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A Note on Non-Simultaneous Blow-up for aDrift-Di�usion ModelE. E. Espejo Arenas�, A. Stevensy, J. J. L. Vel�azquezz.February 18, 2009AbstractIn this paper we consider a drift-di�usion model of parabolic-elliptic type, with three coupled equations. We prove that there existparameter regimes for which non-simultaneous blow-up of solutionshappens. This is in contrast to a two-chemotactic species model, cou-pled to an elliptic equation for an attractive chemical produced by thetwo species, where blow-up of one species implies blow-up of the otherone at the same time. Also, we show that the range of parameters ofthe drift-di�usion model in this paper, for which blow-up happens, islarger than suggested by previous results in the literature.1 IntroductionIn this paper we consider the drift-di�usion model discussed in [3], namely8>><>>: @tu1 ��u1 +r � (u1r ) = 0, t > 0, x 2 R2@tu2 ��u2 �r � (u2r ) = 0, t > 0, x 2 R2�� = �(u2 � u1) ; x 2 R2u1(0; x) = u1;0(x) � 0; u2(0; x) = u2;0(x) � 0, x 2 R2 ; (1)�Institute for Cell Dynamics and Biotechnology (ICDB), Universidad de Chile, Facultadde Ciencias Fisicas y Matem�aticas, Beauchef 861-Santiago-Chile (eespejo@ing.uchile.cl).yUniversit�at Heidelberg, Angewandte Mathematik und BioQuant, INF 267, D-69120Heidelberg, Germany (angela.stevens@uni-hd.de).zICMAT (CSIC-UAM-UC3M-UCM) Facultad de Ciencias Matem�aticas, UniversidadComplutense Madrid 28040, Spain (velazque@mat.ucm.es)1



where u1;0; u2;0 are not identically zero.This system can be interpreted as a two species system for chemotaxis likemotion, where the species u1 is moving towards higher concentrations of achemical  and at the same time produces  , whereas the species u2 is movingtowards lower concentrations of  and degrades  . The third equation thendescribes the dynamics of the chemical  , under the assumption that its basalconcentration is much larger than the changes of its concentration inducedby u1 and u2.Normally, the dynamics of the attractive and repelling chemical would bedescribed by " t = � + u1 � u2 :Let  0 denote the basal concentration of the chemical, then =  0 + � ; where � <<  0 :Thus "�t = ��+ u1 � u2 0 + h:o:t: :By rescaling we obtain �� + u1 � u2 = 0 ;and the coe�cients in the �rst two equations also change.The model setup as given in [3] uses very particular parameters. Never-theless, several speci�c qualitative features of the model can be shown. Sowe will stick to the given parameters for purely mathematical reasons. Morecomplex multicomponent systems for chemotaxis for a variety of parametershave been considered by Wolansky in [6], where generalized conditions forthe existence of global solutions were given.Here we focus on the model analyzed in [3]. Kurokiba and Ogawa provedlocal well posedness for system (1) and the existence of blow-up in caseu1;0; u2;0 2 L2s(R2) := �f 2 L1loc(R2); (1 + jxj2)s=2f(x) 2 L2(R2)	 ; with s > 1and �RR2(u1;0 � u2;0)dx�2RR2(u1;0 + u2;0)dx > 8� :More precisely, they obtained the following result.2



