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a b s t r a c t

It is generally thought within the meshing tool community that object-orientation and other decoupling
techniques penalize performance when they are used for building concrete meshing tools. In this paper
we show that building a meshing tool with good object-oriented design metrics could not only improve
maintainability and all other derived attributes such as portability and extensibility, but also its perfor-
mance is comparable to a standard meshing tool that implements the same algorithms.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Meshing tools are generally used for modeling a variety of phys-
ical phenomena such as the structure of the human brain, fluid
mechanics, tree growth, meteorology and geographical informa-
tion systems, among others. These tools are sophisticated pieces
of software due to the complex algorithms and data structures they
use, the huge number of elements they involve, and the specific
and highly specialized contexts where they are used. There are
2D meshes for modeling planar surfaces, 2.5D meshes for modeling
three dimensional surfaces, and 3D meshes for modeling volumes.

The meshing tool community has generally focused on perfor-
mance for many years, mainly efficient CPU time and storage man-
agement, but lately maintainability has also become important.
Achieving both attributes, performance and maintainability, simul-
taneously seems to be contradictory. In fact, there are some popu-
lar 3D meshing tools, such as TetGen, that are developed using
object-oriented languages, but they do not usually take full advan-
tage of the maintainability that this technology may provide be-
cause it is thought that it would strongly worsen performance.

In this paper we show that this seeming contradiction is not al-
ways the case, and that a balance between flexibility and maintain-
ability can be achieved. We built a meshing tool by designing its
structure according to good object-oriented design patterns so that
it had good maintainability metrics. Then, each component was
implemented using the same algorithm as another well established
meshing tool that did not follow the same structure. In practice
this is a refactoring of the existing tool: the new one provides ex-
ll rights reserved.
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actly the same functionality but some quality attributes are en-
hanced. In a previous work, we had already developed a meshing
framework for generating quality 3D meshes that had good ob-
ject-orientation properties [11]. That framework provides Dela-
unay and Lepp [21] based algorithms. In this work we take that
structure as a starting point, we improve it and we provide the pos-
sibility of using the algorithm implementations included as part of
TetGen [24]; these algorithms include a more robust version of the
Delaunay [25] algorithms as well as Delaunay refinement algo-
rithms [23].

We obtained a versatile 3D tool called MeshingToolGenerator.
This powerful tool was built in no more than nine months by a
masters student [4]. The structural metrics are now better than
those in the previous work and much better than those in TetGen,
so we expect that it is more maintainable and flexible. Also perfor-
mance was tested using a set of varying complexity examples, and
the results were similar to those in TetGen, both with respect to
memory usage and response time.

The paper is structured as follows: In Section 2 we present a ser-
ies of related work. The MeshingToolGenerator analysis, design
and implementation is described in Section 3. The evaluation of
the structure and the performance of the developed framework is
presented in Section 4. Finally some conclusions and future work
are discussed in Section 5.

2. Related work

2.1. 3D tetrahedral meshing tools

A mesh is a discretization of a domain geometry that represents
the object to be modeled or simulated. Meshing tools generate and
manage meshes that are useful for solving partial differential
equations numerically or for visualizing objects. In 3D, different
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meshing tools vary in the type of the elements they manage; the
most widely used are tetrahedral and hexahedral meshes.

There are several 3D tetrahedral meshing tools currently avail-
able but not all of them provide the same functionality [19]; they
vary depending on the application for which they were designed.

Three examples of well known 3D tetrahedral meshing tools are
TetMesh, QMG and TetGen.

TetMesh [10] is a widely known commercial product for the
generation of quality tetrahedral meshes for finite element meth-
ods. It was originally developed in FORTRAN 77 and afterward mi-
grated to C.

QMG [17] is an open source octree based mesh generator for
automatic unstructured finite element mesh generation. It was
developed in C++ and Tcl/tk using object-orientation concepts. It
uses octrees as the main data structure, thus all algorithms con-
form to this structure, yielding an efficient yet highly coupled tool.

TetGen [24] is a very efficient and robust open source tool for
the generation of quality Delaunay meshes for solving partial dif-
ferential equations using finite element and finite volume meth-
ods. TetGen has been developed using C++, but not necessarily
incorporating object-oriented concepts, since it is implemented
using only 10 classes without using information hiding, encapsula-
tion, and polymorphism.

