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NONLINEAR NEUMANN BOUNDARY STABILIZATION
OF THE WAVE EQUATION USING ROTATED

MULTIPLIERS

P. CORNILLEAU, J.-P. LOHÉAC, and A. OSSES

Abstract. We study the boundary stabilization of the wave equation
by means of a linear or nonlinear Neumann feedback. The rotated
multiplier method leads to new geometrical cases concerning the ac-
tive part of the boundary where the feedback is applied. Due to mixed
boundary conditions, these cases generate singularities. Under a sim-
ple geometrical condition concerning the orientation of the boundary,
we obtain stabilization results in both cases.

Introduction

In this paper, we are concerned with the stabilization of the wave equation
in a multi-dimensional body Ω ⊂ R

n by using a feedback law applied on
some part of its boundary. The problem can be written as follows:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

u′′ − Δu = 0 in Ω × R
∗
+,

u = 0 on ∂ΩD × R
∗
+,

∂νu = F on ∂ΩN × R
∗
+,

u(0) = u0 in Ω,

u′(0) = u1 in Ω,

where we denote by u′, u′′, Δu, and ∂νu the first time-derivative of the
scalar function u, the second time-derivative of u, the standard Laplacian
of u, and the normal outward derivative of u on ∂Ω, respectively; (∂ΩD,
∂ΩN ) is a partition of ∂Ω and F is the feedback function which may depend
on the state (u, u′), the position x and time t.

Our purpose here is to choose the feedback function F and the active part
of the boundary, ∂ΩN , so that for every initial data, the energy function

E(u, t) =
1
2

∫

Ω

(|u′(t)|2 + |∇u(t)|2) dx,
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is decreasing with respect to time t and vanishes as t → ∞. Formally, we
can write the time derivative of E as follows:

E′(u, t) =
∫

∂ΩN

Fu′ dσ,

and a sufficient condition so that E is nonincreasing is Fu′ ≤ 0 on ∂ΩN .
In the two-dimensional case and in the framework of the Hilbert unique-

ness method [12], it can be shown that the energy function is uniformly
decreasing as t → ∞, by choosing m : x �→ x− x0, where x0 is some given
point in R

n and

∂ΩN = {x ∈ ∂Ω | m(x) · ν(x) > 0} , F = −m · νu′,

where ν is the normal unit vector pointing outward of Ω. This method
has been performed by many authors (see, e.g., [10] and the references
therein). Here we extend the above result for rotated multipliers [15] by
following [4], i.e., we take in account singularities which can appear when
changing boundary conditions along the interface Γ = ∂ΩN ∩ ∂ΩD.

1. Notation and main results

Let Ω be a bounded open connected set of R
n(n ≥ 2) such that

∂Ω is of class C2 in the sense of Nečas [14]. (1)

Let x0 be a fixed point in R
n. We denote by I the (n× n) identity matrix,

by A a real (n×n) skew-symmetric matrix, and by d a positive real number
such that d2 +‖A‖2 = 1, where ‖·‖ stands for the usual 2-norm of matrices.
Now we define the following vector function:

∀x ∈ R
n, m(x) = (dI + A)(x − x0).

We consider a partition (∂ΩN , ∂ΩD) of ∂Ω such that
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Γ = ∂ΩD ∩ ∂ΩN is a C3-manifold of dimension n − 2,

m · ν = 0 on Γ,

∂Ω ∩ ω is a C3-manifold of dimension n − 1,

Hn−1(∂ΩD) > 0,

(2)

where ω is a suitable neighborhood of Γ and Hn−1 denotes the usual (n−1)-
dimensional Hausdorff measure.

Let g : R → R be a measurable function such that

g is nondecreasing and ∃K > 0: |g(s)| ≤ K|s| a.e. (3)
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Now let us consider the following wave problem:
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

u′′ − Δu = 0 in Ω × R
∗
+,

u = 0 on ∂ΩD × R
∗
+,

∂νu = −m · ν g(u′) on ∂ΩN × R
∗
+,

u(0) = u0 in Ω,

u
′
(0) = u1 in Ω,

(S)

for some initial data

(u0, u1) ∈ H1
D(Ω) × L2(Ω) := H,

where

H1
D(Ω) =

{
v ∈ H1(Ω)

∣
∣
∣ v = 0 on ∂ΩD

}
.

This problem is well-posed in H. Indeed, following Komornik [9], we define
the nonlinear operator W by

W(u, v) = (−v,−Δu),

where

D(W) =
{

(u, v) ∈ H1
D(Ω) × H1

D(Ω)
∣
∣
∣

Δu ∈ L2(Ω) and ∂νu = −m · ν g(v) on ∂ΩN

}
,

so that (S) can be written in the form
{

(u, v)′ + W(u, v) = 0,

(u, v)(0) = (u0, u1).

It is a classical fact that W is a maximal-monotone operator on H and that
D(W) is dense in H for the usual norm (see, e.g., [1]). Hence, for any initial
data (u0, v0) ∈ D(W), there is a unique strong solution (u, v) such that
u ∈ W1,∞(R; H1

D(Ω)) and Δu ∈ L∞(R+; L2(Ω)). Moreover, for two initial
data, the corresponding solutions satisfy

‖(u1(t), v1(t)) − (u2(t), v2(t))‖H ≤ C‖(u1
0, v

1
0) − (u2

0, v
2
0)‖H ∀t ≥ 0.