Theorem 1 (Theorem 1.1 and Proposition 1.2 in [3]) For any s > 1,let (u1;0; u2;0) 2 L2s(R2)� L2s(R2) :Then there exist T = T (ku1;0kL2s ; ku2;0kL2s) > 0 and a unique solution (u1; u2)of (1) with initial data (u1;0; u2;0) such thatu1; u2 2 C([0; T ) ;L2s(R2)) \ C((0; T );C2(R2)). Furthermore, the solutiondepends continuously on the initial data; and, in case the maximal time ofexistence of the solution is �nite, i.e., Tmax <1, thenku1(t)kL2s(R2) + ku2(t)kL2s(R2) !1; as t! Tmax :Additionally, if the initial data of (1) satisfy u1(0; x) � 0, u2(0; x) � 0, thenfor any solution (u1; u2) 2 C([0; T ) ;C2(R2))� C([0; T ) ;C2(R2)), we haveu1(t; x) � 0; u2(t; x) � 0 :Finally, if u1;0 , u2;0 2 L1(R2), thenku1(t)k1 = ku1;0k1 ; ku2(t)k1 = ku2;0k1 :The next result shows blow-up in �nite time.Theorem 2 (Theorem 1.5 in [3]) Let s > 1 and u1;0; u2;0 2 L2s(R2) withu1;0, u2;0 � 0 everywhere and let�RR2(u1;0 � u2;0)dx�2RR2(u1;0 + u2;0)dx > 8� : (2)Then the solution of (1) blows up in �nite time, i.e.lim supt!T� �ku1(t; �)kL1(R2) + ku2(t; �)kL1(R2)� = +1 :In this paper we will prove in Section 2 that it is possible to have �nitetime blow-up for one species and no blow-up at that same time for the otherspecies. This di�ers from the situation in the two chemotactic species modelconsidered in [1], where both species are attracted towards the chemical.This behavior is described by two classical Keller-Segel equations for the3



chemotactic species and an elliptic equation for the attractive chemical. Inthat model, if blow-up happens for one species, the other species is blowingup too at the same time.In Section 3 we prove that blow-up is also possible for some initial data,when inequality (2) is not satis�ed, even if the di�erence between the initialdata is very small.2 Existence of Non-Simultaneous Blow-upWe mainly consider the radial symmetric situation. Therefore it is conve-nient to reformulate the problem by introducing the mass functions M1;M2.This allows us to reduce the number of equations of our problem.Notation: We de�neM1(t; r) = ZB(0;r) u1dx ; M2(t; r) = ZB(0;r) u2dx ;thus M2(t; r) = 2� Z r0 u1�d� ; M2(t; r) = 2� Z r0 u2�d� :Let �1 = M1(t;1) ; �2 = M2(t;1) : (3)In terms of M1 and M2 system (1) is equivalent to� @tM1 = r @@r �1r @M1@r �� M2�M12�r @M1@r@tM2 = r @@r �1r @M2@r �+ M2�M12�r @M2@r : (4)In the following theorem we give su�cient conditions to guarantee uni-form boundedness for u2 as long as it is de�ned.Theorem 3 (Conditions for the boundedness of u2) Suppose that theinitial data of (1) satisfy u1(0; r) � u2(0; r) ;then for any u1; u2 2 C([0; T ] ;L2s(R2)) \ C([0; T ] ;C2(R2)) there exists aconstant C such that u2(t; r) � C. 4



Proof. Let v(t; x) = u1(t; x) + u2(t; x)w(t; x) = u1(t; x)� u2(t; x) :Then @tv ��v +r(wr ) = 0; t > 0, x 2 R2@tw ��w +r(vr ) = 0; t > 0, x 2 R2�� = w; x 2 R2v(0; x) = u1;0(x) + u2;0(x) ; w(0; x) = u1;0(x)� u2;0(x) ;and in polar coordinates we obtain@tv � 1r @@r (r@v@r ) + 1r @@r �wr@ @r � = 0@tw � 1r @@r (r@w@r ) + 1r @@r �vr@ @r � = 0�1r @@r (r@ @r ) = w :Integrating over (0; r), de�ning S := R r0 v� d�, R := R r0 w� d�, and using thatv = 1r @@r R r0 v� d� = 1r @S@r and w = 1r @@r R r0 w� d� = 1r @R@r , we get@tS � r @@r �1r @S@r �+ @R@r @ @r = 0@tR � r @@r �1r @R@r � + @S@r @ @r = 0r@ @r = �R :Or equivalently @tS � r @@r �1r @S@r �� 1r @R@r R = 0@tR� r @@r �1r @R@r �� 1r @S@r R = 0 :5



