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Abstract

In this paper the nature and relevance of the information provided by intonation is discussed in the framework of second language learn-
ing. As a consequence, an automatic intonation assessment system for second language learning is proposed based on a top-down scheme. A
stress assessment system is also presented by combining intonation and energy contour estimation. The utterance pronounced by the student
is directly compared with a reference one. The trend similarity of intonation and energy contours are compared frame-by-frame by using
DTW alignment. Moreover the robustness of the alignment provided by the DTW algorithm to microphone, speaker and quality pronun-
ciation mismatch is addressed. The intonation assessment system gives an averaged subjective—objective score correlation as high as 0.88.
The stress assessment evaluation system gives an EER equal to 21.5%, which in turn is similar to the error observed in phonetic quality eval-
uation schemes. These results suggest that the proposed systems could be employed in real applications. Finally, the schemes presented here

are text- and language-independent due to the fact that the reference utterance text-transcription and language are not required.

© 2009 Elsevier B.V. All rights reserved.
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1. Introduction

Computer aided language learning (CALL) has replaced
the traditional paradigms (e.g. laboratory audio tapes) with
human-machine interfaces that can provide more natural
interactions. The old systems based on static pictures are
replaced by real dialogues between the user and the system,
where it is possible to evaluate pronunciation or fluency
quality and to input answers by voice. In this new paradigm,
speech technology has played an important role. As a result,
CALL systems provide several advantages to students and
the learning process takes place in a more motivating con-
text characterized by interactivity (Traynor, 2003). More-
over, students usually feel inhibited about speaking out in
class (Bernat, 2006) and CALL can provide a more conve-
nient environment to practise a second language.
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The suprasegmental characteristics of speech (pitch,
loudness and speed) (Wells, 2006) are very important issues
when learning a foreign language. For instance, most stu-
dents of English as a second language may achieve accept-
able writing and reading skills, but their pronunciation
may not reach the same standard, lacking fluency and nat-
uralness, among other characteristics. It is worth mention-
ing that for some authors naturalness of style implies
fluency. For instance, according to (Moyer, 2004), “The
extent of contextual isolation, or even text type itself,
may evoke varying degrees of naturalness in style, and
therefore fluency.” Moreover, sometimes teachers show
poor oral skills themselves (Gu and Harris, 2003; Bactens,
1982), which in turn is an additional barrier to beginner
students. Despite the fact that the phonetics rules (under-
stood as rules for the correct pronunciation of segments
(Saussure et al., 2006; Holmes and Holmes, 2001; El-Imam
and Don, 2005)) take most of the attention in the learning
process of oral communication skills, in the case of more
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advanced students, producing the correct prosody is prob-
ably the most important aspect (Delmonte et al., 1997) to
achieve a natural and fluent pronunciation when compared
with native speakers. In this context, speech analysis plays
an important role to help students to practise and improve
their oral communication skills, without the need of tea-
cher assistance (Rypa and Price, 1999). Also, providing
adequate feedback is a very relevant issue in CALL (Chun,
2002) because it can motivate students to practise and
improve their pronunciation skills. Furthermore, there is
strong evidence that audiovisual feedback improves the
efficiency of intonation training (Botinis et al., 2001; Shi-
mizu and Taniguchi, 2005).

In the context of prosody, intonation is certainly tar-
geted more often than energy and duration in second lan-
guage learning. Intonation is strongly related to
naturalness, emotional colour and even meaning as it is
explained later in Section 2. Also, word accent results in
FO movements which play a role in the syllable stress mech-
anism (You et al., 2004). The problem of intonation assess-
ment has been addressed from several points of view:
nativeness assessment; fluency evaluation and training;
classification; and, computer aided pronunciation quality
evaluation. In (Tepperman and Narayanan, 2008; Teixeira
et al., 2000) text-independent based methods are employed
to evaluate the degree of nativeness by analyzing the pitch
contour. In (Eskenazi and Hansma, 1998) a fluency pro-
nunciation trainer strategy is presented by assessing pro-
sodic features. Firstly, the user is prompted to repeat a
given sentence and duration is corrected separately from
the other features, then the user can proceed to pitch, etc.
The duration information is provided by forced Viterbi
alignment (Jurafsky and Martin, 2009). It is worth high-
lighting that the forced Viterbi algorithm can automatically
estimate the phoneme boundaries given the utterance text
transcription. In (Peabody and Seneff, 2006) an automatic
tone correction in non-native Mandarin is proposed by
comparing user-independent native tone models with the
pitch contours generated by the students. Observe that in
(Tepperman and Narayanan, 2008; Teixeira et al., 2000;
Eskenazi and Hansma, 1998; Peabody and Seneff, 2006) a
bottom-up philosophy is employed to evaluate prosodic
features by using text-independent or user-independent
models. Moreover, observe that the intonation assessment
problem from the CALL point of view is not necessarily a
nativeness evaluation, fluency evaluation nor pitch contour
classification problem with predefined classes.

Surprisingly, the problem of pronunciation quality eval-
uation from the intonation point of view in second lan-
guage learning has not been addressed exhaustively in the
literature. Most of the papers on pronunciation quality
assessment have addressed the problem of phonetic quality
evaluation (Neumeyer et al., 1996; Franco et al., 1997; Gu
and Harris, 2003). However, some authors have used into-
nation as an additional variable to assess pronunciation
quality in combination with other features (Dong et al.,
2004; Liang et al., 2005). In (Delmonte et al., 1997), a

prosodic module (including intonation and stress activities)
for foreign language learning is presented. The system com-
pares the student’s utterance with a reference one by using
a heuristic based approach. Moreover, the system requires
human assistance to insert orthographic information and
does not provide any scoring. In (Kim and Sung, 2002;
You et al., 2004) an intonation quality assessment system
is proposed based on a bottom-up scheme where the into-
nation curve within each syllable is classified. The system
makes use of forced Viterbi alignment and hence is text-
dependent. In (van Santen et al., 2009), a prosody assess-
ment method for diagnosis and remediation of speech
and language disorders was proposed. A high correlation
between automated and judges’ individual scores was
achieved but the analyses employed by the system require
the utterance text-transcription or phonetic segment
boundaries.

Phonetic rules can easily be classified as “correct” or
“wrong” according to geographic location. In contrast,
there is usually more than one intonation pattern that
could be considered as “acceptable” given the utterance
transcription (Jia et al., 2008). This is due to the fact that
intonation provides information about emotions, inten-
tions and attitudes. As a result, instead of classifying an
intonation curve as correct or wrong, it is more sensible
to motivate the student to follow a given reference intona-
tion pattern on a target form.

