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Abstract—The consideration of uncertainties in the future
system operation is a key aspect in current planning methodolo-
gies. In this context, load flow studies based on probabilistic theory,
fuzzy numbers, and Monte Carlo simulations have been proposed
in the literature. This work analyzes in a novel way the application
of fuzzy number arithmetic for the DC load flow problem. In this
sense, fuzzy sets theory is reviewed and is showed that there are
two alternative and valid procedures to perform a subtraction.
A key aspect for the right selection of one of these procedures is
the independency or dependency among the involved variables.
Assuming input data as independent variables, this work is fo-
cused on analyzing the fuzzy subtraction between dependent state
variables of the system, such as voltage phase angle. Accordingly,
two new valid alternative methodologies are proposed and applied
to case studies. Results are compared to previous related works
showing the consistency of the proposed methodologies. Future
research will be focused on the consideration of ohmic losses and
AC network modeling in the field of expansion planning studies.

Index Terms—Fuzzy sets, load flow analysis, power system plan-
ning, uncertainty.

I. INTRODUCTION

L OAD flow calculation is one of the fundamental tools
for power system operation analysis and planning, by al-

lowing the simulation of the system steady state operation for
a specific set of generation and load values. The most common
approach to solve the load flow problem is the use of determin-
istic values for the input variables. For this situation, the ob-
tained results are also deterministic and unique. This model is
commonly known as the deterministic load flow (DLF). When
the system representation involves the existence of uncertainty
in its variables, its solution is usually faced by means of mul-
tiple DLF calculations. Examples of this situation occur when
network data are located in a certain range or the exact value
for loads/generations is unknown. The load inaccuracy can be
originated in midterm projections due to inaccurate forecasts of
prices, regional developments, and industry location. Uncertain
generations can be produced by machines with variable energy
source such as the wind and hydro power plants. Although the
strategy of performing multiple cases is valid and commonly
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used in the industry, this task implies the use of a huge compu-
tational effort and its related man-hours, which are desirable to
reduce.

The need for tools that incorporate uncertainty in some
system variables has been widely recognized by researchers
focused on system planning. In this way, nowadays, there
are different alternatives to facing this problem, such as the
probabilistic load flow (PLF), Monte Carlo simulations (MCS),
and the fuzzy load flow (FLF) [1]–[10].

The first notion of a probabilistic load flow appears in the
1970s. Borkowska et al. [1], [2] proposed a simplified model
whose main assumptions were: 1) the electric system can be rep-
resented by a linear approximation (DC) and 2) the active power
demands are treated as random independent variables. The gen-
eration dispatch is solved defining a distribution function based
on expert criteria. Under this approach, it is possible to adjust
the variations of the total demand by considering the previous
defined power injections in the system. Because of the consider-
ation of loads as independent variables, the density functions of
the load flow through the transmission lines can be determined
by convolution. Afterwards, this method was extended to a net-
work model on alternate current (AC) [3], [4].

The assumption of independence among the loads at different
nodes, in general, is not realistic. Allan et al. [5] developed a
theory allowing the incorporation of linear dependency among
the loads. Da Silva [6] proposed a method that makes use of a
linear dependency among the loads and the linearized load flow.
It solves the problem combining Monte Carlo simulations and
convolution. They also incorporated the operational policies of
the company. Dopazo [7] used correlations in order to consider
dependency among the loads. In this work, a Gaussian distribu-
tion for the lines flows and busbar voltages is assumed. Thus,
the only requirement is the calculation of the associated vari-
ances and averages. Later, Allan [8] demonstrated that the as-
sumption related to the assignment of a normal distribution for
the output variables, even in the case where all the input vari-
ables have a normal distribution, is unrealistic. This is due to
the nonlinear nature of the load flow equations. They also pro-
posed a new algorithm for the PLF called boundary load flow
(BLF). This approach allows obtaining estimations of the flows
for multiple linearization points, overcoming the errors intro-
duced by the models that use one point of linearization. The BLF
allows finding ranges of values for the state variables and for
the output variables, using the available ranges of values of the
input variables. The method used for determining the variables
intervals is heuristic. Dimistrovski [9] analyzed the BLF and
proposed an algorithm with a more precise mathematical for-
mulation, making possible to obtain the boundary values of the
random variables intervals. The accuracy of results is improved,
but the computational effort increases, too. As an alternative to
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the BLF, Leite da Silva [10] proposed the combined use of both
Monte Carlo simulations and load flow equations with multiple
linearizations. The algorithm applies as a criterion for the use of
the load distribution functions to define the different lineariza-
tion points. In this context, the Monte Carlo simulations, with
intensive use of computational time, have been used as a vali-
dation tool for the different developed proposals [8], [10].