By assumption we have R(0; r) � 0 and R(t; 0) = 0. By the maximumprinciple it follows that R(t; r) � 0. Using thatR(t; r) = Z r0 w� d� = Z r0 (u1 � u2) � d�= 12� �ZB(0;r) u1� d�� ZB(0;r) u2� d�� = 12� (M1 �M2) ;we conclude that M1 �M2 : (5)From (4) and (5) it follows that,@tM2 � r @@r �1r @M2@r � : (6)Since u2;0 is bounded by some constant C, we haveM2(0; r) = 12� ZB(0;r) u2;0� d� � 12�C ZB(0;r) u1;0� d� = Cr2 :Introducing the transformationM(t; r) = M2(t; r)� Cr2 ; (7)it follows from (6) that@tM � r @@r �1r @M@r �M(0; r) � 0 ; M(t; 0) = 0 ; M(t; R) � 0 ;or equivalently @tM � @2M@r2 � 1r @M@rM(0; r) � 0 ; M(t; 0) = 0 ; M(t; R) � 0 :Thus the maximum principle yieldsM(t; r) = M2(t; r)� Cr2 � 06



and we get that M2(t; r) = 2� R r0 u2� d� � Cr2. Using regularity theoryfor parabolic equations as in [1], Lemma 6, we then obtain the bound u2 =1r @M2@r � C, for a suitable constant C > 0.One of the main results of our paper now follows from Theorem 2 andTheorem 3 as a corrolary.Corollary 4 Suppose for system (1) and any s > 1, that (u1;0; u2;0) 2L2s(R2)� L2s(R2) with u1;0 � u2;0. Let�RR2 u1;0 � u2;0dx�2RR2(u1;0 + u2;0)dx > 8� :Let u1; u2 2 C([0; T ];L2s(R2)) \ C([0; T ];C2(R2)) Then �nite time blow-uphappens for u1, and u2 is still bounded until that time.The above given inequality could even be replaced by a weaker condition.But this needs knowledge about another theorem, which is formulated at alater stage in this paper.3 Blow-up ResultsTheorem 5 For any " > 0; there exist initial data u1;0; u2;0 satisfying theassumptions of Theorem 1, as well asu1;0(r) = 2(8� + ")(r2 + �0)2 ; u2;0(r) � 16�(r2 + 1)2 ;such that the corresponding solution (u1; u2) develops a singularity for T <1.Proof. Assume that M1; M2 are de�ned as in (3). Consider a familyof initial data u�01;0; u�02;0 to be speci�ed later, and denote the correspond-ing solutions by u�01 ; u�02 . Further assume that the corresponding functionsM�01;0; M�02;0 satisfy M�01;0 (r) � 9� ; (8)M�02;0 (r) � 8�r2r2 + 1 :7



Arguing by comparison with the stationary solutionMs (r) = 8�r2r2 + 1and using @tM2 � r @@r �1r @M2@r � + M22�r @M2@rit follows that M�02 (r; t) � 8�r2r2 + 1 ; (9)as long as the solution of (1) is de�ned. Notice that this inequality holdsindependently of the choice of M�01;0. On the other hand, due to assumption(8), the maximum principle impliesM�01 (r; t) � 9� :Therefore, using regularity theory as well as the rescaling argument in [1], itfollows that u�02 = 12�r @M�02@r � Cfor a constant C, which is independent of �0 and as long as the solution isde�ned.Let us consider a family of initial data having the formM�01;0 (r) = (8� + ") r2r2 + �0 ; (10)where �0 > 0 will be speci�ed later. It only remains to show, that thecorresponding solution blows-up in �nite time. To do this, an adaptationof the subsolution method in [2] is used. It follows from (9) and from theequation for M1 in (4) that@tM1 � r @@r �1r @M1@r �+ M12�r @M1@r � 4rr2 + 1 @M1@r : (11)8



