, if z is the number of packets sent across edge e during the interval [T0, t),
then z ≥ (t − T0)θ/(θ + 2∆). It follows, by (4), because f (e, T0) ≥ Q ≥ |P0(T0)|, and (5), that

|Pe(t)| ≤ |Pe(T0)| + r(t − T0)+ b+ n|I|θ − (r + ε)(t − T0)
≤ f (e, T0)− ε(t − T0)+ b+ n|I|θ
= f (e, t).

Hence, the claim holds for every good applicable pair.
Observe now that any (0, t) applicable pair is good. Indeed, t must belong to [T0, T1] for (0, t) to be applicable. Moreover,

since p is at 0’s queue during the interval [T0, T1), by the choice of p, it follows that for i equal to p’s type, Q0,i(t ′) ≥ θ when
t ′ ∈ [T0, t).
We still need to prove that the claim is true for non-good applicable pairs (e, t)where e > 0 and t > T0. We proceed by

induction on e. Assume that |Pe−1(t)| ≤ f (e− 1, t) for all applicable (e− 1, t). Let T0 ≤ t ′ ≤ t be the largest time step such
that Qe,i(t ′) < θ for all i ∈ I. Note that, t ′ 6= T0 and |Pe(t ′)| = |Pe−1(t ′)|. By (4), we get that

|Pe(t)| ≤ |Pe(t ′)| + r(t − t ′)+ b+ n|I|θ − (r + ε)(t − t ′)
= |Pe−1(t ′)| − ε(t − t ′)+ b+ n|I|θ.

Now note that (e − 1, t ′) is applicable. Indeed, since (e, t) is applicable, then t ′ ≤ t ≤ T ′. Thus, if e > s, then (e − 1, t ′) is
applicable. So suppose e ∈ {1, . . . , s}. In particular, t ′ ≤ t ≤ Te+1 because (e, t) is applicable. By the choice of p and given
that p is at e’s queue during the interval [Te, Te+1), it follows that for i equal to p’s type,Qe,i(t ′′) ≥ θ whenever t ′′ ∈ [Te, Te+1).
But Qe,i(t ′) < θ for all i ∈ I, so it must hold that t ′ < Te, i.e. (e− 1, t ′) is applicable. Hence,

|Pe(t)| ≤ f (e− 1, t ′)− ε(t − t ′)+ b+ n|I|θ
= f (e− 1, t)+ b+ n|I|θ
= f (e, t),

where the first equality is by (6) and second one is by (7). The claim is thus proved.
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By the choice of T ′, the fact that (s, T ′) is applicable and the definition of f ,

Q ′ < |Ps(T ′)| ≤ f (s, T ′) = Q − ε(T ′ − T0)+ (s+ 1)(b+ n|I|θ).

By definition of T ′ we have that Q ≤ Q ′ so we get that ε(T ′ − T0) < (n+ 1)(b+ n|I|θ). However, packets in Ps(T ′) either
were injected during the interval [T0, T ′] or were in the network before time step T0. There can be at most r(T ′− T0+1)+ b
of the former type of packets. To upper bound the number of packets of the latter type, note that each such packet must be
in a queue of length smaller than θ during some time step t ∈ [T0, T ′). Hence, there are at most n|I|θ(T ′− T0) such packets.
We get that

Q ′ ≤ |Ps(T ′)| ≤ r(T ′ − T0 + 1)+ b+ n|I|θ(T ′ − T0).

Since ε(T ′ − T0) < (n+ 1)(b+ n|I|θ), the sought-after contradiction follows taking

Q ′ = (1/ε)(r + n|I|θ)(n+ 1)(b+ n|I|θ)+ r + b. �

Corollary 2. The n-node directed ring network is universally stable.

3.3. Characterization of stable networks

Since the AQT with setups model is an extension of the classical AQT model, if G is not universally stable under the latter
model, then it is not universally stable in the former. Hence, all instability results in [2] hold in the AQT with setup scenario.
We now characterize networks which are universally stable in the AQT with setups model. The proof argument is an

adaptation to the AQT with setup scenario of an argument due to Goel [22]. First, one establishes that universal stability
depends on whether or not each of the networks strongly connected components is universally stable.