In general, all mesh generation tools are focused on reaching
efficiency and robustness and not necessarily extensibility, flexibil-
ity or modifiability.

Each of these tools, and others as well, have particular problems
they are intended to solve. Adding new features or improving
existing ones is generally difficult due to the high complexity of
the tools even though the algorithms to be included may be com-
pletely implemented. We intended to tackle the problem of mak-
ing it easier to extend a 3D meshing tool by using good object-
orientation design practices and thus obtaining higher flexibility.
We used TetGen as a source of algorithm implementations and also
as a benchmark for performance evaluation.

2.2. Software engineering practices in developing meshing tools

It is not new the idea of applying good software engineering
practices in the development of meshing tools since they are soft-
ware too. In [7] the use of formal methods for improving reliability
of mesh generation software has been addressed using algebraic
specifications, and lately an approach for using these specifications
has also been proposed [29] for formal verification.

In [15], an object-oriented approach for developing finite ele-
ment software is presented. Here, encapsulation and information
hiding are used as a means for leveraging the level of the abstrac-
tions that form part of the systems under development but not
necessarily as building blocks as architectural components. In
1999, the Engineering with Computers journal devoted a complete
issue to object technology used in the development of engineering
software [2]. However, none of the articles included relate specifi-
cally to meshing tools.

Object-orientation has also been applied within the meshing
tool community. Some of the interesting published work include
the design of object-oriented data structures and procedural clas-
ses for mesh generation [18], the computational geometry algo-
rithm library CGAL [8], and the definition of an optimal object-
oriented mesh representation that allows the programmer to build
efficient algorithms [20].

However, as complexity grows and the need for evolving sys-
tems is always present, a new approach using software architec-
tural concepts becomes necessary.

In this direction, the Common Component Architecture (CCA)
has been developed [13]; it is a modular stack of technologies that
provides a Scientific Interface Definition Language (SIDL) that al-
lows the user to define how components interact. CCA allows to
maximize flexibility in new code, to combine legacy code by wrap-
ping it using common interfaces, and to configure required applica-
tions using the framework.

SCIRun [12] is a problem solving environment developed using
CCA; it is a workbench in which a scientist can design and modify
simulations interactively via a component-based visual program-
ming. Our approach follows a similar philosophy but it is applied
specifically in the process of building tools for mesh generation.

There have also been some attempts in using software product
lines (SPL) concepts for building meshing tools [1,27]. Smith and
Chen have applied SPL to the meshing tool domain [28] essentially
using FAST [30]. Even though their approach is systematic, they are
not taking advantage of the meshing tool domain characteristics
probably because a general method for domain analysis for scien-
tific computing software is applied [26].
3. Framework development

We developed a framework that implements the same func-
tionality as TetGen but also provides some other quality attributes
such as maintainability and flexibility. We achieved this by rede-
signing the tool architecture but reusing the algorithm implemen-
tations contained as part of TetGen, taking advantage of the fact
that it is an open source tool.
3.1. Requirements and analysis

Required functionality and expected quality attributes are both
considered as a basis for the framework development.
3.1.1. Functional requirements
Any 3D mesh generation framework should implement each

one of the following processes:

� read the input geometry;
� generate an initial volume mesh that fits the domain geometry;
� refine a mesh in order to satisfy a refinement criterion;
� improve a mesh according to certain quality criteria;
� smooth the mesh according to certain smoothing criterion;
� derefine a mesh according to derefinement criteria;
� evaluate the quality of the generated mesh;
� visualize the mesh.

The specification of the input geometry and physical values can
be generated by different CAD programs or by other mesh genera-
tion tools. The algorithms that generate the initial volume mesh
can receive as input the domain geometry described as a triangu-
lated surface mesh or as a general polyhedron. The initial volume
mesh is the input of the refinement step that divides coarse tetra-
hedra into smaller ones until the refinement criteria are fulfilled in
the indicated region. Either the initial volume mesh or the refined
mesh can be the input of the improvement process. The user must
specify the improvement criterion and a region where the
improvement is to be applied. The smoothing and derefinement
processes are also applied according to a criterion and over a re-
gion of the domain. Once a mesh has been refined, improved, dere-
fined and/or smoothed, the user has the possibility of evaluating
the mesh quality according to different criteria. This is very useful
if the user wants to see the distribution and percentage of good and
bad elements in the mesh. Each mesh generation process can also
be skipped by representing it with a dummy algorithm. At any
time the mesh may be visualized using either an external or a built
in visualization tool.
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3.1.2. Quality attributes
Not only functionality is required in order to achieve a success-

ful meshing tool, but also some quality attributes.