In this paper, an automatic intonation assessment sys-
tem is proposed based on a top-down scheme without
any information about the utterance transcription. The
proposed method attempts to dissociate the intonation
assessment procedure from the resulting phonetic quality
of the student’s utterance. Given a reference utterance,
the student can listen to it and then repeat it by trying to
follow the reference intonation curve that must be imitated.
Then, the reference and test utterances are aligned frame-
by-frame by using Dynamic Time Warping (DTW). Pitch
extraction and post-processing are applied to both utter-
ances. The resulting reference and test pitch contours are
transformed to a semitone scale and normalized according
to the mean. Then, the trend similarity between reference
and test intonation templates is evaluated on a frame-by-
frame basis by using the DTW alignment mentioned above.
Instead of computing the difference between the reference
and testing normalized FO contours on a segment-by-seg-
ment basis, the current paper proposes to estimate the cor-
relation between both curves. Finally, syllable stress is
assessed by using the information provided by the intona-
tion curve combined with frame energy.

The proposed system is not text-dependent (i.e. the text
transcription of the reference utterance is not required),
minimizes the effect of the resulting phonetic quality in
the student’s utterance and provides an averaged subjec-
tive—objective score correlation (computed as the correla-
tion of human and machine scores) as high as 0.88 when
assessing intonation contours. The word stress evaluation
system that results from the combination of intonation
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and energy contour estimation provides an Equal Error
Rate (EER) equal to 21.5%, which in turn is comparable
to the error of phonetic quality pronunciation assessment
systems. Despite the fact that the system introduced here
was tested with the English language, it can be considered
language-independent. The contribution of the paper con-
cerns: (a) a discussion of the role of intonation in second
language learning; (b) a text-independent system to evalu-
ate intonation in second language learning; (c) the use of
correlation to compare intonation curves as a pattern rec-
ognition problem; (d) a text-independent system to assess
word stress in second language learning; and, (¢) an evalu-
ation of the DTW alignment robustness with respect to the
speaker, pronunciation of segments and microphone mis-
matching conditions.

2. The importance of intonation in second language learning
2.1. Definitions

An adequate phonetic description would be incomplete
and unsatisfactory if it does not account for some charac-
teristics accompanying segments that have a relevant
meaningful importance. These features are known as
suprasegmental elements. The most important ones are
pitch, loudness and length (Cruttenden, 2008, pp. 21-23).
According to this author: pitch is the perception of funda-
mental frequency, the acoustic manifestation of intonation;
“what is ‘loudness’ at the receiving end should be related to
intensity at the production stage, which in turn is related to
the size or amplitude of the vibration”; and, length is
related to duration, although “variations of duration in
acoustic terms may not correspond to our linguistic judge-
ments of length”.

2.2. Intonation

Following (Botinis et al., 2001), “Intonation is defined
as the combination of tonal features into larger structural
units associated with the acoustic parameter of voice fun-
damental frequency or FO and its distinctive variations in
the speech process. FO is defined by the quasiperiodic num-
ber of cycles per second of the speech signal and is mea-
sured in Hz”. In fact, FO corresponds to the number of
times per second that the vocal folds finish a cycle of vibra-
tion. Consequently, the production of intonation is regu-
lated by the larynx muscular forces that control the vocal
folds tension in addition to aerodynamic forces of the
respiratory system. The perceived pitch, which approxi-
mately corresponds to FO, defines intonation perception.

Intonation has many relevant pragmatic functions that
deserve consideration (Chun, 2002; Pierrehumbert and Hir-
schberg, 1990). At this point it is necessary to state that it is
always accompanied by other suprasegmental features,
intensity and length, in particular. Among its many func-
tions, it can be said that intonation is particularly relevant
to express attitude, prominence, grammatical relationship,

discourse structure and naturalness (Roach, 2008; Crutten-
den, 2008; Wells, 2006).

Emotions and attitudes are reflected by the intonation
that people use when they speak. The same sentence may
show different attitudes depending on the intonation with
which it is uttered. This is the attitudinal or expressive
function of intonation. Additionally, it has a significant
role in assigning prominence to syllables that must be rec-
ognized as accented. This function is usually called “accen-
tual”. Intonation has also a grammatical function as it
provides information that makes it easier for the listener
to recognize the grammatical and syntactic structure of
what is being said, such as determining the placement of
phrase, clause or sentence boundary, or the distinction
between interrogative and affirmative constructions. This
function is commonly referred to as grammatical. Consid-
ering the act of speaking from a wider perspective, intona-
tion may suggest to the listener what has to be taken as
“new” information and what is considered as “given”
information; it may also suggest that the speaker is indicat-
ing a kind of contrast or link with some material present in
another tone unit and, in conversation, it may provide a
hint in relation to the type of answer that is expected. This
is the discourse function of intonation. The last function is
difficult to describe but is recognizable by every competent
native speaker. It has to do with the result of adequate
intonation use, which provides naturalness to speech that
can be related to the indexical function defined in (Wells,
2006) when he says: “... intonation may act as a marker
of personal or social identity. What makes mothers sound
like mothers, lovers sound like lovers, lawyers sound like
lawyers, ...”. Native speaker competence makes it possible
to recognize that an utterance has been produced by a
native speaker or not. There are many features contribut-
ing towards this goal, some of which are more easily distin-
guishable than others: word choice; syntactic structure;
segmental features; and, most certainly, intonation. How-
ever competent a foreign speaker may be, if his/her intona-
tion is not the one a native speaker would have used in the
same circumstances, his/her speech would sound unnatural
and would attract attention to the way he/she said some-
thing and not to its contents.

2.3. Stress

Some authors avoid the use of word “stress” because, as
mentioned in (Cruttenden, 2008, p. 23), in phonetics and
linguistics it is employed in diverse and unclear ways: it is
sometimes employed as an equivalent to loudness; some-
times as meaning “made prominent by means other than
pitch” (i.e. by intensity or length); and, occasionally, it
refers to syllables in lexical items indicating that they have
the potential for accent. In this paper the definition pre-
sented in (Wells, 2006, p. 3) is followed: “stress is realized
by a combination of loudness, pitch and duration”.

In a word like “mother”, stress falls on the first syllable.
In “university”, the syllable “ver” receives the main or
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primary stress, while “u” receives a secondary stress. The
other syllables, “ni”, “si” and “ty” are considered
unstressed. The presence of syllables receiving a main or a
secondary stress is important in English as the segments
in them tend to be pronounced fully. Weakening and vowel
reduction usually occur in unstressed syllables. The impor-
tance of secondary stress lies on the fact that in many lan-
guages other than English (i.e. Italian and Spanish) it does
not affect the pronunciation of segments, as it does in Eng-
lish, where vowel reduction is the result of unstressing some
syllables. However, it is common practice to focus the
attention on primary stress in second language learning
(Jenkins, 2000) as misplacing it affects lexical meaning. Sec-
ondary stress misplacing may affect the pronunciation of
segments but not necessarily referential meaning. More-
over, due to feasibility issues, the target words in the exper-
iments were chosen in order to avoid secondary stress.
Despite the fact that secondary stress is a relevant topic
in language acquisition at advanced levels, this research
was focused on primary stress. Assessing both types of
stress is considered out of the scope of the contribution
provided by this paper.