Lemma 1. Let G1 and G2 be digraphs and G′ be also a digraph formed by joining G1 and G2 with directed edges going from nodes
in G1 to nodes in G2. If G1 and G2 are universally stable in the AQT with setup model, then so is G′.

Proof. Fix the setup value and the scheduling protocol. Let r < 1 and consider an (r, b) adversary A′ injecting packets in G′.
Since G1 is universally stable against the adversary induced by A′ when restricted to G1, there is a constant C1 (depending
on (r, b), the setup cost, the size of G1 and its initial configuration) which is an upper bound on the total number of packets
in G1 at any given step.
For convenience, we refer to the edges of G′ going from G1 to G2 as bridges. Let G̃ be the network G1 plus all bridges. Now

consider a time interval [t1, t2) and an (r, b)multi-type adversary injecting packets into G̃. Any packet that requires crossing
a given bridge e during [t1, t2)must have been injected in G̃ during the interval, was present in G1 at the start of the period,
or was one of the Ce packets at e’s queue initial configuration. The number of packets of the first type is upper bounded by
r(t2 − t1) + b and both of the latter types by C1 + Ce. Hence, at most r(t2 − t1) + (b + C1 + Ce) packets require crossing
any given bridge during the interval [t1, t2). Since by Theorem 4 acyclic graphs are universally stable, we conclude that
the queues of bridges are bounded independent of time by a constant (depending on (r, b), the setup cost, the scheduling
protocol’s parameters, the size of G̃ and its initial configuration). It immediately follows that the queues of all edges in G̃ are
also bounded by a constant. In particular, there is a constant C̃ that bounds the total number of packets in G̃ independent of
time.
Now, let A2 be the adversary that injects into G2 all packets with destination in G2 that A′ injects into G′. If the packet’s

source node is also in G2 the injection time and traversal path specified by A2 is the same as the one specified by A′. If the
packet’s source node is in G1 the traversal path specified by A2 is the restriction to G2 of the traversal path specified by A′

and the moment of injection is the time step where the given packet would have left G̃. Note then, that all packets injected
by A2 traversing a given edge of G2 during an interval [t1, t2) had to be either injected by A′ during the same interval or had
to be in a queue of G̃ at the start of the period. There are at most r(t2 − t1)+ b of the former packets and, by the preceding
paragraph’s conclusion, at most C̃ of the latter. It follows that A2 is an (r, b + C̃) adversary. Since G2 is universally stable,
we conclude that there is a constant C2 independent of time that bounds the total number of packets in G2. It immediately
follows that the number of packets in G′ remains bounded by C̃+C2 when the injection pattern is under the control of A′. �

An immediate consequence of the previous result is,

Theorem 6. In the AQT with setup model, a digraph G is universally stable if and only if all its strongly connected components
are universally stable.

The previous result allows us to focus our study of stability exclusively on strongly connected networks. Theorem 5 tells
us that that directed rings are universally stable. Note that a strongly connected network that is not a directed ring must
contain as a subgraph (not necessarily induced) one of the networks shown in Figs. 2 and 3 where edges might be replaced
by node disjoint directed paths. We will show that all these latter networks are unstable, and thus obtain a characterization
of universally stable networks for the AQT model with setups.
Recall that a characterization of universally stable networks under the AQTmodel is given by Álvarez, Blesa and Serna [2].

In it, a collection of simple non-stable digraphs is first identified. Then, two subdivision operations are introduced; (1) edge
subdivision, and (2) cycle subdivision. Subdivision of an edge consists on the addition of a new vertexw and the replacement
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Fig. 2. U1 .

