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Abstract

In this paper we consider a drift-diffusion model of parabolic-
elliptic type, with three coupled equations. We prove that there exist
parameter regimes for which non-simultaneous blow-up of solutions
happens. This is in contrast to a two-chemotactic species model, cou-
pled to an elliptic equation for an attractive chemical produced by the
two species, where blow-up of one species implies blow-up of the other
one at the same time. Also, we show that the range of parameters of
the drift-diffusion model in this paper, for which blow-up happens, is
larger than suggested by previous results in the literature.

1 Introduction

In this paper we consider the drift-diffusion model discussed in [3], namely

Ouy — Aug + V- (u; Vop) =0, t>0, z € R?
Oy — Auy — V- (usVep) =0, ¢ >0, r € R? .
A= —(uy —uy), x€R? (M)
u1(0,2) = uro(x) >0,  u(0,2) =ugg(x) >0, reR,
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where u; g, u9 ¢ are not identically zero.

This system can be interpreted as a two species system for chemotaxis like
motion, where the species u; is moving towards higher concentrations of a
chemical ¢ and at the same time produces 1), whereas the species uy is moving
towards lower concentrations of 1 and degrades 1. The third equation then
describes the dynamics of the chemical ¢, under the assumption that its basal
concentration is much larger than the changes of its concentration induced
by u; and wu,.

Normally, the dynamics of the attractive and repelling chemical would be
described by

67,bt = A’l/) + Uy — Ugw .

Let vy denote the basal concentration of the chemical, then

Y=g+ ¢ , where ¢ << 1y .

Thus
5¢t = A¢ + up — Ugwg + h.o.t. .

By rescaling we obtain
A¢ + U — Uy = 0 s

and the coefficients in the first two equations also change.

The model setup as given in [3] uses very particular parameters. Never-
theless, several specific qualitative features of the model can be shown. So
we will stick to the given parameters for purely mathematical reasons. More
complex multicomponent systems for chemotaxis for a variety of parameters
have been considered by Wolansky in [6], where generalized conditions for
the existence of global solutions were given.

Here we focus on the model analyzed in [3]. Kurokiba and Ogawa proved
local well posedness for system (1) and the existence of blow-up in case
U0, s € L2 (R?) == {f € L,.(R*); (1+ |22) 2 f(z) € L*(R*)}, with s > 1

loc

and

(feo (u1,0 — uz)dz) ?

> 87 .
fR2 (w19 + ugp)dx

More precisely, they obtained the following result.



Theorem 1 (Theorem 1.1 and Proposition 1.2 in [3]) For any s > 1,
let

(ul’[],UQ’(]) € L%(RQ) X Lz(RQ) .

Then there exist T = T(||u1 2, [|u2,0]l;2) > 0 and a unique solution (., us)
8 El

of (1) with initial data (uy g, us0) such that
ur,uy € C([0,T); L*(R?)) N C((0,T); C*(R?)). Furthermore, the solution

depends continuously on the initial data; and, in case the mazimal time of
existence of the solution is finite, i.e., Tya < 00, then

e ()l y + 2@l pagury = 00, a8 £ = Ty

Additionally, if the initial data of (1) satisfy uy(0,2) > 0, uy(0,2) > 0, then
for any solution (uy,us) € C([0,T);C*(R?)) x C([0,T); C*(R?)), we have

ur(t,x) >0, us(t,z) >0.
Finally, if uyg , ugg € L' (R?), then

lun )y = urolly 5 lua(@)ly = [zl -

The next result shows blow-up in finite time.

Theorem 2 (Theorem 1.5 in [3]) Let s > 1 and uyg,usp € L2(R?) with
U0, oo > 0 everywhere and let

(e (110 — UQ’[))d.Z')2
Jgo (1,0 + u20)da

> 87 . (2)

Then the solution of (1) blows up in finite time, i.e.

limsup (||u1 (¢, ) |z m2) + Jua(t, )| re(re)) = +00 .
t—=T~
In this paper we will prove in Section 2 that it is possible to have finite
time blow-up for one species and no blow-up at that same time for the other
species. This differs from the situation in the two chemotactic species model
considered in [1], where both species are attracted towards the chemical.
This behavior is described by two classical Keller-Segel equations for the
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chemotactic species and an elliptic equation for the attractive chemical. In
that model, if blow-up happens for one species, the other species is blowing
up too at the same time.

In Section 3 we prove that blow-up is also possible for some initial data,
when inequality (2) is not satisfied, even if the difference between the initial
data is very small.