2.4. The importance of Intonation

2.4.1. The importance of intonation in general

As it has been stated in this paper, prosody is significant.
Intonation is central in the communication process (Bolin-
ger, 1986, p. 195; Garn-Nunn et al., 1992, p. 107). Speakers
of every language recognize this role when they make com-
ments like: “He agreed, but he said it in such a way...” In
many occasions the “way” you say something is more
important than the literal message, its syntactical organiza-
tion or the words used to structure it (Fénagy, 2001, p.
583). More frequently than it can be imagined, prosodic
features may suggest exactly the opposite meaning than
the actual words used by the speaker. Intonation is so sig-
nificant that it can even be used without a word. A single
sound, let us say /m/, can be said with different tones indi-
cating agreement, doubt, disagreement, pleasure, criticism,
among other attitudes (Bell, 2009, pp. 1825-1836; Bolinger,
1989, p. 435; Guy and Vonwiller, 1984, pp. 1-17). Not sur-
prisingly it is one the first aspects of speech that children
pay attention to, react to, and produce themselves. Accord-
ing to (Peters, 1977), quoted by Cruttenden (2008, p. 291),
“Many babies are excellent mimics of intonation and may
produce English-sounding intonation patterns on nonsense
syllables in the late stages of their pre-linguistic babbling”.
Besides, there is a close connection between prosody and
syntax. As mentioned in (Wells, 2006, p. 11), “Intonation
helps identify grammatical structures in speech, rather as
punctuation does in writing”.

2.4.2. The importance of intonation in foreign language
learning

Even though people talk about the intonation of differ-
ent languages as if they were discrete entities, there are mul-

tiple intonation systems within each of these (Grabe and
Post, 2002; Fletcher et al., 2005). A native speaker of any
language will very easily, and without any previous train-
ing, detect that another native speaker of that language is
using a dialect different from his/her own, recognizing into-
nation patterns that are not familiar to him/her. According
to (Face, 2006), “With Spanish spoken in different regions
of the world, there are considerable differences between the
intonation patterns found across the Spanish-speaking
world. Even within a relatively small geographic area there
can be considerable intonational differences”. For instance,
to aim at comparing English and Spanish intonation is an
impossible task. What might be intended is to compare the
intonation of a certain dialect of one of these languages
with the intonation of a dialect of the other.

In spite of the fact that there are intonational differences
within a language, there are some characteristics that are
shared by many languages. As mentioned in (Wells,
2006), “Like other prosodic characteristics, intonation is
partly universal, but also partly language-specific”. Thus,
in many languages a falling tune is associated with a declar-
ative statement or an order, and a rising tune, with an
incomplete statement, a question or a polite request. Nev-
ertheless, there are differences that might lead to misunder-
standing, particularly of the intentions or attitude of the
speaker, who may sound rude or insistent instead of polite,
for instance. There is empirical evidence that shows that
there are significant differences in the choice of the tone
and pitch accent by non-native and native English speakers
in similar contexts, which may cause communicative mis-
understanding (Ramirez and Romero, 2005). But even
though a foreign speaker might use the correct intonation,
the problem might lie on the fact that the nucleus is mis-
placed, where nucleus corresponds to the syllable identified
by the final pitch accent (Cruttenden, 2008, p. 271). It is
well known that in languages such as French, Italian and
Spanish the nucleus is on the last word in the intonational
phrase, what is not necessarily the case in English. Conse-
quently, mistakes such as stressing “it” instead of
“thought” in “I haven’t thought about it”, are frequently
heard (Cruttenden, 2008, p. 292; Wells, 2006, p. 12). While
native English speakers can easily distinguish the grammat-
ical, lexical and pronunciation deviances produced by non-
native speakers, and consequently make allowances for
their errors, they are incapable to do so for intonation. Fol-
lowing (Wells, 2006, p. 2), “Native speakers of English
know that learners have difficulty with vowels and conso-
nants. When interacting with someone who is not a native
speaker of English, they make allowances for segmental
errors, but they do not make allowances for errors of into-
nation. This is probably because they do not realize that
intonation can be erroneous”.

Traditional linguistics has expanded its field from
sounds, words, and sentences to larger units, such as full
texts, discourses, and interactions, giving rise to disciplines
such as discourse analysis, text linguistics, pragmatics, and
conversation analysis (Kachru, 1985, p. 2; Celce-Murcia
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and Olshtain, 2000, p. 130). It can be said that at present
applied linguists stress the crucial importance of intona-
tion, together with stress and rhythm, as their use does
not only complement meaning but creates it (Chun, 2002,
p- 109; Cruttenden, 2008, p. 328; Morley, 1991, p. 494;
Raman, 2004, p. 27). For this reason, the emphasis of pres-
ent day language teaching is put on communicative effec-
tiveness and, consequently, greater importance in the
teaching programme has to be placed on “suprasegmental
features rather than on individual sounds” (Morley, 1991,
p- 494). In other words there is a tendency to adopt a
top-down approach, i.c., to concentrate more on communi-
cation and global meaning rather than stick to the tradi-
tional bottom-up approach (centred on isolated or
contrasted sounds) (Pennington, 1989, pp. 20-38; Dalton
and Seidlhofer, 1994, p. 69; Carter and Nunan, 2001, p.
61; Jones, 1997, p. 178). However, it is worth mentioning
that the superiority of the top-down over the bottom-up
scheme, or vice verse, is still a matter of debate in the field.

3. The proposed system

The system attempts to decide, on a top-down basis, if
two utterances (i.e. reference and testing ones), from differ-
ent speakers, were produced with the same intonation pat-
tern. Fig. 1 shows the block diagram of the proposed
scheme to assess the intonation curve generated by a stu-
dent of a second language. First, F0 and Mel-frequency
cepstral coefficients (MFCC) are estimated in both utter-
ances. The FO contours are represented in the log domain,
normalized with respect to the mean value to allow the
comparison of intonation curves from different speakers
(e.g. amale and a female). Then, FO contours are smoothed
to remove artifacts from the pitch estimation. Then both
sequences of MFCC parameters are aligned by using a
standard DTW alignment. Finally, the reference and test-
ing FO curves are compared on a frame-by-frame basis by
employing the DTW alignment obtained with the MFCC
observation sequences. However, rather than estimating
the difference between the reference and testing normalized
FO patterns on a segment-by-segment basis, the current
paper proposes to compute the correlation between both
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curves. As a result, the reference and testing utterances
are compared from the falling-rising trend point of view.
In addition, Fig. 2 shows the block diagram of the pro-
posed stress assessment system. In contrast to the intona-
tion assessment method, the stress evaluation system
compares the reference and testing templates by employing
both FO and energy contours. As it is explained above,
stress is the result of the combination of loudness, pitch
and duration (Wells, 2006). If pitch is the perception of
FO, loudness is the perception of signal energy. Conse-
quently, both FO and energy should provide a more accu-
rate assessment of stress than FO or energy individually.