Fig. 3. U2 .

of the directed edge (u, v) by the two directed edges (u, w) and (w, v). Subdivision of a 2-cycle consists of the addition of
a new vertex w and the replacement of the two directed edges {(u, v), (v, u)} by the directed edges (u, w), (w, u), (v,w)
and (w, v). Applying these operations to non-stable digraphs yields non-stable digraphs. Let ε(G) denote the collection of
digraphs obtained from G through zero or more subdivision operations and consider the graphs defined in Figs. 2 and 3.

Theorem 7. In the AQTmodel with setups, a digraph is universally stable if and only if it does not contain as a subgraph a digraph
in ε(U1) ∪ ε(U2).

Proof. Suppose G is universally stable and contains as a subgraph H ∈ ε(U1) ∪ ε(U2). All subgraphs of a universally stable
networkmust be universally stable. This contradicts the fact that digraphs in ε(U1)∪ε(U2) are unstable under theNearest-
To-Go/Longest-In-System packet scheduling protocol even in the classical AQT model without setups [2, Theorem 3].
If G does not contain as a subgraph a digraph in ε(U1) ∪ ε(U2), then all of its strongly connected components are simple

cycles. Sincewe know by Theorem 4 and Theorem 5 that acyclic digraphs and directed cycles are universally stable, applying
Theorem 6, we conclude that G is universally stable. �

4. Instability results

In this section we prove that stability does not trivially carry over from the single-class to the multi-class setting.
Specifically, we establish the following result.

Theorem 8. For all 0 < r < 1,∆ ≥ 0, θ > 0, and every greedy scheduling protocol (P, S)where S is shift-oblivious, there exists
a network G (whose size depends on r,∆ and θ ), and an (r, 1) adversary A, such that (G,∆, (P, Sθ ); A) is unstable.

The network whose existence is guaranteed by Theorem 8 is built from a basic gadget which ‘‘slows’’ packets that need
to traverse it. These delays allow an adversary to inject packets so as to make them arrive simultaneously at some other
network spot. The network and the adversary are simplifications of those presented in [8] in order to show instability of FIFO
at arbitrarily small rates. For the sake of clarity of exposition, we henceforth only consider the case ∆ = 0. Our arguments
can be easily adapted to the case where∆ > 0.

The types and the labeling of types: We require the collection of types I to be of cardinality at least 4. Since S is shift-
oblivious, there exists an identification between I and {0, 1, 2, 3} such that if on a given queue state and while serving type
i packets S chooses to serve next type j packets, then when every packet of type i is replaced by one of type i+ 1 (arithmetic
on types is modulo 4), we will have that when serving type i+ 1 packets S will choose to serve next type j+ 1 packets. For
the sake of convenience it will be better to refer to types 2 and 3 by 0̃ and 1̃ respectively.

The network: The basic structure of the network is called a gadget. A gadget has nodes v0 and v1, and its edges are of three
distinct types; (1) pairs of input edges i0, i1, (2) pairs of output edges o0, o1, and (3) two load edges e0 and e1 with ej going
from vj to vj′ , where throughout this section j′ denotes 1 if j = 0 and 0 if j = 1. Note that load edges form a two node
unidirectional ring with. (Two gadgets are depicted in Fig. 4.)
We say that a gadget G2 is concatenated to gadget G1 if a pair of output edges of G1 corresponds to a pair of inputs edges

of G2 (see Fig. 4 for an illustration of two concatenated gadgets). One gadget can be concatenated to several gadgets and
more than one gadget can be concatenated to a gadget. Either one of these situations can be realized through multiple pairs
of input and/or output edges. We say that C = 〈H1,H2, . . . ,Hn〉 is a chain of length n if Hi+1 is concatenated to Hi. A chain
B = 〈G1,H1, . . . ,Hm,G2〉will be called a bridge of lengthm between G1 and G2.
The main components of the network Gwe are going to construct are: columns, connectors and shortcuts. There are two

columns C0 and C1, each one is a chain of length α, say

Ca = 〈Ca,1, Ca,2, . . . , Ca,α〉.
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Fig. 4. Two concatenated gadgets.