3.1.2.1. Maintainability. From all the processes just described, our
framework should be able to easily evolve mainly in the following
directions:

� add the possibility of reading and writing new data formats;
� add or modify strategies for the generation of initial volume

meshes;
� add or modify strategies for the refinement, improvement,

smoothing and derefinement of tetrahedral meshes;
� add refinement and improvement criteria;
� add new shapes for the regions where a criterion must be

respected.

These are the expected variations of our framework. The incor-
poration of a new strategy, criterion or region shape should have a
minimal impact on the tool implementation, and we should pro-
vide a design that considers these requirements.

3.1.2.2. Performance. Both, the response time and memory usage of
the framework should not be more than 10% higher than those in
TetGen for any of the implemented processes. This is because we
not only want to build yet another tool with the same functionality
than an existing one, but also one that has acceptable qualities for
the meshing tool community.

3.2. Design and implementation

First, we describe the general structure of the framework and
how TetGen algorithm implementations have been adapted to this
structure. Then we describe each specific component within the
design.

Fig. 1 shows the most important part of the meshing frame-
work class diagram. We represent each mesh generation process
Fig. 1. Framework gene
as an abstract class (in italics in the diagram). Fig. 2 shows the
design of MeshingToolGenerator that adapts and encapsulates
the algorithms included in TetGen. Each different strategy that
implements each process is represented in Fig. 2 as a concrete
subclass. For example, the Refine abstract class is realized by
two subclasses: DelaunayRefinementTetGen and ManualRe-

finementTetGen; they both represent different refinement
strategies. In the case of TetGen, the Refinement algorithm used
is also used as an improvement algorithm, so we followed the
same philosophy in our framework, and we omit Improve as an
independent class.

We represented all the criteria with the Criterion abstract class
and all the region shapes with the Region abstract class in Fig. 1.
This allows a programmer to add a new criterion or region shape
by adding just a concrete class that inherits from the respective ab-
stract class and without modifying the source code. As TetGen
does, we have provided two different subclasses for the Crite-

rion abstract class: RadiusEdgeRatio and VolumeLongest-
Edge3Ratio, respectively, as can be seen in Fig. 2. As TetGen does
not manage the Region concept for refinement, our framework pro-
vides an abstract class for defining the refinement region, but it is
always applied to the whole geometry; however, this can be ex-
tended without much effort.

If we want to evolve the framework in order to generate a par-
ticular meshing tool, we should use the abstract classes’ code with-
out any modification, and we must select which concrete
algorithms we want to use for each mesh generation strategy, cri-
terion and region shape. For example, GenerateVolumeMesh can be
realized by RobustDelaunayTetGen. Similarly, we already have
OffFormatTetGen, PolyFormatTetGen, MeditFormatTetGen

and SMeshFormatTetGen as concrete implementations for Input-
Output, as well as TetMeshFormat a typical format used by
TetMesh.

The mesh is modeled as a container object that holds the mesh
information, and it is a commonality of the complete framework,
i.e. that is to be included in any evolution of the framework. The
MeshTetGen class provides methods for accessing and modifying
ral class diagram.



Fig. 2. Partial detailed class diagram.
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its constituent elements (tetrahedra, faces, edges and points). Tet-
rahedron, Face, Edge and Vertex are also classes, each of them
providing concrete functionality and also providing access to the
neighborhood information within the mesh (not shown in Fig. 2
for clarity).

The mesh quality evaluation is also modeled as an object by
using the EvaluateTetGen class, a subclass of the Evaluate ab-
stract class. This class uses a criterion and, according to some user
parameters, it classifies the elements and generates a file with the
evaluation results as output.