3.1. The intonation assessment system

3.1.1. Pre-processing

First, the speech signals are sampled at 16 kHz and end-
point detected to eliminate silences at the beginning and the
ending of each utterance. Then, a high-pass filter at 75 Hz
cutoff frequency is applied to reduce the power supply
noise. Finally, a pre-emphasis is applied by mean of FIR
filter H(z) =1+0.97z"". Observe that the alignment
technique between reference and testing utterances uses
Mel-frequency cepstral coefficients, and the pre-filtering
attempts to equalize the effect of high frequency with
respect to low frequency components.

3.1.2. FO contour extraction and post-processing

After pre-processing, speech signals are low pass filtered
at 600 Hz cutoff frequency to eliminate frequencies out of
the range of interest and divided into 400-sample frames
with a 50% overlap. Then, FO is estimated at each frame
and represented in a semitone scale according to:

In[FO(¢)]

Fosemitone(t) =12 1n2 I (1)
where FO(z) and FOgmion(t) are, respectively, the funda-
mental frequency in Hertz and in the semitone scale
adopted here at frame ¢. The logarithm attempts to repre-
sent F0(¢) according to the human-like perception scale. To
reduce doubling or halving errors in F0 estimation, curve
FOgemitone(t) 1s smoothed according to (Zhao et al., 2007)

R FO FO post-
extraction "| processing
Intonation
Reference N MFCC reference
signal extraction
"
o Score
DTW |Trend sun_llarlly
evaluation
Student MFCC L i
input extraction Intonation
speech test
N FO FO post-
"| extraction processing

Fig. 1. Block diagram of the proposed intonation assessment system.
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DTW | Trend similarity |,
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input 7| extraction
speech
R FO FO post-
"| extraction processing
N Energy
7| extraction

Fig. 2.

and with a median filter. Then it is normalized with respect
to the mean value. In contrast to (Peabody and Seneff,
2006) where FO contours are normalized with respect to
an entire corpus, this paper proposes an utterance based
normalization on a top-down scheme. Observe that the
intonation patterns in both testing and reference utterances
are compared directly without the need of any transcrip-
tion or predefined correct FO contour shapes. Finally, the
discontinuities caused by unvoiced intervals are filled by
linear interpolation. The resulting post-processed intona-
tion curve is denoted by FO,us.proc(1).

3.1.3. DTW based alignment

Thirty-three MFCC parameters per frame were com-
puted in the reference and testing utterance: the frame
energy plus ten static coefficients and their first and second
time derivatives. Then, DTW algorithm is applied to align
both observation sequences. Local distance between frames
is estimated with Euclidean or Mahalanobis metric. Maha-
lanobis distance, d,upaianobis, 18 given by:

dmahalanobis ( 1o ,2) - l(Oﬁ

-1

RAPMCEAI

(2)
where OF and O° denote observation vectors in frame ¢

from the reference and testing (student) utterances, respec-
tively; and, X is the covariance matrix of the reference and
testing utterances. In contrast to the heuristic alignment
approach proposed by Delmonte et al. (1997), the dynamic
programming method presented here is a structured well-
known approach that requires no rules, imposes no bound
to the number of features employed in the optimal align-
ment estimation and requires no text transcription of the
reference utterance.

Block diagram of the proposed stress assessment system.

The resulting optimal alignment provided by DTW is
indicated by I(k) = {ir(k),is(k)}, 1 <k <K where iz(k)
and ig(k) are the index of frames from the reference and
testing utterance, respectively, which are aligned.

Generally, robustness is a key issue in speech process-
ing. Particularly, the massive deployment of speech pro-
cessing in CALL applications requires robustness to
speaker and microphone mismatch. Related to speaker
mismatch, different levels of proficiency in the pronunci-
ation of segments may also generate a source of mis-
matching. Moreover, in this context, the use of different
types of low cost microphones is a requirement. As a
consequence, several of the experiments presented here
attempt to assess the robustness of the proposed
approach, besides its accuracy. As it is well known in
the literature, the accuracy of DTW-based speech recog-
nition systems is dramatically degraded when the speaker
(Rabiner, 1978; Rabiner and Wilpon, 1979; Rabiner and
Schmidt, 1980) or channel (Furui, 1981) training—testing
matching condition is not valid. However, the proposed
method in this paper employs the DTW-based alignment
instead of the DTW-based global metrics as in speech or
speaker recognition systems. As shown here, speaker and
microphone mismatch conditions have a restricted effect
in the optimal alignment and in the overall system
accuracy.

3.1.4. FO similarity assessment

In contrast to FO contour classification like the one dis-
cussed in (Peabody and Seneff, 2006) to correct tone pro-
duction in non-native Mandarin, this paper proposes an
intonation assessment system that attempts to measure
the trend similarity between the intonation curve produced
by a student and a reference one. Observe that in Mandarin
there are a well-defined number of lexical tones (Tao,
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1996). As a consequence, the problem addressed here is not
a common topic in pattern classification. According to
Fig. 1, the trend similarity between the reference and test-

ing post-processed intonation curves, F O;fost roc(t) and
F Osmt roc (1) TEspectively, is estimated. As described above,

the comparison of both intonation curves is done on a
frame-by-frame basis using DTW alignment. However,
instead of just estimating the accumulated distance
between F' O;fos, roc(t) and F Ofm roc(t), this paper proposes
that both curves should be compared from the falling-ris-
ing trend point of view. In other words, the system should
decide if the student was able to produce an intonation
curve with the same falling-rising pattern as the reference
utterance. Given the DTW alignment between the reference
and testing utterances, /(k), mentioned above, the trend
similarity measure between both intonation curves,

TS(F' Oﬁmt proer Oim, roc)» 18 defined as the correlation
R s .
between F0,, ., . and FO .