Fig. 5. Network G.

Connectors are bridges of length β between each gadget of a column and the other column’s first gadget; say for each Ca,i
there is a bridge

〈Ca,i,Da,i,1,Da,i,2, . . . ,Da,i,β , Ca′,1〉.

The values of α and β will be fixed later. Finally, shortcuts are bridges of length 1 from each connector gadget Da,i,j to Ca′,1
and they are denoted by Ea,i,j. We stress that all components of type Ca,i, Da,i,j, and Ea,i,j are gadgets. An illustration of the
network just described is schematically given in Fig. 5.

The adversary: We define an adversary A that roughly proceeds in the following way: first, we assume that there are l
packets going down through a column, say C0. While these packets are crossing a gadget C0,i of column C0, the adversary
injects packets that:

• First, use one of the gadget’s C0,i load edges.
• Afterwards, want reach the first gadget C1,1 of column C1 partly traversing the connector 〈C0,i,D0,i,1,D0,i,2, . . . ,D0,i,β ,
C1,1〉 concatenated to gadget C0,i.
• Jumps through a shortcut E0,i,j (chosen in a way that will be described shortly).
• Finally, traverse down through column C1.

The adversary uses shortcuts in order to arrange for l′ > l packets to arrive continuously at each of the input edges of the
first gadget of column C1. Replacing l by l′ and repeating the injection pattern the adversary creates instability in G.
Let us now precisely specify how adversary A injects packets in G. A packet is called gadget-traversing if for every gadget

that it crosses, it enters through an input edge ik, sequentially traverses ek and ek′ , and finally exits the gadget through one
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of its ok output edges. A packet is called chain-traversing for a chain 〈H1,H2, . . . ,Hk〉 if its route is gadget-traversing for
each Hj.
The adversary injects only the 4 different packet types 0, 0̃, 1, and 1̃. Types 0 and 1 correspond to packets that are chain-

traversing for column C0, while packets of types 0̃ and 1̃ are chain-traversing for column C1. Moreover, gadgets of type D0,i,j
(respectively D1,i,j) are traversed by packets of type 0̃ and 1̃ (respectively of type 0 and 1) only.
To describe the packet injection pattern we introduce the notion of gadget activation which encompasses three phases:

precondition, injection and postcondition. We now describe each of these phases for column gadgets. Fix a column a and
consider its i-th gadget Ca,i.

• In the precondition phase, we assume that for l consecutive time steps there will be a gadget-traversing packet at the
queue of each of Ca,i’s input edges (here l is a parameter that might depend on time). Moreover, all such packets will be
Ca traversing, in particular 〈Ca,i, Ca,i+1, . . . , Ca,α〉 chain-traversing.
• The injection phase for gadget Ca,i lasts l time steps. It starts when the first packet of the precondition phase arrives at the
queue of a load edge of Ca,i. In the first step of the injection phase the adversary does not inject any packet. During the
following l− = l−1 injection phase steps the adversary injects exactly lr/2 packets at each node v0 and v1 of gadget Ca,i.
A packet injected in node vk follows an injection path that starts with edge ek, is chain-traversing for up to some shortcut
Ea,i,j of the connector concatenated to Ca,i, is gadget-traversing for Ea,i,j, and is chain-traversing for column Ca′ . Packets
injected at node vk are of type k̃′ if vk belongs to column C0 and of type k′ if vk belongs to column C1. In particular, note
that packets injected in column C0 are of type 0̃ and 1̃ while packets injected in column C1 are of type 0 and 1. Also note
that at the end of an injection phase all packets of the precondition phase have traversed at least one load edge of Ca,i.
• The postcondition phase of gadget Ca,i will correspond to the precondition assumption for the activation of gadget Ca,i+1.