In this framework implementation, we have used several design
patterns to model different parts of the system [9]. The Adapter
pattern was used all over the application because we needed to
adapt the interfaces provided by TetGen to the interfaces required
by our framework. Also, each different mesh generation process
and each criterion follows the philosophy of the Strategy pattern.
The mesh evaluation class follows the Observer pattern where
the observed object is the mesh. The interface is organized using
the Command pattern. The mesh is a Singleton.
4. Framework evaluation

We needed to balance flexibility and performance, so we evalu-
ated our MeshingToolGenerator framework and TetGen according
to both quality attributes. First we provide a series of well estab-
lished metrics for object-oriented code that allow us to evaluate
the tools from a flexibility and maintainability point of view, and
we compare the results for both applications. Next we present
the results of applying a series of performance tests to both
applications.
4.1. Design evaluation

Metrics for object-oriented design provide a quantitative mech-
anism for estimating design quality. The main goals of these met-
rics are better understanding product quality, estimating the
development process effectiveness, and improving the quality of
the work done. In object-orientation, design metrics relate to ob-
ject definition (OD), attributes (A) and communication between
objects (C) [6]. In this work, we use the metrics proposed by Chid-
amber and Kemener [3] because they are widely used for measur-
ing flexibility and extensibility. A brief description of each metric is
included in Table 1, as well as their classification according to the
aforementioned categories.

4.1.1. TetGen
Fig. 3 shows the complete class diagram for TetGen. As can be

seen, there are only a few classes implementing the whole applica-
tion. Applying the defined metrics to TetGen we obtained the val-
ues contained in Table 2.

TetGen has a high average value in WMC and also a high stan-
dard deviation because it has only a few classes, some of them with
a lot of methods and others with only a few methods. This situation
hinders understandability and thus also maintainability, one of our
goals.

Only mesh object queues are managed with a hierarchy in Tet-
Gen. This is shown with a very low value of the DIT metric. Simi-
larly, NOC is only one, showing that inheritance is used in one
case and only for adapting a class and not for specializing a con-
cept. Clearly, even though TetGen is developed using C++ that is
an object-oriented language, its design does not take full advantage
of the object-orientation philosophy of the language.

The CBO metric shows a low value for TetGen’s classes, proba-
bly influenced by the fact that there are few classes in the system.
Among them, the class that implements the mesh – tetgenmesh,
defines internally the most accessed classes such as face, metric
or the whole memorypool hierarchy, yielding a low coupling.
However, it should be noticed that the average CBO is high if com-
pared to the number of classes in the system. The maximum CBO is
14 and corresponds to the tetgenmesh class, meaning that it is
coupled with almost all other classes.



Fig. 3. TetGen class diagram.

Table 1
Design metrics.

Name Description Classification

Weighted Methods per Class
(WMC)

Sum of all method’s complexity within a class. The number of methods and their complexity indicate the effort
required for implementing a class. Also, the larger the number of methods the more specific a class becomes, limiting
its reusability

OD

Depth of Inheritance Tree (DIT) Maximum length between a node and the root in the inheritance tree. The deeper the class, the more probable the
class inherits a lot of methods favoring reuse. However, a deep class hierarchy may imply a complex design

OD

Number of children (NOC) As the number of children grows, the abstraction represented by a class becomes more relevant, and its reusability
increases, so it may require more rigorous testing

OD

Coupling Between Objects
(CBO)

It is the number of collaborations between a class and the rest of the system. As this number grows, the class
reusability decreases. High values also make modifications and testing harder

C

Response for a Class (RFC) It is the number of methods that may be potentially executed as a response to a message received by a class object.
As this metric grows, testing the class becomes harder, and the class complexity also grows

A, C

Lack of Cohesion in Methods
(LCOM)

A high LCOM indicates that methods can be grouped in disjoin sets with respect to attributes, and the class should be
partitioned in two or more classes

A

Public Variables per Class (PVC) It is the number of public instance variables declared as part of a class. A high PVC shows a poor class encapsulation OD
Lines of Code per Class (CLOC) Having large classes implies that changes are harder to localize, so for more maintainable code this metric should

remain small
OD

Lines of Code per Lines of
Comments (%COMM)

Commented code is more understandable and thus more easily maintained. A larger code is a priori more complex,
but if it is longer just because of the amount of comments it is not bad. %COMM is the percentage of lines of code per
lines of comment

OD

Method Cyclomatic complexity
(MCC)

The method cyclomatic complexity counts the number of linearly independent paths that a particular method
exhibits

OD

Class Cyclomatic complexity
(CCC)

The cyclomatic complexity indicates the testing complexity of a certain piece of code. It is the average number of
linearly independent paths that the methods of a class exhibit

OD, C
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In TetGen there are some classes with a very low response
capacity and one, tetgenmesh, with a huge response. This situa-
tion yields a RFC metric with a very high standard deviation that
again produces difficulties in maintainability.