75 (FOR FOS )

post-proc? post-proc

o ZZ:I {Foﬁosl-proc [lR (k)] Foﬁost pror‘} {Fopust -proc [15( )] Foimt -proc }

)

3)

~are the standard deviation

" OroS

T R
FO; 'post-proc

post-proc

where TrOR, e and Tro5,. .,

R . .
of FO, ., and FOpm roc» Tespectively.  Alternatively,

the trend similarity was also evaluated by using the

Euclidean  distance  between  FO,  [iz(k)] and
Fojost proc[ls(k)]:

TS(FO® FOS . )

post-proc? post-proc

T

= Z {Foﬁost proc[. (k)] Fojmtproc[ S(k)] }2‘ (4)

k=1

dig (k)

with both correlation and Euclidian dis-

Finally, the trend similarity measure between
and drof

'post-, pmc[’b
dig (k)

tance as trend similarity measures were also considered

for comparison purposes:

dFOﬁost proc[ (k)] dFOﬁost -proc [ZS (k)}
TS{ le(k) ’ dls(k) }

K L i8] 0 | [ i ) e
k=1 dig (k) dig dis (k) dis

OFF Oﬁasl-pm( ’ OFF Ogasz»proc
()
Ky dFOﬁost -proc [lR (k)} dFOioat -proc [.S (k)]
dig(k) dis(k)
. 2
_ Z dFO‘Ipfovt proc[ R (k)] dFOﬁost pro¢[ S(k)] (6)
=l le(k) dl_g(k) ’

where:

dF()[Ifost-pmc(iR) {F()Ilj()éfpn)L(.R) - Foﬁost-proc(iR - 1) if ip > 0
diR Foﬁmtpm( (1) lf iR = 07

(7)

dFOi”vl‘pmc( S) _ {Foio:t p}oc( ) Foiost me('R - 1) lf iS > 0
dis FO3, o (1) if is =0.

(®)
The motivation to use the derivative of F Oﬁost roc and
F ij e Instead of the static representation of the curves

is due to the fact that the former could represent better
the falling-rising trend of the pitch contour that needs to
be evaluated.

The proposed intonation assessment system presented
here aims at classifying intonation curves according to four
patterns that are widely used in the field of linguistics
(Wells, 2006, p. 15; Cruttenden, 2008, pp. 271-275; Roach,
2008, p. x): high rise (HR), high fall (HF), low rise (LR)
and low fall (LF). The patterns fall-rise and rise-fall are
not considered as they are combinations of the four basic
ones mentioned above. As described in Section 2.2, intona-
tion has many functions that are not univocally related to
any of the patterns addressed here. Consequently, a
detailed discussion on the functionality of the intonation
reference models is out of the scope of the current paper
by definition.

3.2. The stress assessment system

The stress evaluation system, which is represented in
Fig. 2, is generated from the scheme in Fig. 1. The energy
(intensity) extraction contour is included and combined
with the post-processed intonation curve to decide if the
stress in the reference utterance is the same as the testing
one. The energy contour at frame ¢, E(¢), is estimated as:

E(t) =10-log [z]v:xz(t—kn) ) 9)

n=1

where x(-) denotes the signal samples and N is the frame
width. If E®(¢) and E°(¢) denote the energy contour of
the reference and testing utterances, respectively, the trend
similarity that includes the intonation and energy contour,

7S (FOR ER FOS

post-proc? post-proc?

ES>, is computed as:

75 (FOR

post-proc?

ER FOS ES)

post-proc’?

(1 - )
TS (FOR FOS ) (10)

post-proc? post-proc

=o- IS(ER ES) +

where: TS(E®, E®) and TS(FOy,. 00, FO5,, ) are estimated
according to (3) by making use of the correlation between
E® and E®, and between F Opm roc and F' Opost _proc» TESPEC-
tively; and, o is a weighting factor. Finally, the system takes
the decision about the stress pattern resulted from the stu-

dent’s utterance, SD, according to:
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SD [TS (FOR ER, FOS

post-proc?

where 6 correspond to a decision threshold, which in turn
depends on the target false positive and false negative rates.

4. Experiments
4.1. Databases

Two databases were recorded at the Speech Processing
and Transmission Laboratory (LPTV), Universidad de
Chile, to evaluate the performance of the proposed
schemes to address the problems of intonation and stress
assessment. All the speech material was recorded in an
office environment with a sampling frequency equal to
16 kHz. There were two types of speakers: the experts
and the non-experts in English language and phonetics.
The expert speakers correspond to a professor of English
language and his last-year students at the Department of
Linguistics at Universidad de Chile. All the non-expert
speakers demonstrated an intermediate proficiency in Eng-
lish. Three microphones were employed: Shure PG58 Vocal
microphone (Micl) and two low-cost desktop PC micro-
phones (Mic2 and Mic3). The databases are described as
follows.

4.1.1. Intonation assessment data set

In order to avoid additional difficulties from the user
point of view, short sentences that do not include uncom-
mon words or complicated syntactic structures were cho-
sen. They use the most usual intonation patterns: HR,
HF, LR, and LF. Observe that in the testing procedure,
the students are expected to reproduce the intonation pat-
terns following the model sentences heard, contrasting their
realizations with the reference utterance. This data set is
composed of six sentences: “What’s your name”; “My
name is Peter”; “It’s made of wood”; “It’s terrible”; “It
was too expensive”; and, “I tried both methods”. The sen-
tences were uttered with the intonation patterns mentioned
above: HR, HF, LR and LF. Altogether there are 6 sen-
tences x 4 intonation patterns = 24 types of utterances that
were recorded by 16 speakers (eight experts and eight non-
experts in English language and phonetics) by making use
of three microphones simultaneously. Then, the total num-
ber of recorded sentences is equal to 24 types of utter-
ances X 16 speakers x 3 microphones = 1552 utterances.
In the experiment of intonation assessment, the reference
utterances correspond to the sentences recorded by one
of the experts in English language and phonetics (the most
senior one). The number of possible experiments per target
sentence per speaker per microphone is equal to 4 reference
intonation pattern labels x 4 testing intonation pattern
labels = 16 experiments. Finally, the total number of into-

ES)} B { the same as the reference
post-proc? -

it TS (FOL, e B FOS

post-proc’?

S
E) = Osp (11)

different from the reference elsewhere,

nation assessment experiments is equal to 16 experiments
per speaker per sentence per microphone x 15 testing
speakers x 6 types of sentences x 3 microphones = 4320
experiments.