The notion of gadget activation for connector gadgets is defined analogously except that during the injection phase the
adversary does not inject packets in the gadget.
The time interval since the first gadget traversing packet enters and leaves a given gadget will be referred to as gadget

activation period.
Time steps will be grouped into stages. At the beginning of the s-th stage, s even, we will guarantee that for l = l(s)

consecutive time steps a chain-traversing (for column C0) packet of type kwill be at ik’s queue, where ik is a k-th input edge
of gadget C0,1. We will arrange things so that for at least 2l consecutive times steps at the beginning of the next stage (the
(2s + 1)-th one), a chain-traversing (for column C1) packet of type k̃ will be at ik’s queue, where ik is a k-th input edge of
gadget C1,1.
Each stage is divided into α sub-stages. During the i-th sub-stage the gadget C0,i is activated and for each k ∈ {0, 1} a

total of lr/2 packets of type k̃′ are injected in node vk. The routes followed by these packets were described above.
The adversary never injects packets in shortcuts or internal connector gadgets.

Instability:Wenow show that networkG is unstablewhen subject to an injection pattern under the control of the adversary
A described above. First, we need to establish some facts about the length of gadget-activation phases and injection patterns.

Lemma 2. If lr2/4 > θ , then a column gadget activation period lasts either l or l(1 + r/2) time steps, and a connector gadget
activation period lasts lr/2 steps. Moreover, the injection phase of column gadgets lasts l steps and at any time step at most one
gadget can be in its injection phase.

Proof. First, consider the case of column gadgets. Without loss of generality, we assume the stage is an even one. Hence,
gadgets that become activated are those of column C0. The step just before the injection phase of gadget C0,i begins a packet
of type k requiring load edge ek traverses input edge ik. Also, no packet is injected during the first step of the injection phase.
Hence, only packets of type k will be awaiting to traverse edge ek at the start of C0,i’s injection phase. Since the scheduling
protocol is greedy and given that the precondition phase guarantees that during all of the injection phase a packet of type
k will be available for traversing ek, it follows that edge ek will serve a type k packet the first time step of the injection
phase and will continue doing so for a period of total length l. In addition, during the l− = l − 1 last steps of the injection
phase, exactly lr/2 packets of type k̃′ requiring edge ek are also injected. When the injection phase finishes, there are no
more packets of type k at ek’s queue. Moreover, exactly l packets of type k′ and lr/2 packets of type k̃′ are waiting at ek’s
queue. The hypothesis guarantees that l ≥ lr/2 ≥ θ . Thus, the switching protocol can choose to service next either the
column traversing packets or the newly injected connector traversing packets. If the newly injected packets are served,
gadget activation will last l+ lr/2 steps. Otherwise it will last l time steps. A crucial fact that we have used here is that S is
a shift-oblivious policy, so in no case one of the edges e0 and e1 will chose to serve column traversing packets and the other
edge will chose to serve newly injected packets. Fig. 6 illustrates the two situations that can arise.
For connector gadgets the argument is the same but substituting l by lr/2, observing that by hypothesis (lr/2)r/2 > θ

and recalling that no packets are injected in internal connector gadgets. Thus, their activation period lasts lr/2. �

We can now establish that A is a bounded rate adversary.

Lemma 3. The adversary A is an (r, 1) adversary.
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Fig. 6. State of a gadget’s load edge queues during a gadget activation phase. Two situations are depicted; (a) Gadget activation phase lasting l(1 + r/2)
steps, and (b) Gadget activation phase lasting l steps. On the left, the time steps since the start of the gadget activation phase are displayed. Gadget nodes
and load edges are shown at different times. Queues at each edge are specified by displaying ps close to the edge’s tail if s packets of type p are waiting to
traverse the edge.