Using the density of D(W), one can extend the map

D(W) → H, (u0, v0) �→ (u(t), v(t))

to a strongly continuous semigroup of contractions (S(t))t≥0 and define for
(u0, v0) ∈ H the weak solution (u(t), u′(t)) = S(t)(u0, u1) with the regularity
u ∈ C(R+; H1

D(Ω)) ∩ C1(R+; L2(Ω)). We hence define the energy function
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of solutions by

E(u, 0) =
1
2

∫

Ω

(|u1|2 + |∇u0|2) dx,

E(u, t) =
1
2

∫

Ω

(|u′(t)|2 + |∇u(t)|2) dx

if t > 0. In order to obtain stabilization results, we need further assumptions
concerning the feedback function g:

∃p ≥ 1, ∃k > 0, |g(s)| ≥ k min{|s|, |s|p}, a.e. (4)

Concerning the boundary, we assume that

∂ΩN ⊂
{

x ∈ ∂Ω
∣
∣
∣ m(x) · ν(x) ≥ 0

}
,

∂ΩD ⊂
{

x ∈ ∂Ω
∣
∣
∣ m(x) · ν(x) ≤ 0

}
,

(5)

and the additional geometric assumption

m · τ ≤ 0 on Γ, (6)

where τ (x) is the normal unit vector pointing outward of ∂ΩN at a point
x ∈ Γ when considering ∂ΩN as a sub-manifold of ∂Ω.

Remark 1. It is worth observing that it is not necessary to assume that

Hn−1
({

x ∈ ∂ΩN

∣
∣
∣ m(x) · ν(x) > 0

})
> 0

to obtain stabilization. In fact, our choice of m implies such properties (see
examples in Sec. 4) whether the energy tends to zero.

Since the pioneering work [8], it is now a well-known fact that Rellich type
relations [16] are very useful for the study of control and stabilization of the
wave problem. As we said before, Komornik and Zuazua [10] have shown
how these relations can also help us to stabilize the wave problem. In order
to generalize it for dimensions higher than 3, the key-problem is to show the
existence of a decomposition of the solution in regular and singular parts
[6, 11] which can be applied to stabilization problems or control problems.
The first results in this direction are due to Moussaoui [13] and Bey, Lohéac,
and Moussaoui [4] who also have established a Rellich type relation in any
dimension.

In this new case of Neumann feedback deduced from [15], our goal is to
generalize those Rellich relations to get stabilization results about (S) under
assumptions (5), (6).

As well as in [9], we shall prove here two results of uniform boundary
stabilization.
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Exponential boundary stabilization. We here consider the case where
p = 1 in (4). This is satisfied when g is linear,

∃α > 0 : g(s) = αs ∀s ∈ R.

In these cases, the energy function is exponentially decreasing.

Theorem 1. Assume that geometrical conditions (2) and (5) hold and
that the feedback function g satisfies (3) and (4) with p = 1. Under the fur-
ther geometrical assumption (6), there exist C > 0 and T > 0 (independent
of d) such that for all initial data in H, the energy of the solution u satisfies

E(u, t) ≤ E(u, 0) exp
(
1 − d

C
t
)

∀t >
T

d
.

The constants C and T depend only on the geometry.

Rational boundary stabilization. Now we consider the general case and
we get rational boundary stabilization.

Theorem 2. Assume that geometrical conditions (2) and (5) hold and
that the feedback function g satisfies (3) and (4) with p > 1.

Then under the further geometrical assumption (6), there exist C > 0
and T > 0 (independent of d) such that for all initial data in H, the energy
of the solution u of satisfies

E(u, t) ≤ Ct2/(1−p) ∀t >
T

d
,

where C depends on the initial energy E(u, 0).

Remark 2. Taking advantage of the works of Banasiak–Roach [2] who
generalized Grisvard’s results [6] in the piecewise regular case, we will see
that Theorems 1 and 2 remain true in the bi-dimensional case, where as-
sumption (1) is replaced by following:

∂Ω is a curvilinear polygon of class C2, each component of
∂Ω \ Γ is a C2-manifold of dimension 1,

(7)

and condition (6) is replaced by

0 ≤ �x ≤ π ∀x ∈ Γ and if �x = π, then m(x) · τ (x) ≤ 0, (8)

where �x is the angle at the boundary in the point x.

These two results are obtained by estimating some integral of the energy
function as well as in [9]. This specific estimates are obtained thanks to an
adapted Rellich relation.
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2. Rellich relations

2.1. A regular case. We can easily construct a Rellich relation corre-
sponding to the above vector field m when considered functions are suffi-
ciently smooth.

Proposition 3. Assume that Ω is an open set of R
n with boundary of

class C2 in the sense of Nečas. If u belongs to H2(Ω), then

2
∫

Ω

Δu (m · ∇u) dx

= d(n − 2)
∫

Ω

|∇u|2 dx +
∫

∂Ω

(
2∂νu (m · ∇u) − m · ν |∇u|2) dσ.

Proof. Using the Green–Riemann identity, we obtain

2
∫

Ω

Δu(m · ∇u) dx =
∫

∂Ω

2∂νu (m · ∇u) dσ − 2
∫

Ω

∇u.∇(m · ∇u) dx.

So, observing that

∇u · ∇(m · ∇u) =
1
2
m · ∇(|∇u|2) + d|∇u|2 + (A∇u) · ∇u

and since A is skew-symmetric, we obtain

2
∫

Ω

Δu(m · ∇u) dx

=
∫

∂Ω

2∂νu(m · ∇u) dσ − 2d

∫

Ω

|∇u|2 dx −
∫

Ω

m · ∇(|∇u|2) dx.

With another use of the Green–Riemann formula, we obtain the required
result for div(m) = nd.

Now we try to extend this result to the case of an element u belonging
less regular when Ω is sufficiently smooth.

2.2. Bi-dimensional case. We begin by the plane case. It is the simplest
case from the point of view of singularity theory and its understanding dates
from Shamir [17].

Theorem 4. Assume that n = 2. Under geometrical conditions (2) and
(7), let u ∈ H1(Ω) be such that

Δu ∈ L2(Ω), u|∂ΩD
∈ H3/2(∂ΩD), ∂νu|∂ΩN

∈ H1/2(∂ΩN ). (9)
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Then 2∂νu(m·∇u)−m·ν |∇u|2 belongs to L1(∂Ω) and there exist coefficients
(cx)x∈Γ such that

2
∫

Ω

Δu(m · ∇u) dx =
∫

∂Ω

(2∂νu(m · ∇u)

− m · ν |∇u|2) dσ +
π

4

∑

x∈Γ/�x=π

c2
x(m · τ )(x).