4.1.2. Stress assessment data set

Firstly, due to feasibility issues, the target words were
chosen in order to avoid secondary stress. Despite the fact
that secondary stress is a relevant topic in language acqui-
sition as it may affect the pronunciation of segments, this
research focused on primary stress, the misplacing of which
may affect referential meaning. Assessing both types of
stress was considered out of the scope of the contribution
provided by the current paper. In this context, the selected
words are composed of two, three and four syllables. For
each case, four examples were generated. This data set is

composed by twelve words: “machine”; “alone”; “under”;
“husband”; “yesterday”; “innocence”; “important”;
“excessive”; “melancholy”; “caterpillar”; “impossible”;

and, “affirmative”. Each word was uttered with all the pos-
sible stress variants, which in turn are word-dependent.
The number of stress variants is equal to the number of syl-
lables in the target word. Consequently, altogether there
are 4 words x (2 syllables + 3 syllables + 4 syllables) = 36
types of utterances that were recorded by eight speakers
(four experts and four non-experts in English language
and phonetics) by making use of three microphones simul-
taneously. Then, the total number of recorded sentences is
equal to 36 types of utterances x 8 speakers x 3 micro-
phones = 864 utterances. In the stress assessment experi-
ment, the reference utterances correspond to sentences
recorded by one of the experts in English language and
phonetics (the most senior one). Finally, the total number
of stress assessment experiments is equal to 36 experiments
per speaker per microphone x 7 testing speakers x 3
microphones = 756 experiments.

4.2. Experimental set-up

The DTW algorithm mentioned in Figs. 1 and 2 was
implemented according to (Sakoe and Chiba, 1978). The
covariance matrix employed by Mahalanobis distance in
(2) was estimated with a subset of the intonation assess-
ment database explained in Section 4.1.1. The fundamental
frequency FO is estimated by using the autocorrelation
based Praat pitch detector system (Boersma and Weenink,
2008). As mentioned above, the utterances are divided into
400-sample frames with a 50% overlap. Thirty-three
MFCC parameters per frame were computed: the frame
energy plus ten static coefficients and their first and second
time derivatives.
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4.3. Subjective—objective score correlation

The subjective—objective score correlation is estimated
as the correlation between the subjective scores and the
objective scores delivered by the automatic intonation
assessment system proposed. The subjective scores are
generated according to the procedure described as fol-
lows. First, an expert in phonetics and English language
(the most senior one) recorded all the sentences with all
the intonation patterns described in Section 4.1.1. These
utterances were selected as reference and each one was
labelled with HR, HF, LR, or LF (see Section 3.1.4).
Then, the remaining seven expert speakers listened to
and repeated each reference utterance by following the
corresponding intonation pattern. In the same way the
eight non-expert speakers recorded the reference utter-
ances, but they were supervised by the seven experts to
make sure that the intonation pattern was reproduced
correctly. Then, the utterances recorded by the seven
expert and the eight non-expert speakers were also
labelled with HR, HF, LR, or LF. Finally, an engineer
checked the concordance between the utterances and the
assigned intonation pattern label. Most of the papers in
the field of CAPT (Computer Aided Pronunciation Train-
ing) employ the subjective—objective score correlation to
evaluate the accuracy of a given system. In this context,
Tables 1 and 2 define the subjective scores when a student
testing utterance is compared with a reference one that
contains the intonation pattern to be followed. Accord-
ingly, the subjective scores, that result from the direct
comparison between reference and testing intonation pat-
tern labels, are defined in Tables 1 and 2. Consider that
SubjEvaluationr,gne and  SubjEvaluationgeperence denote
the subjective evaluation in the testing and reference
utterances, respectively, where SubjEvaluationr,s,, and
SubjEvaluation geference are one of the following categories
regarding the intonation pattern: HF; LF; HR; and, LR.
Therefore, the strict subjective score (Table 1) that results
from the comparison of the testing and reference intona-
tion patterns are defined as follows:

Strict subjective score

5 if  SubjEvaluationy,,,, = SubjEvaluationg, ...,
1 elsewhere.

(12)

Accordingly, Table 2 defines the non-strict subjective
scores as follows:

Non-strict subjective score
5 if
=<4 if

1 elsewhere.

SubjEvaluationy,,,, = SubjEvaluationgence
(SubjEvaluationy,,,,, SubjEvaluationy,,,,) € {(HF,LF), (LF,HF ), (HR,LR), (LR, HR)}

As shown in (13), HF/LF and HR/LR substitutions
were labelled with score 4 because score 3 is neutral and
score 2 is negative. It sounds sensible to provide a positive
score if the student reproduced an intonation pattern sim-
ilar to the reference one, although not exactly the same.

4.4. DTW alignment accuracy experiments

As mentioned above, the speaker, pronunciation of seg-
ments and microphone mismatch effect on DTW accuracy
alignment is evaluated in this paper. A subset of three
expert speakers and two non-expert speakers from the into-
nation data set (Section 4.1.1) were selected to assess the
robustness of the DTW alignment. The utterances recorded
with two microphones were employed: Shure PG58 Vocal
microphone and one of the low-cost desktop PC micro-
phones. Therefore, a total number equal to 240 utterances
were used. These utterances were phonetically segmented
and labelled by hand. The alignment error at phonetic label
border b, Eujin(b) (%), is defined here as:

d(b

Eiin(b) = 100 - Q, (14)
D
where D is the searching windows width in DTW, and d is
defined as:
B 1 2 2

d(b) = 3\ /de(B)? +ds(b), (1)
where dgr(b) and dg(b) are the horizontal and vertical dis-
tances, respectively, between the phonetic boundaries ob-
tained by hand-labelling and the DTW alignment (see
Fig. 3). Given two utterances with the same text transcrip-
tion, the total alignment error, E,;,,, is equal to:

1 B
Ealign = E ZEalign(b)a (16)
b=1

where B is the total number of phonetic boundaries in the
sentences.

5. Results and discussion
5.1. Alignment experiments

Table 3 shows the DTW alignment error using several
features in combination with Euclidian distance. The data
set explained in Section 4.1.1 was employed. All the utter-
ances with the same transcription were compared two-by-
two independently of the speaker and microphone matching
condition. As can be seen in Table 3, the lowest alignment

(13)



J.P. Arias et al. | Speech Communication 52 (2010) 254-267 263

Table 1

Strict subjective score scale criterion for intonation contour comparison
defined as in Section 4.3. HF, LF, HR and LR denote, respectively, high
fall, low fall, high rise and low rise as defined in Section 4.1.

Subjective intonation
pattern label in the testing
utterance (SubjEvaluationreging)

Subjective intonation pattern
label in the reference utterance
(SubjEvaluation geference)

HF LF HR LR
HF 5 1 1 1
LF 1 5 1 1
HR 1 1 5 1
LR 1 1 1 5
Table 2

Non-strict subjective score scale criterion for intonation contour compar-
ison defined as in Section 4.3. HF, LF, HR and LR denote, respectively,
high fall, low fall, high rise and low rise as defined in Section 4.1.