Proof. By Lemma 2, it suffices to note that over any interval of length l− the adversary injects packets in at most one gadget.
By the way packets are injected, we know that at most lr/2 of them are injected in any given node of a gadget during an
interval of length l provided lr/2 ≥ 1. It follows that over any given interval of time [t1, t2) the adversary never injects more
than r(t2 − t1)+ 1 packets requiring a given edge.
We also have tomake sure that during the l− last steps of the injection phase the adversary can inject at any active gadget

node exactly lr/2 packets. This follows because an (r, 1) adversary can inject up to rl− + 1 > lr packets requiring a single
edge during an interval of length l−. Hence, it can inject lr/2 packets in each of the two nodes of an active gadget during the
last l− steps of an injection phase. �

Proof (Theorem 8). By Lemma 2we have that the (j+1)-th gadget in the connector concatenated to a given column gadget
Ca,i is activated at most l + jlr/2 ≤ l + βlr/2 times steps after Ca,i is activated (at most l steps for newly injected packets
to start traversing the connector concatenated to Ca,i and jlr/2 steps to traverse the first j-gadgets of the bridge). Choosing
β ≥ α(1+2/r) so l+βlr/2 ≥ αl(1+ r/2)we can guarantee that all packets injected in column Ca during a given stage will
not reach column Ca′ before the bottom gadget of Ca has finished its activation period. Let α ≥ 4/r . By appropriately using
shortcuts we canmake all αlr/2 ≥ 2l packets of a given type injected in column Ca during a given stage to start continuously
arriving at the appropriate input edge of the first gadget of column Ca′ .
Summarizing, ifβ ≥ α(1+2/r),α ≥ 4/r , and l ≥ 4θ/r2, thenA is an (r, 1) adversary and (G, 0, (P, Sθ ); A) is unstable. �

A careful analysis of the proof of Theorem 8 shows that a weaker notion than shift-oblivious is sufficient for the proof to
work. In fact, even for a switching policy such as Priority one canmake the proof argument go through. The exact condition
on the switching policy we use its to technical to be of general interest. This explains why we settled on the weaker notion
of shift-oblivious policies.

5. Fluid model

Gamarnik [20, Theorem 1] showed how stability of a queueing network can be established by considering an associated
fluid model. In this section we extend this result to the multi-type with setups scenario,
Consider a network system (G = (V , E),∆, (P, S); A). Let R denote the set of simple paths in G. For each path P ∈ R

of length `(P) let eP0 . . . e
P
`(P) be the sequence of consecutive edges in P . Let AP,i(t1, t2) be the total number of packets of

type i that the adversary injects along path P during the interval [t1, t2). Moreover, let Ae,i(t1, t2) be the analogue quantity
measured over all paths P that cross e, i.e. Ae,i(t1, t2) =

∑
P:e∈P AP,i(t1, t2).

Let Be,i(t1, t2) be the total number of packets of type i that arrives at the tail node of edge e during [t1, t2). Also, define
DP,e,i(t1, t2) as the total number of type i packets following P that crosses e during [t1, t2). Let Qe,i(t) be the total number
of type i packets that is waiting at e’s queue at time t and let Se(t1, t2) be the total setup time incurred by e during [t1, t2).
Finally, let Ye(t1, t2) be the idle time of e during [t1, t2).
For the sake of simplicity we denote AP,i(0, t) by AP,i(t) and adopt a similar convention for B, D, S, and Y . When a sub-

index is missing for some previously defined quantity, it is to be understood that summation is over the range of themissing
index, e.g. Qe(t) =

∑
i∈I Qe,i(t).
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Discretemodel equations: LetRe denote the set of paths startingwith edge e andRf ,e the set of pathswhere e immediately
follows f . Up to time step t the number of type i packets that is injected by the adversary (arrive from some other node in the
network, respectively) at e’s queue is

∑
P∈Re AP,i(t) (

∑
f∈T (e)

∑
P∈Rf ,e

DP,f ,i(t), where T (e) denotes the set of edges incident
to the node at the tail of e, respectively). It is easy to see that the dynamics of the adversarial network is fully described by
the load and setup constraints (Eqs. (1) and (2) respectively) and the following equations valid for each i ∈ I and e ∈ E:

Be,i(t) =
∑
P∈Re

AP,i(t)+
∑
f∈T (e)

∑
P∈Rf ,e

DP,f ,i(t), (8)