2 Existence of Non-Simultaneous Blow-up
We mainly consider the radial symmetric situation. Therefore it is conve-
nient to reformulate the problem by introducing the mass functions M;, M.

This allows us to reduce the number of equations of our problem.

Notation: We define

M (t,r) = / wdr Mg(t,r):/ usdx
B(0,r) B(0,r)

thus  Ms(t,r) = 27r/ wipdp Mg(t,r)—27r/ uspdp .
0 0

Let 01 = M1 (t, OO) s 92 = Mg(t, OO) . (3)
In terms of M; and M, system (1) is equivalent to

9 (1oM Moy— My OM
{8tM]—T—(; 1)*72 L2221
1
T

ar 27T ar . (4)
OM: Ms— M7 OM:
: ) + 227r7’ : 81"2

In the following theorem we give sufficient conditions to guarantee uni-
form boundedness for uy as long as it is defined.

Theorem 3 (Conditions for the boundedness of uy) Suppose that the
initial data of (1) satisfy

u(0,7) > uy(0,7)

then for any ui,us € C([0,T]; LA(R?)) N C([0,T];C*(R?)) there exists a
constant C' such that us(t,r) < C.



Proof. Let

v(t,r) = wui(t,x) + ua(t, )
w(t,z) = wui(t,x) — us(t,x) .

Then

ov—Av+V(wVy) = 0, t>0, zecR
ow—Aw+VOVy) = 0, t>0, zeR
~AY = w, z€cR?
v(0,2) = uy(x) + ugp(x) : w(0,x) = upo(x) — ugp(x) ,

and in polar coordinates we obtain

10, 0v 10
o= oo T rar \

—) = w.

defining S := for vpdp, R = for wp dp, and using that

19T _ 10R
and w = 4~ [, wpdp = - F*, we get

OR Oy
%5 T_<r8r> or or 0

1
R T_( 6R> S _ o

Integrating over (0,

r),
v=1a o UPdP—%g—

r Or or 87“
87" =
Or equivalently
0 (108 10R
PN (?E)?ER =
0 (10R 108



By assumption we have R(0,r) >
0.

0
principle it follows that R(¢,r) > 0. Using that

R(t,r) = /wpdpz/ (ur —u2) pdp
J 0 J0

1 1
= 2—(/ ulpdp—/ uwdp) =5 (My = My) ,
™ B(0,r) B(0,r) ™

we conclude that
M, > M, .

From (4) and (5) it follows that,

0 (10M,
My <r— | — .
% 2_T8r<r 87")

Since ug is bounded by some constant C', we have

1 1
My(0,7) = — /( )uQ,opd,OS 2—0/( )UI,UPdP:CTQ-
J B(0,r J B(0,r

2m s
Introducing the transformation
M(t,r) = My(t,r) — Cr*,

it follows from (6) that

atM < rﬁ (18_]\4)
T
0

N

or equivalently

— M 10M

< -7

OM- < or? r Or
M(@O,r) < 0 , M(t0)= , M(t,R)<0.

Thus the maximum principle yields

M(t,r) = My(t,7) — Cr* <0

MO,7r) < 0 , M(t0 =0 , M(tR)<0,

and R(t,0) = 0. By the maximum



and we get that M,(t,r) = 2m for uspdp < Cr?. Using regularity theory
for parabolic equations as in [1], Lemma 6, we then obtain the bound u, =

19 < (, for a suitable constant C' > 0. m

One of the main results of our paper now follows from Theorem 2 and
Theorem 3 as a corrolary.

Corollary 4 Suppose for system (1) and any s > 1, that (uyg,usp) €
LA(R?) x LA(R?) with uy g > ugg. Let

(IRQ Ui,o — UQ,de)Q

fw (7111 0T 71/270)(1.’13

> 87 .

Let uy,uy € C([0,T]; LAR?*)) N C([0,T]; C*(R?*)) Then finite time blow-up
happens for uy, and usy is still bounded until that time.

The above given inequality could even be replaced by a weaker condition.
But this needs knowledge about another theorem, which is formulated at a
later stage in this paper.

3 Blow-up Results

Theorem 5 For any € > 0, there exist initial data u, g, usg satisfying the
assumptions of Theorem 1, as well as

2(8m +¢ 167
uro(r) = 20@r +e) , Upp(r) < CESIE

(7“2 + )\0)2
such that the corresponding solution (uy,us) develops a singularity for T <
0.