The cohesion within TetGen classes is very low (LCOM). In gen-
eral it is expected that if we have classes with large amounts of
methods, not all of them are related. A better design would sepa-
rate them into classes that group methods and attributes taking
better care of their cohesion.
Table 2
TetGen design evaluation according to OO metrics.

WMC DIT NOC CBO RFC

Minimum 4 0 0 0 4
Maximum 366 2 1 14 366
Average 45.6 0.3 0.2 2.4 49.4
Std. dev. 112 0.7 0.5 4.4 111.1
TetGen defines all its variables as public showing absolutely no
encapsulation. So PVC is always high.

The number of lines per class varies considerably. While there
are huge classes with very high CLOC, there are some others very
specialized and small. Large classes are less reusable, and even
though small classes may have the potential to be more reusable,
the savings achieved in this reuse is limited.

TetGen is well documented with a line of comment every 24
lines of code. This makes it understandable.

The maximum class cyclomatic complexity is not very high be-
cause class tetgenmesh has a large number of methods; although
there are highly complex methods in this class, as apparent in MCC,
the average complexity for the class is also influenced by many
other simple methods. This makes the class difficult to maintain
because debugging is more difficult in these circumstances. The
method cyclomatic complexity on the other hand is high in aver-
age and its standard deviation is even higher.

4.1.2. MeshingToolGenerator
Applying the same metrics to MeshingToolGenerator we ob-

tained the values contained in Table 3.
MeshingToolGenerator has a low average value in WMC, show-

ing a cleaner design. However, even though the standard deviation
value is also much lower than that of TetGen, it is still somehow
high mainly because the MeshTetGen class still has a very high
number of methods (182). Nevertheless, the original tetgenmesh
class in TetGen had 366 methods, so the decoupling effort allowed
us to improve this metric. MeshTetGen still manages all the oper-
ations relating basic geometric elements; it remains as future work
to decouple these functions.

Inheritance is used in a more appropriate way in MeshingTool-
Generator. So DIT is improved mainly due to the use of inheritance
LCOM PVC CLOC %COMM CCC MCC

0 0 9 0 1 1
97 103 18,930 24 14 86
45.2 21.2 2212.3 14.4 4.6 9.2
36.5 32 5908.4 7.1 6.0 36.3



Table 3
MeshingToolGenerator design evaluation according to OO metrics.

WMC DIT NOC CBO RFC LCOM PVC CLOC %COMM CCC MCC

Minimum 1 0 0 0 1 0 0 4 0 0 1
Maximum 182 2 9 23 182 100 103 3697 48 31 86
Average 7.9 0.5 0.4 5.4 11.2 19.1 3.6 304.8 12.5 6.8 7.6
Std. dev. 20.9 0.6 1.2 5.4 21.1 28.7 14.0 551.1 11.6 7.0 11.6
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in those places where the tool may need to be extended such as
different criteria, input formats and meshing algorithms. Even
though the maximum depth of the hierarchies did not increase,
the average depth is higher than that in TetGen because inheri-
tance was used several times to model the potential variabilities
of the meshing tool. Similarly, NOC is also increased mainly by
decoupling into different subclasses some methods that were orig-
inally coded as part of the same class. This also shows a better use
of inheritance, and even though MeshingToolGenerator only in-
cludes those functionalities already in TetGen, with the new struc-
ture it would be easier to add new functionality in the form of a
new child to a hierarchy than before.

The CBO metric grew in MeshingToolGenerator because there
are more classes in the whole design than in TetGen. However,
its average value is reasonable with respect to the size of the com-
plete system. TetGenMesh is still the most coupled class (23), but
this value is less than one third of the total number of classes in the
system (almost 80). In TetGen the most coupled class had two
times the number of classes in the system.

In MeshingToolGenerator the average RFC metric is much lower
than before. Now the class representing the mesh – MeshTetGen –
has fewer methods even though it is still high. The standard devi-
ation of RFC also decreased significantly showing a more symmet-
ric design.