Qe,i(t) = Qe,i(0)+ Be,i(t)− De,i(t), (9)
Se(t)+ De(t)+ Ye(t) = t. (10)

Let EA(t) = (AP,i(t))P,i, EB(t) = (Be,i(t))e,i, EY (t) = (Ye(t))e, EQ (t) = (Qe,i(t))e,i, ED(t) = (DP,e,i(t))P,e,i and ES(t) = (Se,i(t))e,i.
The time dependent vector sequence (EA, EB, ED, EQ , ES, EY ) is called a realization of the discrete model if it satisfies (1)–(2) and
(8)–(10).
For multi-type queuing networks we say that a realization is work conserving if no edge is idle when its queue is non-

empty. Formally,

∀t ∈ [t1, t2), Qe(t) > 0 H⇒ Ye(t1) = Ye(t2).

Moreover, a realization is called stable if the number of packets in the system stays bounded over time, i.e. supt
∑
e∈E Qe(t) <

∞. Finally, an adversarial multi-type queuing network G is called universally stable against adversary A if it is stable for every
setup cost∆ and work conserving realization.

Fluid model equations: Fluid models of queuing networks correspond to continuous approximation of queuing networks.
In these models one associates to relevant network parameters real-valued functions (time-dependent, continuous, non-
decreasing and non-negative). Specifically, for each edge e, path P and type i, we consider functions: ÂP,i(t), B̂e,i(t), D̂P,e,i(t),
Q̂e,i(t), Ŝe,i(t), and Ŷe(t). We also define the vectors Â(t), B̂(t), D̂(t), Q̂ (t), Ŝ(t) and Ŷ (t) as in the discrete model.
A continuous mapping from t to (̂A(t), B̂(t), D̂(t), Q̂ (t), Ŝ(t), Ŷ (t)) is called a fluid solution for the adversarial multi-type

model if it satisfies the following set of equations: For each i ∈ I, P ∈ R, and e ∈ E,

ÂP(t) ≤ r · t, (11)

B̂e,i(t) =
∑
P∈Re

ÂP,i(t)+
∑
f∈T (e)

∑
P∈Rf ,e

D̂P,f ,i(t), (12)

Q̂e,i(t) = Q̂e,i(0)+ B̂e,i(t)− D̂e,i(t), (13)

Ŝe(t)+ D̂e(t)+ Ŷe(t) = t. (14)

A fluid solution is called work conserving if

∀t ∈ [t1, t2], Q̂e(t) > 0 H⇒ Ŷe(t1) = Ŷe(t2).

A fluid solution (̂A(t), B̂(t), D̂(t), Q̂ (t), Ŝ(t), Ŷ (t)) is called stable if there is some time τ after which the fluid network stays
empty, i.e. Q̂ (t) = 0 for all t ≥ τ . A fluid network is called globally stable if there is a time τ such that Q̂ (t) = 0 for all t ≥ τ
for any fluid solution with initial vector of queue lengths Q̂ (0) for which

∑
e Q̂e(0) = 1,

This section’s main result is an analogue of the one due to Gamarnik [20, Theorem 1] concerning the single-type case.
Specifically we prove the following:

Theorem 9. In the AQT model with setups, if (G,∆, (P, S); A) is a stable network system whose associated fluid network is
globally stable, then it holds that (G,∆, (P, S); A) is stable.