Subjective intonation
pattern label in the

Subjective intonation pattern label in the
reference utterance (SubjEvaluationgeperence)

testing utterance HF LF HR LR
(SubjEvaluationesing)

HF 5 4 1 1
LF 4 5 1 1
HR 1 1 5 4
LR 1 1 4 5

DTW alignment

Fig. 3. Representation of DTW alignment error measure, d. Point (6%, 47)

R

indicates the intersection of boundary i within the reference and testing
utterances. The distances dr and di are the horizontal and vertical
distances, respectively, between the phonetic boundaries and the DTW
alignment.

error takes places with MFCC features in combination with
frame energy (statistically significant with p < 0.0001 when
compared with the other features combinations). Table 4
compares the DTW alignment error between speaker
matched and unmatched condition, where both Euclidean
and Mahalanobis distance were employed in combination
with MFCC plus energy. When the Euclidean metric is
replaced with the Mahalanobis distance, the error is
reduced by 10% (this difference is statistically significant
with p <0.0001). Also in Table 4, when compared with

Table 3

Alignment error by using different features in DTW. Local distance
corresponds to the Euclidian metric. The sample size is equal to 5
speakers x 4 intonation patterns x 2 microphones =40 utterances per
target sentence, which in turn generates 780 pair combinations per target
sentence. Considering 6 target sentences as explained in Section 4.1.1,
there are altogether 780 pair combinations per target sentence x 6 target
sentences = 4680 experiments.

Feature Alignment error (%)
Frame energy 13.27

FO 11.49

FO + frame energy 11.06

MFCC 5.31

MFCC + frame energy 4.90

Table 4

Alignment error with speaker matched and unmatched condition. The
sample size is equal to 5 speakers x 4 intonation patterns x 2 micro-
phones = 40 utterances per target sentence, which in turn generates 780
pair combinations per target sentence. Considering 6 target sentences as
explained in Section 4.1.1, there are altogether 780 pair combinations per
target sentence x 6 target sentences = 4680 experiments.

Speaker matching Euclidean Mahalanobis
condition distance (%) distance (%)
Matched 3.10 2.86
Unmatched 4.78 4.22

Table 5

Alignment error with microphone matched and unmatched condition. The
sample size is equal to 5 speakers x 4 intonation patterns X 2 micro-
phones = 40 utterances per target sentence, which in turn generates 780
pair combinations per target sentence. Considering 6 target sentences as
explained in Section 4.1.1, there are altogether 780 pair combinations per
target sentence x 6 target sentences = 4680 experiments.

Microphone Euclidean Mabhalanobis
matching condition distance (%) distance (%)
Matched 3.10 2.86
Unmatched 3.22 2.89

speaker matching condition, the alignment error shows
an increase of just 1.68% and 1.36% points when utterances
are from different speakers with Euclidean and Mahalan-
obis distances, respectively. Consequently, this result
suggests that the DTW alignment is robust to speaker
mismatch.

Table 5 shows alignment error between different
matched and mismatched microphone conditions between
the reference and testing utterances. As can be seen, when
compared with microphone matching condition, the align-
ment error shows an increase of just 0.12% and 0.03%
points, when testing and reference utterances are recorded
with different microphones, with Euclidean and Mahalan-
obis distances, respectively. Consequently, despite the fact
that the DTW-based speech recognizer system accuracy
dramatically degrades with mismatch condition between
reference and testing utterances, results in Tables 4 and 5
strongly suggest that the DTW alignment is robust to
speaker and microphone mismatch.
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Table 6

Averaged subjective-objective score correlation in intonation assessment
with different trend similarity measures. Strict and non-strict subjective
scores are defined in Tables 1 and 2. The number of possible experiments
per target sentence per speaker per microphone is equal to 4 reference
intonation pattern labels x 4 testing intonation pattern labels = 16 exper-
iments. Finally, the total number of intonation assessment experiments is
equal to 16 experiments per speaker per sentence per microphone x 15
testing speakers x 6 types of sentences x 3 microphones = 4320 experi-
ments, as is explained in Section 4.1.1.

Trend similarity Strict subjective Non-strict subjective

measure score score
Correlation 0.54 0.88
Euclidian distance 0.40 0.62
Correlation (D) 0.48 0.79
Euclidian distance (D) 0.31 0.46
Table 7

Averaged objective—subjective score correlation in intonation contour
assessment. Speaker matched and unmatched conditions are compared, by
using the non-strict subjective score scale explained in Table 1. The
number of possible experiments per target sentence per speaker per
microphone is equal to 4 reference intonation pattern labels x 4 testing
intonation pattern labels = 16 experiments. Finally, the total number of
intonation assessment experiments is equal to 16 experiments per speaker
per sentence per microphone x 15 testing speakers x 6 types of sen-
tences X 3 microphones = 4320 experiments, as is explained in Section
4.1.1.

Trend similarity Speaker matched Speaker unmatched

measure condition condition
Correlation 0.88 0.88
Euclidian distance 0.71 0.62
Correlation (D) 0.79 0.79
Euclidian distance (D) 0.57 0.46

5.2. Intonation experiments

Table 6 shows the averaged subjective—objective score
correlation between the trend similarity provided by the
system in Fig. 1 and the subjective score within the intona-
tion assessment database mentioned in Section 4.1.1. Strict
and non-strict subjective scores between reference and test-
ing utterances are defined in Tables 1 and 2, respectively.
According to Table 6, the highest average subjective—objec-
tive score correlation is given by the use of correlation as a
trend similarity measure (statistically significant with
p <0.0001 when compared with the other trend similarity
measures). With the non-strict subjective score scale, the
averaged subjective—objective score correlation is as high
as 0.88. However, with the strict subjective score scale the
averaged subjective—objective score correlation is substan-
tially decreased (statistically significant with p < 0.0001).
This result suggests that the proposed system can accu-
rately discriminate between rising and falling pitch con-
tours. In contrast, the accuracy to distinguish between
HF and LF or between HR and LR is reduced.

The DTW alignment robustness to speaker mismatching
suggested by Table 4 is corroborated in Table 7, which

Table 8

Averaged objective-subjective score correlation in intonation contour
assessment. Expert speaker matched and unmatched conditions are
compared, by using the non-strict subjective score scale explained in
Table 2. The number of possible experiments per target sentence per
speaker per microphone is equal to 4 reference intonation pattern
labels x 4 testing intonation pattern labels =16 experiments. Finally,
the total number of intonation assessment experiments is equal to 16
experiments per speaker per sentence per microphone x 15 testing
speakers x 6 types of sentences x 3 microphones = 4320 experiments, as
is explained in Section 4.1.1.