The average lack of cohesion within MeshingToolGenerator
classes is much lower than that in TetGen, showing a more cohe-
sive design in general. Moreover, if we take a closer look, we can
see that we are now using abstract classes that yield 100% lack of
cohesion, and this situation increases the average even though it
is not a bad design decision; these classes are also those responsi-
ble for the high standard deviation.

The PVC metric decreased dramatically in MeshingToolGenera-
tor showing a better class encapsulation. Nevertheless, an optimal
encapsulation still requires improving this metric even more.

The average number of lines of code per class is still high, but
what is even worse is the high standard deviation, even though it
is much lower than in TetGen. Classes implementing the mesh and
the algorithms still tend to have many lines of code making them
complex and thus difficult to maintain. We have improved the de-
sign with respect to this metric but more work is still required.

The maximum percentage of comments has increased because
we have added small size classes like Criterion with a high percent-
age of comments, but the average is almost the same because all
comments included in TetGen were also copy-pasted into
MeshingToolGenerator.

The maximum method cyclomatic complexity is higher than in
TetGen because we did not change the method that causes it, but
the average and standard deviation is lower than in TetGen due to
the simplification of existing methods or the added new ones. The
maximum class cyclomatic complexity is much higher than in Tet-
Gen because the class that contains the method with maximum cyc-
lomatic complexity has fewer methods than before. Then the
average of method complexities of that class is higher that in TetGen.

4.1.3. Consequences of the improved flexibility
The gains in structural metrics have direct consequences on

software flexibility. TetGen is built for generating Delaunay
meshes, and so is MeshingToolGenerator provided that it is in-
tended to fulfill the same goals. These meshes tend to deal with
nearly equilateral tetrahedra. However, there are some applica-
tions that require other kinds of meshes, such as anisotropic
meshes [14]. The shape of the elements in these meshes tend to
follow a prestablished direction, and they are not required to be
nearly equilateral. MeshingToolGenerator, as it is, can manage
anisotropic meshes just by relaxing the refinement criterion, e.g.
RadiusEdgeRatio > 2. Nevertheless, anisotropic meshes cannot
be generated on purpose because none of the criteria included in
TetGen allow a direction to be provided as a parameter neither
to generate the initial mesh nor to refine the existing mesh. If we
want to count on this functionality, three new classes should be
incorporated: GenerateAnisotropicMesh as a subclass of Gen-
erateVolumeMesh, RefineAnisotropicMesh as a subclass of Re-
fine, and VerticalStretch or VerticalStretch as a subclass
of Criterion. These changes do not impact the existing code and
the functionality, even though it may be complex, it is easily incor-
porated once developed.

Another interesting modification that may be included in
MeshingToolGenerator is to either input or output the mesh data
directly from or to another application. For example, it may be use-
ful to visualize the mesh in a visualizer or read the mesh directly
from another mesh generator such as TetMesh, without saving
the mesh to a file. Currently, InputOutput is realized as a series of
classes that implement both functions: transform data to or from
the appropriate format, and either input or output data from or to
a file. If we want the tool to be able to transfer data directly, this
structure should be modified so that these two functionalities are
decoupled: InputOutput will become FormatInputOutput, a hierar-
chy where each subclass transforms mesh data to or from the
appropriate format, and another hierarchy Transfer for directly
transferring data either to or from a file or to or from another appli-
cation in the form of a pipeline through its subclasses File and
Pipeline respectively. This second hierarchy is related to Format-
InputOutput as an aggregation dependency. This solution follows
the Bridge design pattern. Current code should be modified to
incorporate this new structure. However, if we require communica-
tion with other applications whose format is not supported yet,
either through a file or a pipeline, a new subclass of FormatInput-
Output should be included without affecting the rest of the code.

4.2. Performance evaluation

As we already mentioned, one of the most important character-
istics of meshing tools is performance. That is why we followed a
formal performance analysis both of TetGen and of MeshingTool-
Generator so as to get an objective comparison. We first considered
performance as CPU response. The analysis performed consists of
two different actions:

1. Generate a volume mesh starting from a geometry specified as a
PLC (piecewise linear complex). This test was applied to eight
different objects obtained from the TetGen repository [24].