Proof. We first begin by some considerations which will also be used in the
general case. It is a classical result that u ∈ H2(ω) for every open domain
ω such that ω � Ω \ Γ. For completeness, we recall the proof.

A trace result shows that there exists uR ∈ H2(ω) such that uR = u on
∂ΩD and ∂νuR = ∂νu on ∂ΩN . Hence, setting f = ΔuR − Δu ∈ L2(Ω), we
see that uS = u − uR satisfies

⎧
⎪⎨

⎪⎩

−ΔuS = f in Ω,

uS = 0 on ∂ΩD,

∂νuS = 0 on ∂ΩN .

(10)

Now, if ω � Ω\Γ∪∂ΩD and ξ is a cut-off function such that ξ = 1 on ω and
supp(ξ) ⊂ Ω, then for suitable g ∈ L2(Ω), uω = uSξ satisfies the Dirichlet
problem

{Δuω = g on Ω,

uω = 0 on ∂Ω,

and using the classical method of difference quotients (see [6]), we conclude
that uω ∈ H2(Ω), hence uS ∈ H2(ω).

Else, if ω � Ω \ Γ ∪ ∂ΩN and ξ is a cut-off function such that ξ = 1 on
ω and supp(ξ) ⊂ Ω, then for a suitable g ∈ L2(Ω), uω = uSξ satisfies the
Neumann problem

{ − Δuω + uω = g, on Ω,

∂νuω = 0, on ∂Ω,

and, using similar argument, we obtain uS ∈ H2(ω).
Let

Ωε =
{

x ∈ Ω
∣
∣
∣ d(x,Γ) > ε

}
.

By the compactness of Ωε, we have u ∈ H2(Ωε). An application of Propo-
sition 3 to our particular situation gives us the following relation:

2
∫

Ωε

Δu(m · ∇u) dx =
∫

∂Ωε

(
2∂νu(m · ∇u) − m · ν |∇u|2

)
dσ,
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and we set ε → 0. Using the derivatives with respect to ν and τ , we obtain

2
∫

Ωε

Δu(m · ∇u) dx

=
∫

∂Ωε

m · ν (
(∂νu)2 − (∂τu)2

)
dσ + 2

∫

∂Ωε

m · τ (∂νu)(∂τu) dσ.

First, since Δu ∈ L2(Ω) and u ∈ H1(Ω), the Lebesgue dominated conver-
gence theorem implies

lim
ε→0

∫

Ωε

Δu(m · ∇u) dx =
∫

Ω

Δu(m · ∇u)dx.

Now we consider work boundary terms. Let us introduce the following
partition of ∂Ωε:

∂̃Ωε = ∂Ωε ∩ ∂Ω, ∂Ω∗
ε = ∂Ωε ∩ Ω

and use the decomposition result due to Banasiak and Roach [2]: every vari-
ational solution of (10) can be represented as the sum of singular functions.
There exist some coefficients (cx)x∈Γ and uR ∈ H2(Ω) such that

u = uR +
∑

x∈Γ

cxUx
S =: uR + uS , (11)

where Ux
S are singular functions which, in some neighborhood of x ∈ Γ, are

defined in local polar coordinates (see Fig. 1) by

Ux
S (r, θ) = ρ(r) rπ/2�x sin

(
π

2�x
θ

)

,

where ρ is a cut-off function.
Using the density of C1(Ω) in H2(Ω), we can assume that uR ∈ C1(Ω).
First, consider boundary terms on ∂̃Ωε. We claim that for some constant

C > 0,
|m · ν| ≤ Cd(·,Γ).

In fact, if x ∈ Ω and x1 ∈ Γ satisfy |x − x1| = d(x,Γ), then we have

m · ν(x) = m(x) · (ν(x) − ν(x1)) + (m(x) − m(x1)) · ν(x1)

observing that m · ν(x1) = 0. Hence, using the fact that ν is a piecewise
C1-function (see Fig. 2), we obtain

|m · ν(x)| ≤
(
‖m‖∞‖ν′‖∞ + 1

)
d(x,Γ).

Now, working in local coordinates, we have

d(x,Γ) |∇u|2 ∈ L∞(∂Ω).
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Hence the Lebesgue theorem implies

lim
ε→0

∫

∂̃Ωε

m · ν (
(∂νu)2 − (∂τu)2

)
dσ =

∫

∂Ω

m · ν (
(∂νu)2 − (∂τu)2

)
dσ.

On the other hand, assumptions (9) give

∂νu/∂ΩN
∈ H1/2(∂ΩN ), ∂τu/∂ΩN

∈ H−1/2(∂ΩN ),

∂νu/∂ΩD
∈ H−1/2(∂ΩD), ∂τu/∂ΩD

∈ H1/2(∂ΩD).

Hence we obtain
∫

∂̃Ωε

m · τ (∂νu)(∂τu) dσ −→
∫

∂Ω

m · τ (∂νu)(∂τu) dσ

as ε → 0. Now we must consider the boundary term on ∂Ω∗
ε, Iε(∇u). It is

a quadratic form with respect to ∇u; using (11), one can decompose it as
follows:

Iε(∇uR) + 2Jε(∇uR,∇uS) + Iε(∇uS),

where Jε is the corresponding bilinear form.
Concerning Iε(∇uR), the regularity of m yields the estimate

|Iε(∇uR)| ≤ C

∫

∂Ω∗
ε

|∇uR|2 dσ.

This term is O(ε) since ∇uR is bounded on Ω.
For the term Iε(∇uS), we first observe that, adjusting the cut-off func-

tions, the supports of ux
S and uy

S are disjoint, provided that x �= y. Hence,
using decomposition (11), we can write

Iε(∇uS) =
∑

x∈Γ

c2
x

∫

Cε(x)

(2∂νux
S(m · ∇ux

S) − m · ν |∇ux
S |2) dσ.