Trend similarity Expert speakers No-experts speakers

measure (pronunciation of (pronunciation of
segments matching segments mismatching
condition) condition)

Correlation 0.89 0.87

Euclidian distance 0.65 0.60

Correlation (D) 0.79 0.79

Euclidian distance (D) 0.44 0.53

shows the averaged subjective—objective score correlation
in intonation assessment with and without speaker
matching condition. As can be seen, speaker unmatched
condition leads to a mean reduction in the averaged subjec-
tive—objective score correlation as low as 8.2%. Moreover,
in the context of second language learning, pronunciation
of segments is also a source of mismatch between reference
and testing utterances. Table 8 presents the averaged objec-
tive—subjective score correlation in intonation assessment
with and without pronunciation of segments matching con-
dition. In the former case, the reference and testing utter-
ances come from the experts in English language and
phonetics. In the latter case, the testing utterances were
pronounced by non-expert in English language speakers.
According to Table 8, pronunciation of segments mismatch
leads to a reduction in the averaged subjective—objective
score correlation in intonation assessment as low as 2.5%;
7.6%; 0.5%; and, 0% with trend similarity estimated with
(3)-(6), respectively. This result also suggests the validity
of the hypothesis concerning the DTW alignment robust-
ness to speaker and pronunciation quality mismatch.

Fig. 4 shows the averaged subjective—objective score cor-
relation in intonation assessment with microphone matched
and unmatched condition. The reference utterances were
recorded with Micl. The testing utterances were captured
with Micl, Mic2 and Mic3. As can be seen in Fig. 4, the
mean difference in averaged subjective—objective score cor-
relation in intonation assessment between matched and
unmatched condition is just equal to 2.5%. This result
strongly corroborates the result discussed in Table 5.

5.3. Stress experiments

Fig. 5 presents the receiver operating characteristic
(ROC) curves (false negative rate, FNR, and false positive
rate, FPR) with the stress assessment system shown in
Fig. 2. The trend similarity is estimated with (10) and the
final decision about stress assessment is taken according
to (11). The variable o was tuned in order to minimize
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Y -6 Mic3
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0.65

Averaged objective-subjective score correlation

0.4

Corr Corn(D) Euclid Euclid(D)

Fig. 4. Averaged objective-subjective score correlation in intonation
assessment with different microphones. Micl represents the high quality
microphone employed. Mic2 and Mic3 represent low-cost desktop PC
microphones.

False Negative Rate

e i,
0 01 02 03 04 05 06 07 0.8 09 1
False Positive Rate

Fig. 5. False negative and false positive ROC curves in stress evaluation.
The trend similarity measure is estimated according to (10) and the
decision is taken by using (11). « = 1 indicates that only pitch contour is
employed and o = 0 indicates that only frame energy contour is employed.

the area below the ROC curve and the optimal value is
equal to 0.49. Fig. 5 also shows the FPR/FNR curves with
o=0,a=1and o = 0.49. Table 9 presents the area below
the ROC curve and EER with o equal to 0, 1 and 0.49.
According to Fig. 5 and Table 9, the optimal « gives a
reduction in the area below the ROC curve and in EER
equal to 15.5% and 22.3%, respectively, when compared
with o =0 and o = 1. Significance analysis using McNe-
mar’s test (Gillick and Cox, 1989) shows that the differ-
ences in EER between o« = 0.49 and « = 1, and between
o =0.49 and o =0 are significant with p <0.00048 and
p <0.077, respectively. This result suggests that both pitch
and energy contours provide relevant information to assess
word stress. The stress assessment system accuracy should

Table 9

ROC area and equal error rate (EER) for stress assessment system for
different o, using correlation as trend similarity measure. The optimal o
that minimizes EER is equal to 0.49. The sample size is equal to 36
experiments per speaker per microphone x 7 testing speakers x 3 micro-
phones = 756 experiments, as is explained in Section 4.1.2.

Feature ROC area EER (%)
a=1 0.181 25.41
a=0 0.212 27.64
o=0.49 0.147 21.48

be improved by including duration information, which in
turn is not straightforward in the frame of the DTW align-
ment. However, it is worth mentioning that word based
state-of-the-art automatic pronunciation assessment sys-
tems provide subjective—objective score correlation
between 0.6 and 0.8 depending, among other factors, on
the number of levels in the evaluation scale (Dong and
Yan, 2008; Tepperman and Narayanan, 2007; Stouten
and Martens, 2006; Su et al., 2006; Oppelstrup et al.,
2005; Bernstein et al., 1990; Eskenazi, 1996; Hiller et al.,
1994). In (Molina et al., 2009), the classification error,
defined as the difference between the subjective and
objective score levels, was estimated in a word based CAPT
system with two and five level scales. With a two level scale,
the subjective—objective score correlation is 0.8 in average
and the classification error is around 10%. Also, with a five
level scale, the subjective—objective score correlation is 0.67
in average and the classification error is around 55%. As a
result, the optimal EER provided by the proposed
stress assessment system (21.5%) is similar to phonetic
pronunciation assessment systems. This suggests that the
proposed scheme should be accurate enough for practical
applications.

The proposed method requires a reference intonation
pattern that the student should try to follow. However,
the text transcription of both reference and testing
utterances are not required. The motivation behind the
proposed strategy, as explained here, is the fact that there
is not a clear definition of “correct” or “wrong” intonation
(Jia et al., 2008). The same sentence may be pronounced
with several intonation patterns according to the context
and in most cases there should not be only one correct into-
nation. The problem addressed by the current paper is how
to teach a student to follow a given intonation pattern as a
reference provided that there is not only one correct into-
nation production. In contrast, scoring intonation of spon-
taneous speech without a reference is out of the scope of
the hypothesis considered in this paper.

6. Conclusions

A discussion of the nature and importance of intonation
in second language learning is presented in this paper. As a
result, a text-independent and language-independent auto-
matic intonation assessment system for second language
learning is proposed based on a top-down scheme. A stress
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assessment system is also presented by combining intona-
tion and energy contour estimation. The system directly
compares the utterance pronounced by the student with a
reference one. The trend similarity of intonation and
energy contours are compared on a frame-by-frame basis
by using the DTW alignment. Also, the robustness of the
alignment provided by the DTW algorithm to microphone,
speaker and quality pronunciation mismatch is addressed.
The intonation assessment system achieves an averaged
subjective—objective score correlation as high as 0.88 when
correlation as trend similarity measure is employed. The
stress assessment evaluation system provides an EER equal
to 21.5%, which in turn is similar to the error observed in
phonetic quality evaluation schemes. These results suggest
that the proposed systems could be employed in real appli-
cations. Despite of the fact that the system was tested in the
framework of English learning with native-Spanish learn-
ers, the proposed method is applicable to any language.
Finally, the use of techniques to improve robustness to
noise, and the integration of the schemes proposed in this
paper with phonetic quality and duration evaluation are
proposed as future research.
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