2. Generate a good quality volume mesh. For this, a refinement is
performed using the radius-edge criterion. This action is applied
to two different geometries specified as PLC also obtained from
the TetGen repository: Example.poly and PMCD.poly, requiring
different quality values between 0.5 and 2.
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We also analyzed the memory used by both implementations
using the Valgrind [5] software. However, since MeshingToolGen-
erator was built just by decoupling the algorithms from the main
class in TetMesh, the memory used in both applications was al-
ways exactly the same. So there is absolutely no difference in this
dimension of performance.
4.2.1. Volume mesh generation
Table 4 shows the time it took to generate each of the eight dif-

ferent volumes specified as PLC.
The times it takes to generate the different volume meshes

using either TetGen or MeshingToolGenerator are indistinguish-
able in all cases, independently of the object geometry complexity.
Table 4
Performance evaluation for the generation of a volume mesh using TetGen and MeshingT

Figure Initial vertices Final vertices Tetrahedr

Example 54 79 188
Tahol 386 396 1045
Socket 836 891 2493
Aparatous 1819 3113 8322
PMDC 972 3401 9222
CutSphere 3195 4584 13,640
Balls3astr 748 4092 13,792
Balls3astr-20 1510 5330 30,793
Brain 10,477 11,605 36,331

Fig. 4. Refinement of PMDC using the RadiusEdgeRatio criterion. (a) is the original volum
mesh refined with a 1.5 ratio.

Fig. 5. Time for generating t
With respect to this performance dimension we can conclude that
decoupling TetGen into a MeshingToolGenerator had no impact.

4.2.2. Volume mesh refinement
Two volume meshes, Example and PMDC, were used as bench-

marks for comparing the refinement time of both tools. Fig. 4
shows the original PMDC and two successive refinements.

Figs. 5 and 6 show the comparison of time consumed for refin-
ing the two volume meshes as a function of the expected quality of
the obtained mesh defined using the radius-edge criterion.

In both cases the time it takes to refine the mesh is indistin-
guishable using either TetGen or MeshingToolGenerator. More-
over, with a ratio higher than 1.2, the performance is identical
and quite fast, and most users would consider as acceptable any
oolGenerator.

a Exec. time (TetGen) Exec. time (MeshingToolGenerator)

0.03 0.03
0.11 0.10
0.26 0.26
1.61 1.60
1.73 1.67
2.67 2.68
1.50 1.50
2.05 2.06
3.88 3.88

e Delaunay mesh, (b) the original mesh refined with a 1.2 ratio, and (c) the original

he PMCD quality mesh.



Fig. 6. Time for generating the example quality mesh.
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mesh with a quality higher than 1.4. Again, we can conclude that
the new structure of the tool does not affect this dimension of per-
formance either.

5. Conclusions

We developed MeshingToolGenerator by refactoring the well
known 3D meshing tool TetGen in order to improve its structure
looking forward to achieve better flexibility. Doing so we wanted
to be able to still have available all TetGen’s functionality but also
be able to extend it in the future by adding new input formats,
algorithms implementations, and quality criteria, among others.
We also wanted to preserve TetGen’s performance qualities, or at
least not sacrifice them severely.

MeshingToolGenerator’s design structure is highly improved
with respect to TetGen according to almost all OO design metrics
applied, so the obtained software is definitively more flexible
[16]. Performance both, according to response time and memory
usage, is almost exactly the same in both implementations. So
we obtained a tool that has the same functionality and perfor-
mance, but now it has also good maintainability and flexibility
properties, even though there is still some room for more
improvement.

This new design flexibility also allows other designers to reuse all
or just part of the tool in order to develop other meshing tools in
other contexts. For example somebody could take the RobustDel-
aunayTetGen algorithm for generating the initial mesh, that is
quite robust, and use it in another tool such as one that implements
the Lepp algorithms for refining and improving the mesh [22].

We were able to decouple TetGen mainly by creating indepen-
dent classes for algorithms, input and criterion definition. How-
ever, all definitions relating vertices, edges, faces, tetrahedra, and
other geometric elements are still inside the MeshTetGen class.
Decoupling these classes would probably improve most object-ori-
ented metrics. Nevertheless, it is still to be determined how much
this change would penalize the performance.
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