If �x < π, one gets

2∂νux
S(m · ∇ux

S) − m · ν |∇ux
S |2 = O(ε

π
�x

−2)

on Cε(x). Hence, after integrating on Cε(x), we obtain

lim
ε→0

Ix
1 (ε) = 0.

If �x = π, we will need the following identity:

2∂νux
S(m · ∇ux

S) − m · ν |∇ux
S |2 =

1
4ε

(m · τ )(x) on Cε(x).
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x

∂ΩD

ωx

∂ΩN

Fig. 1. Shape of the boundary near an angular point x

One can observe that Cε(x) behaves as a half-circle when ε → 0. Integration
gives

lim
ε→0

∫

Cε(x)

(
2(ν · ∇ux

S)(m · ∇ux
S) − m · ν |∇ux

S |2
)

dσ =
π

4
(m · τ )(x).

ν(x)

τ (x)

∂ΩD∂ΩN

θ

Cε(x)

τ (y)

ν(y)
x

y

Fig. 2. Unit vectors ν(x), τ (x), ν(y) and τ (y) when ∂Ω
is regular at x

Finally, the bilinear term Jε(∇uR,∇uS) can be written entirely
∫

∂Ω∗
ε

∂νuR (m.∇uS) dσ +
∫

∂Ω∗
ε

∂νuS (m.∇uR) dσ−
∫

∂Ω∗
ε

(m ·ν) (∇uR · ∇uS) dσ.
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Using the regularity of m and the Cauchy–Schwarz inequality, we obtain
an estimate of the form

|Jε(∇uR,∇uS)| ≤ C

⎛

⎜
⎝

∫

∂Ω∗
ε

|∇uR|2 dσ

⎞

⎟
⎠

1/2 ⎛

⎜
⎝

∫

∂Ω∗
ε

|∇uS |2 dσ

⎞

⎟
⎠

1/2

.

We have seen that the first term in this inequality vanishes as ε → 0. For
the second term, we now observe that, if ε is sufficiently small, then

∂Ω∗
ε =

⊔

x∈Γ

Cε(x),

where Cε(x) is an arc of circle of radius ε centered at x. Then we can write
∫

∂Ω∗
ε

|∇uS |2 dσ ≤ 2
∑

x,y∈Γ

c2
y

∫

Cε(x)

|∇Uy
S |2 dσ.

A similar calculation shows that, for x ∈ Γ,
∫

Cε(x)

|∇Ux
S |2 dσ = O(1).

Moreover, if x �= y, Uy
S is bounded near x, we obtain

∫

Cε(x)

|∇Uy
S |2 dσ = O(ε).

This completes the proof.

Remark 3. The assumption H1(∂ΩD) > 0 is not necessary in the above
proof. We will now see why we need this assumption on the Dirichlet part
in higher dimension.

2.3. General case. Now we state the result in general dimension.

Theorem 5. Assume that n ≥ 3. Under geometrical conditions (1) and
(2), let u ∈ H1(Ω) be such that

Δu ∈ L2(Ω), u|∂ΩD
∈ H3/2(∂ΩD), ∂νu|∂ΩN

∈ H1/2(∂ΩN ). (12)

Then 2∂νu(m · ∇u) − m · ν |∇u|2 belongs to L1(∂Ω) and there exists ζ ∈
H1/2(Γ) such that

2
∫

Ω

Δu(m · ∇u) dx = d(n − 2)
∫

Ω

|∇u|2 dx

+
∫

∂Ω

(2∂νu(m · ∇u) − m · ν |∇u|2) dσ +
∫

Γ

m.τ |ζ|2 dγ .
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Proof. We will essentially follow [4]. As in the plane case, we set

Ωε = {x ∈ Ω; d(x,Γ) > ε}.
For any given ε > 0, we can apply the identity of Proposition 3:

2
∫

Ωε

Δu(m · ∇u) dx = d(n − 2)
∫

Ωε

|∇u|2 dx

+
∫

∂Ωε

(2∂νu (m · ∇u) − m · ν |∇u|2) dσ,

and we will again analyze the behavior of each term as ε → 0.
First, since Δu ∈ L2(Ω) and u ∈ H1(Ω), the Lebesgue dominated con-

vergence theorem immediately implies

lim
ε→0

∫

Ωε

Δu(m · ∇u) dx =
∫

Ω

Δu(m · ∇u) dx,

lim
ε→0

∫

Ωε

|∇u|2 dx =
∫

Ω

|∇u|2 dx.

Below, we will consider boundary terms. We define ∂̃Ωε = ∂Ωε ∩ ∂Ω and
∂Ω∗

ε = ∂Ωε ∩ Ω (see Fig. 3).

∂Ω∗
ε

Γ

x∗

Cε(x∗)

∂̃Ωε ∩ ∂ΩN

∂̃Ωε ∩ ∂ΩD

Fig. 3. Picture of ∂Ω∗
ε and ∂̃Ωε

Consider boundary integral terms on ∂̃Ωε. As well as in the plane case,
there exists some constant C > 0 such that |m · ν| ≤ C d(·,Γ). Thus, using
the fact that

d(·,Γ)|∇u|2 ∈ L1(∂Ω)



STABILIZATION USING ROTATED MULTIPLIERS 175

(see [4, Proposition 3]), we can apply the Lebesgue theorem to conclude
that ∫

∂̃Ωε

m · ν |∇u|2 dσ →
∫

∂Ω

m · ν |∇u|2 dσ

as ε → 0. For the second integral, denoting by ∇∂Ω the tangential gradient
along ∂Ω, we write

∂νu(m · ∇u) = m · ν |∂νu|2 + ∂νu(m · ∇∂Ωu).