Proof. Assume that M;, M, are defined as in (3). Consider a family
of initial data uf‘f’o, ug\“o to be specified later, and denote the correspond-

ing solutions by ui‘“, u;‘“. Further assume that the corresponding functions

M), M9 satisfy

M{\% (r) <97, (8)




Arguing by comparison with the stationary solution

87r?
M, (r) = ——
(r) r? +1
and using
0 (10M, My OMy
oMy <r— | -
2 =T, (r 67") 2mr Or

it follows that

8712

MO (r,t) < ———
2 (T’)7T2+1’

(9)
as long as the solution of (1) is defined. Notice that this inequality holds
independently of the choice of Ml)‘% On the other hand, due to assumption
(8), the maximum principle implies

M (r,t) < 97 .

Therefore, using regularity theory as well as the rescaling argument in [1], it
follows that

1 oM
ué\o = 2

<C
2rr Or —

for a constant C', which is independent of )y and as long as the solution is
defined.
Let us consider a family of initial data having the form

(87 + ) r?

M{\’% (T) - r? + )\[]

, (10)
where A\qg > 0 will be specified later. It only remains to show, that the
corresponding solution blows-up in finite time. To do this, an adaptation

of the subsolution method in [2] is used. It follows from (9) and from the
equation for M; in (4) that

r Or

O M,y > r— - : (11)

d (10M, M, oM, 4r  OM,
or 2mr Or r24+1 or



In order to prove the formation of a singularity for (11) it is thus enough to
obtain a subsolution for (10), (11), which blows up in finite time. We look
for a subsolution of (11) of the form

(87 +¢&— alt))r?
r2 + A(1)

M (r,t) =

with A (¢) and a(t) to be prescribed later. Notice that after some calculations
we obtain

o (1M M, OM  4r OM
%M "or (? or ) 2 or +7"24—1 or
_ Brte—a@)r?[ alr?+ Q@) L E—a®)A@®) 8@
CESYOk [(87r+8—a(t))+)\+ NGCESY0) r2+1}
(87r+5— a(t))r? [ (r? +)\(7‘)) eA(t)
(12 + A (1) [ (87 + ) 21 (12 + A (1)) _SA(”} ’

if we assume that ¢ —a () > 5, a () > 0. Suppose now that A= — A(t),

with A(0) = Ag. Then, for r* < /A (t) we obtain

a(r*+ () - el (t)
Grro) T )

>L F+V B _gxi) >0

(87 +¢)

—8A (1)

if & is sufficiently large (& > 807 is enough). On the other hand, if r* >

VA (t) we obtain

& (r* + X (1)) £ A (1)
G M tairmEaam M0
> agﬂi(g i A(t)+0—=8A(t) >0

assuming that A (¢) is sufficiently small, i.e. Ay is sufficiently small, and ¢ is
sufficiently large (again & > 80 is enough, if € is small).

For fixed ¢ > 0 then choosing A sufficiently small, we obtain a subsolution
for M, developing a singularity at a time ¢, which is of order )‘—‘2) In particular,

la(t) — a(0)] < 807“\0, and SOMO < 5 if Ag is small. This pr0V1deq the desired
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subsolution for M; and implies the formation of a singularity in finite time
for u;. m

The proof of Theorem 5 shows that blow-up for solutions of (1) is possible,
even if the difference of masses for the species uy, uy is arbitrarily small. More
precisely, we have fR2 uy o dx = 8m+¢c. Now choosing ug g = “3677{)2, we obtain
that [, usg do = 8m. Therefore

(.fRQ(“‘],U - 7L2,o)dm)2
oo (ur 0 + usg)da

can be arbitrarily small, and still blow-up happens. Further, our Theorem
provides sufficient conditions for blow-up. However, these are very depen-
dent on the specific form of the initial data.

Now we derive some sufficient conditions for blow-up of solutions of sys-
tem (1), that only depend on the masses of the two species involved. So we
prove blow-up for a different class of initial data.

Theorem 6 (Blow-up for us) Consider system (1), where the initial data
u10,u20 € C5°(R?) are radially symmetric, smooth and have compact sup-
port. Let 01,0, be given as in (3). If

92>87T+29] s

we have Ty < 00, where Thax 18 the maximal time of existence of the
variable 1.

Proof. To prove this result we follow some of the techniques given in [5].
In the following arguments we will assume for the moment that all occurring
integrals are well defined. At the end of the proof we will check this in detail.

Multiplying the second equation of (1) by |z|* and integrating the result-
ing relation over R? we obtain

Bt/ ugm|2dm—/ |m2Au2dm+/ 12> V - (uy Vi) da. (12)
JR2 JR2 JR2

10



From Green’s identity we get

8,5/ up x|’ de = / (A|x\2) Ude—/ uyV |z - dS
R2 R2 OR?2
+/ 1z V - (us V) da
JR2

< 4/ ugdm/ Vx| - (s V) da
R? R?

