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Abstract. It is defined a multiple fragmentation model in 2 dimensions. To represent the material defects, a random 
distribution of point flaws is considered. The number of generated fragments and breaking criterion also are random 
variables. The n-ary fragmentation process is produced by a breaking criterion that depends on the distribution of point 
flaws and neighboring fragments. The total mass is conserved. To stop each fragment iterative fracture a random stop is 
evaluated. The visualizations of the model present complex patterns of fracture that resemble real systems. 
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1. INTRODUCTION AND DEFINITION OF THE MODEL 

   The processes of fragmentation are complex phenomena that appear in different scale in nature and technology. 
Examples of fragmentation can be found in very large scale (astronomy), medium scale (mining processes) and 
microscopic scale (nuclear fission). In refs. [1,2,3] was given a long enumeration of some natural fragment size 
distributions of high energetic instantaneous breaking of brittle objects. This experimental evidence predicts a 
power-law behavior for small fragment masses: 
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where s is the fragment's area or volume. The exponent β varies in the range [1.44,3.54], see refs. [1,2,3]. A mean-
field type approximation to describe the fragmentation process can be formulated by means of the rate equations, see 
ref. [4]: 
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where: ( , )c x t is the concentration of fragments of mass less than x at time t , ( )a x is the rate at which fragments of 

mass x break into smaller ones and ( )f x y is the conditional probability that a fragment of mass x was produced 
from a fragment of mass y x≥ . Using scaling and homogeneity assumptions some exact results were obtained, see 
ref. [4]. Several one and two dimensional fragmentation models have been analytically studied by the application of 
the rate equations. See for instance refs. [5,6,7]. 
 
   The collision phenomena of solid but brittle discs with similar size were numerically studied in ref. [8]. To define 
the fracture process a molecular network of faults is considered. Using large-scale simulations and molecular 
dynamics techniques, the velocity, size and position distributions of the generated fragments were obtained. By 
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means of a dynamical model of granular solids, a critical point between damage and fragmentation behavior was 
determined, see ref. [9]. Large-scale simulations and molecular dynamics techniques have also been applied to study 
fracture and fragmentation models in materials that present a previous distribution of cracks and/or flaws, see ref. 
[10]. 
 
   Simple models for two-dimensional binary and n-ary fragmentation were numerically studied in refs. [11,12,13]. 
Its main assumptions are: material modeled as the discrete and continuous unit square; existence of q random point 
flaws that interact with the maximal net forces to produce the fracture; every piece fragmentation stops at each time 
step with probability p . A fragment size distribution with power-law behavior was determined for a wide range of 
the parameters. 
 
   In ref. [14], the explosive fragmentation process of two different two dimensional systems was studied: A 
disordered array of elastic beams and a Lennard-Jones liquid. For both models, the cumulative fragment size 
distribution has the form: 
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in the long time limit, where 0M is the typical fragment mass. This distribution was generalized for three 
dimensional experiments: Gypsum disks dynamic brittle fragmentation and elastic materials with cracks submitted 
to scalar strain fields, see ref. [15]: 
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where ( )F s is the number of fragments of size s , D is the Euclidean dimension of the system,λ  is the penetration 
depth and 1 2,f f can be approximated by exponential functions. 
 
   In ref. [16] were studied analytically and numerically two dimensional models that intent to describe the multiple 
fragmentation of flat brittle objects which suffer a strong impact on one of its sides. By analytical predictions and 
computational simulations it was obtained a power-law behavior for the fragment area distribution that exhibits two 
regimes, one of them proportional to

1
2( )F s s−∝ . 

 
   In this work a new model for n-ary fragmentation that generalizes refs. [11,12,13] to the case of fracture forces 
defined by neighborhood interaction is presented. The assumptions of the new model are: 
 
1) The initial fragment is a continuous square or cube of linear size 1. To model the material imperfections are 

considered q random point flaws that remains fixed during the fragmentation process and interact with the 
distribution of forces (see refs. [8,9,10]). The parameter q was chosen constant. 

 
2) At each step all the fragments will be broken in n fragments unless they satisfy the stop condition. The 

neighboring fragments apply a force f in the piece boundary, defined by 
 bf l s∝  (5) 

where ,bl s are the boundary length and area of the neighboring fragment.  
The largest force will be chosen to break the piece. The fracture lines are defined by the largest force and 
the n nearer point flaws. Moreover, every fracture line generates an additional random point flaw inside the 
fragment to simulate the effect of the fracture process. 

 
3) The total mass (area) is conserved: The sum of the new fragments area is the same of the original fragment. 
 
4) There are two situations in which the fragmentation process of a piece stops: 



a) If the fragment area is smaller than the minimal fragment size or cutoff: fsm . 
b) With a constant probability p . 
The random stop applies for fragments of area less or equal to the critical area ca , introduced to represent the 
fact that larger fragments have more probability to be broken than the smaller ones. The parameter ca will be 
chosen as a random variable in [0,1]. 

 
   In the next section are presented the numerical results of the model defined in 1) – 4). The objective of this study 
was to determine the visualizations and the fragment size distribution. 
 

2. VISUALIZATIONS AND NUMERICAL RESULTS 

   The numerical study was performed by medium scale simulations. The methodology for the simulations was the 
following: 
 The parameters , , ,c fsp q a m were chosen: 0.08,0.09,0.1; 300,500; 0.25; 0.0001,0.0003,0.0005c fsp q a m= = = = . 
 The results were averaged over several independent random initial conditions, defined by the initial forces and 

the random distribution of point flaws. 
 The process of fragmentation evolves according to the rules 1) - 4) defined in the previous section. 

  
   It was determined that the fragment area distribution ( )F s follows approximately a log-normal distribution in the 
logarithmic scale, for the values of the parameters studied. 
 

 

 
(a) (b) 

 
FIGURE 1. Fragment area distribution ( )F s (a) and visualization (b) for 0.1, 500, 0.25, 0.0003c fsp q a m= = = =  

 
   The visualizations of the model present patterns of fracture that simulate real fragmentation processes of brittle 
materials like, for instance, glass. The log-normal distribution can be explained due to: 
 The similarity in the fragments typical length 
 The low frequency of the larger fragment 

 
 



CONCLUSIONS 

   A new model for multiple fragmentation was studied numerically. Its main characteristic is that the forces of 
fracture are defined by the fragments of the neighborhood. By medium-scale simulations it was determined 
approximately a log-normal distribution in the logarithmic scale for the fragment area distribution. This result can be 
explained due to the similarity in the fragments typical length and the low frequency of the larger fragment. The 
visualizations of the model resemble real fragmentation processes of brittle materials. 
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