The first term is integrable. The second term is, on ∂ΩN , the product of a
H1/2 term by a H−1/2 one and, on ∂ΩD, the product of a H−1/2 term by a
H1/2 one. Hence, the Lebesgue theorem yields

∫

∂̃Ωε

∂νu(m · ∇u) dσ →
∫

∂Ω

∂νu(m · ∇u) dσ

as ε → 0.
Now let us consider boundary integral terms on ∂Ω∗

ε. We assume that
ε � ε0 and we define

ωε0 := Ω\Ωε0 .

As well as in the plane case, we can write

u = uR + uS , (13)

where uS is the variational solution of some homogeneous mixed boundary
problem and uR belongs to H2(ωε0). Working by approximation if necessary,
we can assume that uR ∈ C1(ωε0). Considering the same quadratic form as
in the bi-dimensional case, this leads to the following splitting

∫

∂Ω∗ε

(
2∂νu(m · ∇u) − m · ν |∇u|2) dσ

= Iε(∇uR) + Iε(∇uS) + 2Jε(∇uR,∇uS).

Since ∇uR ∈ L∞(ωε0) and Hn−1(∂Ω∗
ε) → 0 as ε → 0, the first term Iε(∇uR)

clearly vanishes.
As above, the bilinear term Jε(∇uR,∇uS) is

∫

∂Ω∗
ε

∂νuR(m ·∇uS) dσ +
∫

∂Ω∗
ε

∂νuS(m ·∇uR) dσ−
∫

∂Ω∗
ε

(m ·ν) (∇uR ·∇uS) dσ.

Using the regularity of m and the Cauchy–Schwarz inequality, we obtain
an estimate of the form

|Jε(∇uR,∇uS)| � C

⎛

⎜
⎝

∫

∂Ω∗
ε

|∇uR|2 dσ

⎞

⎟
⎠

1/2 ⎛

⎜
⎝

∫

∂Ω∗
ε

|∇uS |2 dσ

⎞

⎟
⎠

1/2

. (14)
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As above, it is clear that the first term vanishes as ε → 0.
Before analyzing Iε(∇uS), we introduce some notation.
Every x ∈ ∂Ω∗

ε belongs to a unique plane x∗ + 〈τ ∗,ν∗〉 (setting: τ ∗ =
τ (x∗), ν∗ = ν(x∗)) and, more precisely, to an arc-circle Cε(x∗) of radius ε
centered at x∗ ∈ Γ (the figure is similar to Fig. 2 in the plane x∗+〈τ ∗,ν∗〉).
We define

Dε(x∗) := ωε ∩ (x∗ + 〈τ ∗,ν∗〉) .

For any x ∈ Dε0(x
∗), we separate the derivatives of u along the sub-

manifold x − x∗ + Γ with the co-normal derivatives:

∇u(x) = ∇Γu(x)+∇2u(x), ∇Γu(x) ∈ Tx∗Γ, ∇2u(x) ∈ 〈τ ∗,ν∗〉 . (15)

Using methods of difference quotients (see, e.g., [4, Theorem 4]), we obtain
∇Γu ∈ H1(ωε0), i.e., ∇ΓuS ∈ H1(ωε0). We also need the following result
concerning the behavior of boundary integrals.

Lemma 6. Let ε0 > 0. Assume that u is such that u = 0 on ∂ωε0∩∂ΩD,

u(x∗, ·) ∈ H1(Dε0(x
∗)) ∀x∗ ∈ Γ,

and
(
x∗ �→ ‖u(x∗, ·)‖H1(Dε0(x∗))

)
∈ L2(Γ).

Then there exists C > 0, depending only on Ω, such that, for any sufficiently
small ε,

∫

Γ

‖u(x∗, ·)‖2
L2(Cε(x∗)) dγ(x∗) ≤ Cε

∫

Γ

‖u(x∗, ·)‖2
H1(Dε(x∗)) dγ(x∗).

Proof. We begin by changing coordinates as well as in [4]. For every x∗
0 ∈ Γ,

there exist ρ0 > 0 and a C2-diffeomorphism Θ from an open neighborhood
W of x∗

0 to B(ρ0) := Bn−2(ρ0) × B2(ρ0) (see Fig. 5) such that

Θ(x∗
0) = 0,

Θ(W ∩ Ω) = {y ∈ B(ρ0) | yn > 0},
Θ(W ∩ ∂ΩD) = {y ∈ B(ρ0) | yn−1 > 0, yn = 0},
Θ(W ∩ ∂ΩN ) = {y ∈ B(ρ0) | yn−1 < 0, yn = 0},

Θ(W ∩ Γ) = {y ∈ B(ρ0) | yn−1 = 0, yn = 0} := γ(ρ0).

Reducing ε0 if necessary, we may assume that Dε0(x
∗
0) ⊂ W . Then we

obtain, writing for x ∈ W , Θ(x) = (Y, ỹ) ∈ R
n−2 × R

2, and v := u ◦ Θ−1,
∫

W∩Γ

∫

Cε(x∗)

u2 d� dγ(x∗) =
∫

γ(ρ0)

∫

Θ(Cε(x∗))

v2 d�(ỹ) dY.
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W

∂WD∂WN

Fig. 4. The set W

Setting

B+
2 (ρ) := {ỹ = (yn−1, yn) ∈ B2(ρ) | yn > 0},

C+
2 (ρ) := {ỹ = (yn−1, yn) ∈ ∂B2(ρ) | yn > 0},

we first observe that we can choose ρx∗ such that

{Y } × B+
2 (ρ) ⊂ Θ(Dε(x∗)).

Hence denoting by π2 the projection on {0Rn−2}×R
2, the change of variables

π2(Θ(Cε(x∗))) → C+
2 (ρ), ỹ �→ z = ρ

ỹ

|ỹ|
gives the estimate

∫

Θ(Cε(x∗))

v(Y, ỹ)2 d�(ỹ) ≤ C

∫

C+
2 (ρ)

v(Y, z)2 d�(z) (16)

for a constant C depending only on x∗
0.