In order to prove the formation of a singularity for (11) it is thus enough toobtain a subsolution for (10), (11), which blows up in �nite time. We lookfor a subsolution of (11) of the formM (r; t) = (8� + "� � (t)) r2r2 + � (t)with � (t) and �(t) to be prescribed later. Notice that after some calculationswe obtain@tM � r @@r �1r @M@r �� M12�r @M@r + 4rr2 + 1 @M@r= �(8� + "� � (t)) r2(r2 + � (t))2 � _� (r2 + � (t))(8� + "� � (t)) + _�+ ("� � (t))� (t)� (r2 + � (t)) � 8� (t)r2 + 1�� �(8� + "� � (t)) r2(r2 + � (t))2 � _� (r2 + � (t))(8� + ") + _�+ "� (t)2� (r2 + � (t)) � 8� (t)� ;if we assume that "�� (t) > "2 ; � (t) > 0. Suppose now that _� = � "4�p� (t),with �(0) = �0. Then, for r2 �p� (t) we obtain_� (r2 + � (t))(8� + ") + _�+ "� (t)2� (r2 + � (t)) � 8� (t)� _�� (t)(8� + ") � "4�p� (t) + "p� (t)4� � 8� (t) > 0if _� is su�ciently large ( _� � 80� is enough). On the other hand, if r2 �p� (t) we obtain_� (r2 + � (t))(8� + ") + _�+ "2 � (t)� (r2 + � (t)) � 8� (t)� _�p� (t)(8� + ") � "4�p� (t) + 0� 8� (t) > 0assuming that � (t) is su�ciently small, i.e. �0 is su�ciently small, and _� issu�ciently large (again _� � 80� is enough, if " is small).For �xed " > 0 then choosing �0 su�ciently small, we obtain a subsolutionforM1 developing a singularity at a time t, which is of order �20" . In particular,j� (t)� � (0)j � 80��20" , and 80��20" < "2 if �0 is small. This provides the desired9



subsolution for M1 and implies the formation of a singularity in �nite timefor u1:The proof of Theorem 5 shows that blow-up for solutions of (1) is possible,even if the di�erence of masses for the species u1, u2 is arbitrarily small. Moreprecisely, we have RR2 u1;0 dx = 8�+". Now choosing u2;0 = 16�(r2+1)2 , we obtainthat RR2 u2;0 dx = 8�. Therefore�RR2(u1;0 � u2;0)dx�2RR2(u1;0 + u2;0)dxcan be arbitrarily small, and still blow-up happens. Further, our Theoremprovides su�cient conditions for blow-up. However, these are very depen-dent on the speci�c form of the initial data.Now we derive some su�cient conditions for blow-up of solutions of sys-tem (1), that only depend on the masses of the two species involved. So weprove blow-up for a di�erent class of initial data.Theorem 6 (Blow-up for u2) Consider system (1), where the initial datau1;0; u2;0 2 C10 (R2) are radially symmetric, smooth and have compact sup-port. Let �1; �2 be given as in (3). If�2 > 8� + 2�1 ;we have Tmax < 1, where Tmax is the maximal time of existence of thevariable u2.Proof. To prove this result we follow some of the techniques given in [5].In the following arguments we will assume for the moment that all occurringintegrals are well de�ned. At the end of the proof we will check this in detail.Multiplying the second equation of (1) by jxj2 and integrating the result-ing relation over R2 we obtain@t ZR2 u2 jxj2 dx = ZR2 jxj2�u2dx + ZR2 jxj2r � (u2r )dx: (12)
10