= 4/ Ude—Q/ ug(x - Vih)do
Jre Jr2

Using g—‘f = % and the identity z - V¢ = rg—‘f we get

/UQ(x-Vw)dx = 27r/ u2ra—wrdr
R2 0 aT

o0 My — M
= 27r/ u2<#>rdr
0 2

oM.
= / M]?/QTdT+_/ Mg 2

aMQ
2 *9] / UoT dr + - /
Jo
= ——0192 + yp 0
Let m(t) = [ us |z * dz. From (12) it follows that

d 1 1 1
m(t) < 40, —2 (—%0192 + E%) = 5 0a(87 + 261 — ) .

7r
Since 0y > 87 + 20, we obtain
0 <m(t) < m(0) + %92(871— + 20, — )t
Thus there exists a Ty € (0, 00) such that
m(t) = 0 ast — Ty.

Therefore T < Ty < o0.
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It only remains to prove, that u;, us and their derivatives decay sufficiently
fast. Since we have assumed compact support for the initial data this follows
easily. Let

1/)1:M1—/ Ul,odl" ; wQZMQ—/ U2,0d$-
R2 R2

Then
0 (10y My — My 0y,
=re—\- - 1
O "or <7" 87") r or ' (13)
0 (10¢y My — My Oy
(2 _ 14
Ouve "or <7" or ) * r or (14)
So, due to the boundedness of M;, M, we obtain that
0y O
aﬂ/)] S 67"2 +CW and
0? 0
Oy < a;é2+0% for r>1.

By comparison with the fundamental solution of the heat equation with a
constant convective term it follows that

]+ o] < Ce™™ for r>1, 0<t<T, andsome aft)>0.

Using regularity estimates for (13), (14) intheset {L <r < L+1, 0<t<T}
we then obtain

8%1 611/)2 2
—a(T)r
‘81"[ + 50 < (Cle for r>2, 0<t<T,
where a(T) in general is different from «(7) for any ¢ = 1,2,... . Thus all

the integrals in (12) and the formulas which follow, are convergent. m

By symmetry we also get the following result

Theorem 7 Let the initial data uyg,usg € C5°(R?) of our system (1) be
radially symmetric, smooth and have compact support. Let

01 > 81 + 292 (15)

then Thax < 00, where Tyay 18 maximal time of existence for the variable ;.
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As mentioned already, Theorem 5 shows, that it is possible to obtain blow-
up for (1) even if the difference between the masses |, — 6] is very small,
as long as one of the masses is supercritical and the corresponding initial
density is suitably concentrated. The conditions for blow-up in Theorem 6
require stronger assumptions on the differences of the masses than Theorem
5, but do not depend on the given densities.

Now we can compare the derived conditions with the ones in the paper
by Kurokiba and Ogawa (cf. [3]). From Theorems 1 and 6 we conclude that
the assumption

(01 — 02)°

8 16
0 10, " (16)

as suggested in [3] is not sufficient to have boundedness of the variables. To
see this, it is enough to find #; and 65 such that

(01 — 602)
6, + 0

The first inequality requires 0y € (61+47—4v/ 7% + 76, 01 +4n+4v/ 7% + 76).
This region intersects with the region resulting from (ii), namely 6, < %1 —4m,
since

(4)

<8t and (i) 6 > 81+ 205 .

0 0
0, +4m — 4\/7? + 7, < 5] —47r<:>87r+51 < 4\/7? + b,

02 02
& 64r* + 87, + Z] < 16(n* + 70,) < 487% — 87, + Z] <0.

This inequality is fulfilled for 6; € (8w, 24m). Therefore, the conditions (15)
and (16) can be satisfied at the same time. Thus blow-up for u; happens.

4 Conclusion

For the drift-diffusion model considered in this paper it was proved, that
blow-up for one variable and boundedness for the other one can be obtained
for certain parameter regimes. This is different in case one deals with two
chemotactic species, both producing the attractive chemical, and both being
attracted to it. In this case, if finite time blow-up happens for one species,
the same is true for the other species at the same time, cf. [1].

13



In this paper it was shown that blow-up for the drift-diffusion model is also
possible for a range of parameters, which was not considered in [3]. More
precisely it was proved, that solutions can blow-up, even if the difference
between the masses of the two involved species is very small. For this to
hold, one of the masses has to be supercritical and the corresponding initial
density has to be suitably concentrated. On the other hand, with stronger
assumptions on the differences of the masses, a blow-up result without direct
dependence on the masses themselves was be obtained.
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