Now we estimate this latter integral in terms of ‖∇2v‖L2({y′}×B+
2 (ρ)).

Setting vρ(ỹ) := v(Y, ỹ), we obtain ∇vρ ∈ L2(B+
2 (1)) and

‖∇vρ‖L2(B+
2 (1)) = ‖∇2v‖L2({y′}×B+

2 (ρ)),

‖vρ‖L2(C+
2 (1)) = ρ−

1
2 ‖v‖L2({y′}×C+

2 (ρ)).

Observing that vρ = 0 on B++
2 (1) := {(yn−1, yn) ∈ B+

2 (1) | yn > 0}, the
trace theorem and the Poincaré inequality yield, for some universal constant
C > 0, the estimate

∫

C+
2 (ρ)

v2(y′, ỹ) d�(ỹ) ≤ Cρ‖∇2v‖2
L2({Y }×B+

2 (ρ))
.
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Hence, owing to (16), we have
∫

Θ(Cε(x∗))

v2(Y, ỹ) d�(ỹ) ≤ Cρx∗‖∇2v‖2
L2({Y }×B+

2 (ρx∗ ))
.

x∗ ∂ΩD

O

Ω

Θ(x∗, .)

∂ΩN

ν(x∗)

Fig. 5. The C2-diffeomorphism Θ(x∗, ·) in the plane x∗ + 〈τ ∗,ν∗〉

Observing that ρx∗ is O(ε) uniformly on W ∩ Γ and the diffeomorphism
Θ(x∗, .) (see Fig. 6), we can conclude that, for some constant Cx∗

0
depending

only on x∗
0,

∫

Θ(Cε(x∗))

v2(Y, ỹ) d�(ỹ) ≤ Cx∗
0
ε‖u(x∗, ·)‖2

H1(Θ−1({Y }×B+
2 (ρ)))

≤ Cx∗
0
ε‖u(x∗, ·)‖2

H1(Dε(x∗)).

Hence, after an integration on W ∩ Γ,
∫

W∩Γ

∫

Cε(x∗)

u2 d� dγ(x∗) ≤ Cx∗
0
ε

∫

W∩Γ

‖u(x∗, ·)‖2
H1(Dε(x∗)) dγ(x∗).

Finally, we complete the proof by using a partition of unity on the open
sets (Wx∗

0
)x∗

0∈Γ. Lemma 6 is proved.

Let us come back to our problem. Using (15) for uS , by the Pythagoras
theorem we have

∫

∂Ω∗
ε

|∇uS |2 dσ =
∫

∂Ω∗
ε

|∇ΓuS |2 dσ +
∫

∂Ω∗
ε

|∇2uS |2 dσ.

Applying Lemma 6 to ∇ΓuS , we obtain that the first term vanishes as ε → 0.
As well as in the bi-dimensional case, we will see that the second term above
is bounded, using more information on uS .

Owing to [4, Theorem 4] and the Borel–Lebesgue theorem, we can write

uS(x) = η(x∗)US(x − x∗) := η(x∗)Ux∗
S (x) on ωε0 , (17)
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where US is locally diffeomorphic to the Shamir function and η ∈ H1/2(Γ).
We then have, owing to the Fubini theorem,

∫

∂Ω∗
ε

|∇2uS |2 dσ =
∫

Γ

η(x∗)2
∫

Cε(x∗)

|∇2U
x∗
S |2 d� dγ(x∗),

and, as well as in the bi-dimensional case, we show that this term is bounded
by O(1) ‖η‖2

L2(Γ). Now we have proved that the second term in (14) is
bounded, that is

Jε(∇uR) → 0 as ε → 0.

To treat the last term Iε(∇uS), we use similar tools. Splitting (13) for
uS gives us

Iε(∇uS) = Iε(∇2uS) + Iε(∇ΓuS) + 2Jε(∇2uS ,∇ΓuS).

As above, the term Iε(∇ΓuS) is estimated by
∫

∂Ω∗
ε

|∇ΓuS |2 dσ.

It then vanishes as ε → 0.
The bilinear term is estimated by

⎛

⎜
⎝

∫

∂Ω∗
ε

|∇2uS |2 dσ

⎞

⎟
⎠

1/2 ⎛

⎜
⎝

∫

∂Ω∗
ε

|∇ΓuS |2 dσ

⎞

⎟
⎠

1/2

;

it then tends to zero since the first term is bounded and the second one
vanishes as ε → 0.

For the last term Iε(∇2uS), we use (17) and the Fubini theorem and have
∫

Γ

η(x∗)2
∫

Cε

(
(x∗)2(ν · ∇2U

x∗
S )(m · ∇2U

x∗
S ) − m · ν |∇2U

x∗
S |2

)
d� dγ(x∗).

First, we work in the plane x∗ + 〈τ ∗,−ν∗〉 and, as above, we obtain

lim
ε→0

∫

Cε(x∗)

(2(ν ·∇2U
x∗
S )(m ·∇2U

x∗
S )−m ·ν |∇2U

x∗
S |2) d� =

π

4
m(x∗) ·τ (x∗).

Moreover, for any ε > 0, this integral term on Cε(x∗) is dominated by
π

2
‖m‖∞ ∈ L1(Γ). So, the dominated convergence theorem can be applied

and, finally,

lim
ε→0

Iε(∇2uS) =
π

4

∫

Γ

η2m · τ dγ.

The proof is now complete with ζ =
√

π

2
η.
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Now we apply the Rellich relation to the stabilization of solutions of (S).

3. Proof of linear and nonlinear stabilization

We begin by writing the following consequence of Sec. 2.

Corollary 7. Assume that t �→ (u(t), u′(t)) is a strong solution of (S)
and that the geometrical additional assumption (5) if n ≥ 3 or (6) if n = 2
holds. Then for every time t, u(t) satisfies

2
∫

Ω

Δu(m · ∇u) dx

≤ d(n − 2)
∫

Ω

|∇u|2 dx +
∫

∂Ω

(2∂νu (m · ∇u) − m · ν |∇u|2) dσ.