From Green's identity we get@t ZR2 u2 jxj2 dx = ZR2 �� jxj2�u2dx� Z@R2 u2r jxj2 � dS+ ZR2 jxj2r � (u2r )dx� 4 ZR2 u2dx� ZR2 r jxj2 � (u2r )dx= 4 ZR2 u2dx� 2 ZR2 u2(x � r )dx:Using @ @r = M2�M12�r and the identity x � r = r @ @r we getZR2 u2(x � r )dx = 2� Z 10 u2r@ @r r dr= 2� Z 10 u2�M2 �M12� � r dr= � Z 10 M1u2r dr + 12� Z 10 M2@M2@r dr� ��1 Z 10 u2r dr + 14� Z 10 @M22@r dr= � 12��1�2 + 14��22:Let m(t) = RR2 u2 jxj2 dx. From (12) it follows thatddtm(t) � 4�2 � 2�� 12��1�2 + 14��22� = 12��2(8� + 2�1 � �2) :Since �2 > 8� + 2�1, we obtain0 � m(t) < m(0) + 12��2(8� + 2�1 � �2)t :Thus there exists a T0 2 (0;1) such thatm(t)! 0 as t! T0:Therefore Tmax � T0 <1. 11



It only remains to prove, that u1; u2 and their derivatives decay su�cientlyfast. Since we have assumed compact support for the initial data this followseasily. Let  1 =M1 � ZR2 u1;0 dx ;  2 =M2 � ZR2 u2;0 dx :Then @t 1 = r @@r �1r @ 1@r �� M1 �M2r @ 1@r ; (13)@t 2 = r @@r �1r @ 2@r � + M1 �M2r @ 2@r : (14)So, due to the boundedness of M1; M2 we obtain that@t 1 � @2 1@r2 + C@ 1@r and@t 2 � @2 2@r2 + C@ 2@r for r � 1 :By comparison with the fundamental solution of the heat equation with aconstant convective term it follows thatj 1j+ j 2j � Ce��(T )r2 for r � 1 ; 0 � t � T ; and some �(t) > 0 :Using regularity estimates for (13), (14) in the set fL � r � L+ 1 ; 0 � t � Tgwe then obtain����@` 1@r` ����+ ����@` 2@r` ���� � Cle�a(T )r2 for r � 2 ; 0 � t � T ;where a(T ) in general is di�erent from �(T ) for any ` = 1; 2; ::: . Thus allthe integrals in (12) and the formulas which follow, are convergent.By symmetry we also get the following resultTheorem 7 Let the initial data u1;0; u2;0 2 C10 (R2) of our system (1) beradially symmetric, smooth and have compact support. Let�1 > 8� + 2�2 (15)then Tmax <1, where Tmax is maximal time of existence for the variable u1.12



As mentioned already, Theorem 5 shows, that it is possible to obtain blow-up for (1) even if the di�erence between the masses j�1 � �2j is very small,as long as one of the masses is supercritical and the corresponding initialdensity is suitably concentrated. The conditions for blow-up in Theorem 6require stronger assumptions on the di�erences of the masses than Theorem5, but do not depend on the given densities.Now we can compare the derived conditions with the ones in the paperby Kurokiba and Ogawa (cf. [3]). From Theorems 1 and 6 we conclude thatthe assumption (�1 � �2)2�1 + �2 < 8� (16)as suggested in [3] is not su�cient to have boundedness of the variables. Tosee this, it is enough to �nd �1 and �2 such that(i) (�1 � �2)2�1 + �2 < 8� and (ii) �1 > 8� + 2�2 :The �rst inequality requires �2 2 (�1+4��4p�2 + ��1; �1+4�+4p�2 + ��1).This region intersects with the region resulting from (ii), namely �2 < �12 �4�,since �1 + 4� � 4p�2 + ��1 < �12 � 4� , 8� + �12 < 4p�2 + ��1, 64�2 + 8��1 + �214 < 16(�2 + ��1), 48�2 � 8��1 + �214 < 0 :This inequality is ful�lled for �1 2 (8�; 24�). Therefore, the conditions (15)and (16) can be satis�ed at the same time. Thus blow-up for u1 happens.4 ConclusionFor the drift-di�usion model considered in this paper it was proved, thatblow-up for one variable and boundedness for the other one can be obtainedfor certain parameter regimes. This is di�erent in case one deals with twochemotactic species, both producing the attractive chemical, and both beingattracted to it. In this case, if �nite time blow-up happens for one species,the same is true for the other species at the same time, cf. [1].13
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