Proof. Consider a realization (EA, EB, ED, EQ , ES, EY ) that satisfies (1)–(2) and (8)–(10). From Gamarnik [20, Proposition 1] we
deduce that for a non-decreasing sequence of integer times t1, t2, . . . , tk, . . . there exists a sequence of positive integers
k1, k2, . . . , kn, . . . such that for any non-negative real number t the following quantities converge as n goes to infinity:

Q̂e(t) = lim
n→∞

1
kn
Qe(tkn+tkn),

Âe(t) = lim
n→∞

1
kn

(
Ae(tkn+tkn)− Ae(tkn

)
,

D̂e(t) = lim
n→∞

1
kn

(
De(tkn+tkn)− De(tkn)

)
,

B̂e(t) = lim
n→∞

1
kn

(
Be(tkn+tkn)− Be(tkn)

)
.
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Moreover, the limits satisfy (11)–(13). Denote each of these limits by Q̂e(t), Âe(t), D̂e(t) and B̂e(t) respectively. We now
show that we can associate with Se(·) and Ye(·) fluid limits which together with Â(·), B̂(·), D̂(·), and Q̂ (·) yield a work
conserving fluid solution if (EA, EB, ED, EQ , ES, EY ) is a work conserving realization. Indeed, note that from (10) we get that for any
non-decreasing integer sequence t1, t2, . . . and positive rational number q,

1
k
(Se(tk+qk)− Se(tk)) ≤

qk
k
= q.

Thus, again by [20, Proposition 1], we conclude that the fluid limit Ŝe(·) exists. A similar argument shows that the fluid limit
Ŷe(·) exists. It is easy to check that Â, B̂, D̂, Q̂ , Ŝ, and Ŷ must satisfy (11)–(14), i.e. (̂A, B̂, D̂, Q̂ , Ŝ, Ŷ ) is a fluid solution of the
fluid model.
We now want to show that the fluid solution is work conserving. For the sake of contradiction, suppose that Q̂e(t) > 0

for all t ∈ [t1, t2]. Since Q̂e(·) is continuous and [t1, t2] is a compact set, there is a γ > 0 such that Q̂e(t) > γ for all
t ∈ [t1, t2]. But Q̂e(t) = limn→∞ Qe(tkn+tkn)/kn, hence Qe(tkn+tkn) > γ kn for sufficiently large n. This implies, since the
discrete realization is work conserving, that Ye(tkn+t1kn) = Ye(tkn+t2kn) for sufficiently large n, hence Ŷe(t1) = Ŷe(t2).
Because of the global stability of G’s associated fluid network, we have that there is a time τ such that Q̂ (t) = 0 for all

t ≥ τ for any fluid solution with initial vector of queue lengths Q̂ (0) for which
∑
e Q̂e(0) = 1. However, this is impossible

if (EA, EB, ED, EQ , ES, EY ) is an unstable realization (for details, see [20, Lemma 3]). �

6. Final comments

It isworth noting thatmuch ofwhatwas known for the standardAQTmodel seems to hold also in themulti-type scenario.
Specifically we have that:

(1) Acyclic graphs are universally stable in the single-type ([9, Theorem 1]) and multi-type setting (Theorem 4).
(2) Directed rings are universally stable in the single-type ([5, Theorem 3.7]) and multi-type setting (Theorem 5).

The above two claims are subsumed by the following consequence of [2, Theorem 8] and Theorem 7:

(3) A digraph is universally stable in the standard AQT model if and only if it is universally stable in the AQT model
with setups.

Perhaps the strongest contrast between the AQT models with and without setup arises when one compares universal
stability of scheduling policies in the single-type scenario with universal stability of scheduling protocols in the multi-type
scenario:

(4) For the standard AQT model, there are universally stable greedy scheduling policies against bounded rate
adversaries (e.g. Shortest-In-System, Farthest-To-Go [5, Table 1]). In contrast, for the AQT model with setups
no greedy scheduling protocol (P, S) is universally stable against bounded rate adversaries if S is shift-oblivious
(Theorem 8).

Finally, we note that from a fluidmodel perspective, stability issues in both single-type andmulti-type adversarial networks
can be addressed in a similar way (contrast for example Theorem 9 and [20, Theorem 1]).
Arguably the most interesting issue that this work leaves open is finding conditions for which, in the AQT with setups

model, there is a canonical adaptation of a packet scheduling protocol P and a way of choosing a switching policy S such
that a routing network G will remain stable against an (r, b) adversary A, but in the multi-class scenario where setup costs
equal∆.
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