Proof. Indeed, under theses hypotheses, for each time t, (u(t), u′(t)) ∈
D(W) so that u(t) satisfies (9) or (12). The corollary is then an appli-
cation of Theorem 4 or 5.

We will be able to prove Theorems 1 and 2 showing that, for α = (p−1)/2,
one can apply the following result (see [9]).

Proposition 8. Let E : R+ → R+ be a nonincreasing function such that
there exists α ≥ 0 and C > 0 such that

∞∫

t

Eα+1(s) ds ≤ CE(t) ∀t ≥ 0.

Then, setting T = CEα(0), we have

if α = 0, ∀t ≥ T, E(t) ≤ E(0) exp
(

1 − t

T

)

,

if α > 0, ∀t ≥ T, E(t) ≤ E(0)
(

T + αT

T + αt

)1/α

.

We come back to our proof now.

Proof. Following [5, 9], we prove the estimates for (u0, u1) ∈ D(W), which,
using the density of the domain, will be sufficient to obtain get the result
for all solutions. Setting Mu = 2m ·∇u+d(n− 1)u, we prove the following
result.
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Lemma 9. For any 0 ≤ S < T < ∞, we have

2d

T∫

S

E
p+1
2 dt

≤ −
⎡

⎣E
p−1
2

∫

Ω

u′Mu dx

⎤

⎦

T

S

+
p − 1

2

T∫

S

E
p−3
2 E′

∫

Ω

u′Mu dx dt

+

T∫

S

E
p−1
2

∫

∂ΩN

m · ν (
(u′)2 − |∇u|2 − g(u′)Mu

)
dσ dt.

Proof. Using the fact that u satisfies (S) and observing that u′′Mu =
(u′Mu)′ − u′Mu′, integration by parts gives

0 =

T∫

S

E
p−1
2

∫

Ω

(u′′ − Δu)Mu dx dt

=

⎡

⎣E
p−1
2

∫

Ω

u′Mu dx

⎤

⎦

T

S

− p − 1
2

T∫

S

E
p−3
2 E′

∫

Ω

u′Mu dx dt

−
T∫

S

E
p−1
2

∫

Ω

(u′Mu′ + ΔuMu) dx dt.

Corollary 7 now yields
∫

Ω

Δu Mu dx ≤ d(n − 1)
∫

Ω

Δu u dx + d(n − 2)
∫

Ω

|∇u|2 dx

+
∫

∂Ω

(2∂νu (m · ∇u) − m · ν |∇u|2) dσ.

Hence, the Green–Riemann formula leads to
∫

Ω

Δu Mu dx ≤ −d

∫

Ω

|∇u|2 dx +
∫

∂Ω

(∂νu Mu − m · ν |∇u|2) dσ.

Using the boundary conditions and the fact that ∇u = ∂νu ν on ∂ΩD, we
obtain

∫

Ω

Δu Mu dx ≤ −d

∫

Ω

|∇u|2 dx −
∫

∂ΩN

m · ν (
g(u′)Mu + |∇u|2) dσ.
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On the other hand, using div(m) = nd, another use of the Green formula
yields

∫

Ω

u′ Mu′ dx = −d

∫

Ω

|u′|2 dx +
∫

∂ΩN

m.ν |u′|2 dσ.

Coming back to our problem, the Young inequality gives
∣
∣
∣
∣
∣
∣

∫

Ω

u′ Mu dx

∣
∣
∣
∣
∣
∣
≤ CE(t).

Lemma 9 shows that

2d

T∫

S

E
p+1
2 dt ≤ C

(
E

p+1
2 (T ) + E

p+1
2 (S)

)
+ C

T∫

S

E
p−1
2 E′ dt

+

T∫

S

E
p−1
2

∫

∂ΩN

m · ν (|u′|2 − |∇u|2 − g(u′)Mu
)
dσ dt.

For simplicity, let dσm = m · ν dσ. Observing that

E′(t) = −
∫

∂ΩN

g(u′)u′ dσm ≤ 0,

we obtain, for a constant C > 0 independent of E(0) if p = 1,

2d

T∫

S

E
p+1
2 dt ≤ CE(S) +

T∫

S

E
p−1
2

∫

∂ΩN

(|u′|2 − |∇u|2 − g(u′)Mu
)
dσm dt.

Using the definition of Mu and the Young inequality, we obtain, for any
ε > 0,

2d

T∫

S

E
p+1
2 dt ≤ CE(S)

+

T∫

S

E
p−1
2

∫

∂ΩN

(

|u′|2 +
(

‖m‖2
∞ +

d2(n − 1)2

4ε

)

g(u′)2 + εu2

)

dσm dt.

Now, using the Poincaré inequality, we can choose ε > 0 such that

ε

∫

∂ΩN

m · ν u2 dσ ≤ d

2

∫

Ω

|∇u|2 dx ≤ dE.
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We conclude

d

T∫

S

E
p+1
2 dt ≤ CE(S) + C

T∫

S

E
p−1
2

∫

∂ΩN

(
(u′)2 + g(u′)2

)
dσm dt.

We split ∂ΩN to bound the last term of the above estimate

∂Ω1
N = {x ∈ ∂ΩN ; |u′(x)| > 1}, ∂Ω2

N = {x ∈ ∂ΩN ; |u′(x)| ≤ 1}.
Using (3) and (4), we obtain

T∫

S

E
p−1
2

∫

∂Ω1
N

(|u′|2 + g(u′)2
)

dσm dt

≤ C

T∫

S

E
p−1
2

∫

∂ΩN

u′g(u′) dσm dt ≤ CE(S),

where C neither depend on E(0) if p = 1.
On the other hand, using (3) and (4), the Jensen inequality, and the

boundedness of m, we successively obtain
∫

∂Ω2
N

(
(u′)2 + g(u′)2

)
dσm ≤ C

∫

∂Ω2
N

(u′g(u′))2/(p+1) dσm

≤ C

⎛

⎜
⎝

∫

∂Ω2
N

u′g(u′) dσm

⎞

⎟
⎠

2
p+1

≤ C(−E′)
2

p+1 .

Hence, using the Young inequality again, we obtain for every ε > 0

T∫

S

E
p−1
2

∫

∂Ω2
N

(
(u′)2 + g(u′)2

)
dσm dt ≤

T∫

S

(εE
p+1
2 − C(ε)E′) dt

≤ ε

T∫

S

E
p+1
2 dt + C(ε)E(S).

Finally, we obtain, for some C(ε) and C independent of E(0) if p = 1,

d

T∫

S

E
p+1
2 dt ≤ C(ε)E(S) + εC

T∫

S

E
p+1
2 dt.

Now choosing εC ≤ d/2, Theorems 1 and 2 follow from Proposition 8.



184 P. CORNILLEAU, J.-P. LOHÉAC, and A. OSSES

4. Examples and numerical results

4.1. Examples. We consider the case where Ω is a plane convex polygonal
domain. The normal unit vector pointing outward of Ω is piecewise constant
and the nature of boundary conditions involved by the multiplier method
can be determined on each edge, independently of other edges.

Along each edge, vector ν is constant and the boundary conditions are
defined by the sign of

m(x) · ν(x) = (Rθ(x − x0)) · ν(x) = (x − x0) · R−θ(ν(x)).

Hence we construct ν, R−θ(ν), and we can determine the sign of above
coefficient with respect to the position of x0. To this end, we construct
two straight lines, orthogonal with respect to R−θ(ν) so that each of them
contains one vertex of the considered edge. This determines a belt and if
x0 belongs to this belt, we obtained mixed boundary conditions along this
edge, if x0 does not belong to this belt, then we get Dirichlet or Neumann
boundary conditions along whole the edge (see Fig. 6).

ν

θ
R−θ(ν)

NN DD

Fig. 6. Boundary conditions along some edge depending
on the position of x0

Performing this method for a square, Ω = (0, 1)2, we show in Fig. 7
the different cases of boundary conditions depending on the position of x0.
Three main cases are considered:

1. 0 < θ < π/4: above belts controlling opposite edges have a nonempty
intersection, which is a belt of positive thickness,

2. θ = π/4: this intersection is a straight line,
3. π/4 < θ < π/2: the intersection is empty.

The case where θ is negative can be easily deduced by symmetry.
In the three above cases, there are four angular sectors (shaded areas in

Fig. 7) such that if x0 belongs to one of them, then geometrical condition
(6) is satisfied.

4.2. Numerical results. We perform numerical experiments by consider-
ing the following case:

Ω = (0, 1)2, ∂ΩD =
({0} × [

0, 1/2
]) ∪ ([

0, 1
]× {0}), ∂ΩN = ∂Ω \ ∂ΩD,
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Fig. 7. Shape of boundary data with respect to x0

(cases 1, 2, and 3)

and using above vector field

m(x) = Rθ(x − x0).

We only consider the case of a linear feedback. The problem is as follows:
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

u′′ − Δu = 0 in Ω × R
∗
+,

u = 0 on ∂ΩD × R
∗
+,

∂νu = −m · ν u′ on ∂ΩN × R
∗
+,

u(0) = u0 in Ω,

u
′
(0) = u1 in Ω.

We will investigate the cases where θ varies in [0, arctan(2)]. A particular
case is given in Fig. 8.

Our aim is to study numerically the variations of the speed of stabilization
with respect to the position of x0 and the value of θ. To this end, we have
constructed a finite differences scheme (in the space). This leads to a linear
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Ω
∂ΩN

θ

Dθ
∂ΩD

b

c

a

d

α

Fig. 8. When x0 belongs to Dθ, geometrical condition (6)
is satisfied at α

second order differential equation

U ′′ + BU ′ + KU = 0, (18)

where B is the feedback matrix and −K is the discretized Laplace operator.
Let us define V = K1/2U . The above differential equation can be rewrit-

ten as follows:
(

V
U ′

)′
=

(
0 K1/2

−K1/2 −B

)(
V
U ′

)

and the energy function can be approximated by
1
2
(〈U,KU〉 + ‖U ′‖2) =

1
2
(‖V ‖2 + ‖U ′‖2).

The decreasing rate is given by the highest eigenvalue of above matrix.
The results of our computations are shown in Fig. 9, where we constructed
the decreasing rate as a function depending on θ and the position of x0

represented by the abscissa λ along Dθ.
It can be observed that in this case, the decreasing rate is increasing with

θ and the best position for x0 is the origin of half-line Dθ.
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8. L. F. Ho, Observabilité frontière de l’équation des ondes. C. R. Acad.
Sci. Paris, Sér. I Math. 302 (1986), 443-446.

9. V. Komornik, Exact controllability and stabilization. The multiplier
method. Masson–John Wiley, Paris (1994).

10. V. Komornik and E. Zuazua, A direct method for the boundary stabi-
lization of the wave equation. J. Math. Pures Appl. 69 (1990), 33–54.

11. V. A. Kozlov, V. G. Maz’ya, and J. Rossmann, Elliptic boundary-value
problems in domains with point singularities. Amer. Math. Soc., Prov-
idence (1997).
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Masson, Paris (1967).

15. A. Osses, A rotated multiplier applied to the controllability of waves,
elasticity and tangential Stokes control. SIAM J. Control Optim. 40
(2001), No. 3, 777–800.

16. F. Rellich, Darstellung der Eigenwerte von Δu + λu durch ein Randin-
tegral. Math. Z. 46 (1940), 635–636.

17. E. Shamir, Regularity of mixed second order elliptic problems. Isr.
Math. J. 6 (1968), 150–168.

(Received August 03 2008)

Authors’ addresses:
P. Cornilleau
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