Another family of algorithms for load flow calculation under
uncertainty is based on the fuzzy set theory. In this case, un-
certainty is supposed to be originated by a vague or inaccurate
concept, which is not the case of the probabilistic models highly
related to the statistical behavior of a phenomenon. A clear ad-
vantage of this approach is the easy incorporation of expert
knowledge to explain uncertainties. In [11], Miranda proposed
modeling the loads and the active power injected by generators
as fuzzy variables, with the purpose of representing a qualita-
tive or linguistic originated uncertainty, which is not well rep-
resented by probabilistic models. Typical input fuzzy variables
are: active and reactive power at the loads and the active power
injected by generators. The output fuzzy variables correspond
to: magnitude and phase angle of busbar voltages, reactive and
active line flows, and the ohmic losses. Two models were pro-
posed to solve the problem: DC load flow and AC load flow.
The methodology applied in [11] is similar to the one used on
the probabilistic models. As steady initial point, a DLF is solved
considering the injected power in the busbars as the central value
of the fuzzy numbers. The output fuzzy values are obtained ap-
plying linearization around the selected steady initial point. The
sum operation with fuzzy numbers, not explicitly mentioned in
[11], is shown in [12] and it would consist of max-min convolu-
tion. It is important to note that the subtraction of fuzzy numbers
is not described in [11], which makes it difficult to reproduce the
results obtained in the presented examples. Nevertheless, from
[13], it would be deduced that the treatment used for the subtrac-
tion of fuzzy numbers is to sum the opposite (additive inverse)
of the second number with the first one. The major drawback ob-
served in the previously described methods is that final results
are obtained by means of linearization around a selected point
instead of applying on an explicit way fuzzy operations over the
variables with uncertainty.

In [14], Saraiva et al. compared the results obtained in [11]
with Monte Carlo simulations. Recently, Bijwe et al. [15] in-
corporated to the FLF models with consideration of the reactive
power limits, voltage dependent loads, and uncertainty on the
network parameters. They also integrate the concept of BLF [9]
in the problem solution.

The existing correlation among the loads on a DC load flow
is treated by Saraiva [16]. Afterwards, this proposal is improved
by the inclusion of AC load flow, where the correlation among
active loads, reactive loads, and active with reactive loads is al-
lowed [17]. Recently, Matos and Gouveia [18] proposed to use
a DC FLF to achieve transmission system adequacy. They also
define new risk indexes denominated repression and severity in-
dexes. These can be used in security studies or network expan-
sion planning.

Additionally, specialized versions of FLF have been devel-
oped for distribution systems. In [19], a non-iterative load flow
is solved for radial distribution networks using fuzzy sets and in-

terval arithmetic. Bijwe [20] solves a fuzzy distribution power
flow for weakly meshed systems. He combines a previous de-
veloped algorithm for deterministic load flow calculation in dis-
tribution networks with the BLF presented in [9].

A different alternative to solve the FLF is reported by the
authors in [21], by using fuzzy number arithmetic in an explicit
way, instead of linearization around a specific point. The use
of -cuts for the sum and subtraction operations is proposed,
allowing more realistic results for the FLF. However, difficulties
were faced in problems with meshed networks.

This research is focused on solving the FLF problem for any
network topology using fuzzy number arithmetic on a direct
way. Consequently, the calculation of a central value DLF
and linearization around the selected steady initial point is not
needed. An analysis of subtraction between fuzzy numbers is
also presented, and two methodologies to solve the DC FLF
considering dependency or independency among variables are
proposed. For the development of these proposed models, a
complete independency in the input data is assumed, so the
major interest of this work is focused on analyzing the operation
management with the dependent variables generated during
the calculation process. Readers are assumed to have a basic
knowledge of fuzzy sets.

This work is organized in five sections. Section II presents
the fuzzy sets theory and the sum and subtraction operations.
Section III shows the proposed methodology for solving the
fuzzy load flow. In Section IV, case examples and its valida-
tion are presented. Section V presents the main conclusions and
future work in this field.

II. FUZZY SETS AND FUZZY NUMBERS

A. Basic Concepts

A fuzzy set subset of a universal set U can be represented
by an ordered pair composed by a generic element and its
membership value, that is,

(1)

Additionally, an -cut of a fuzzy set is a classical set
that contains all the elements in with a membership value in

greater or equal than , that is,

(2)

B. Fuzzy Number Arithmetic

A fuzzy number is a fuzzy subset in that fulfills the fol-
lowing conditions [22]: 1) is normal, 2) is convex, 3) has
a bounded support, and 4) every -cut of is a closed interval
in .

1) Fuzzy Numbers Representation Through -Cuts: A spe-
cial type of fuzzy number, frequently used in practice, is the
one with triangular shape. In (3), the membership function for
a fuzzy number is presented:

if

if
if .

(3)

Authorized licensed use limited to: Universidad de chile. Downloaded on July 06,2010 at 13:47:42 UTC from IEEE Xplore.  Restrictions apply. 



208 IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 25, NO. 1, FEBRUARY 2010

The -cuts representation in a triangular shaped fuzzy
number is achieved building dependent functions for both
left and right edges of the triangle. In this way, the -cuts for
the fuzzy number are defined by

(4)

where

(5)

(6)

2) Sum and Subtraction of Fuzzy Numbers: Let and
be two fuzzy numbers and , its
respective -cuts. Then, the sum of with , , is a fuzzy
number with -cuts defined by

(7)

Since a fuzzy number is defined by its -cuts, the fuzzy
number is well defined in accordance with
(7). If two fuzzy numbers with membership functions

and
are considered, in general, the membership function for the
sum is defined by

(8)

In this case, the resulting support is which
corresponds to the sum of each number support.

On the other hand, for the subtraction of with ,
there are two procedures, later described in this section. The
respective -cuts for the subtraction are defined in (9) and (10)
[22], [23]:

(9)

(10)

Taking (9) and executing necessary algebraic operations, a
simpler formula is obtained for the membership function of the
subtraction in (11) at the bottom of the page.

For this case, the resulting support is ,
which corresponds to subtract the support of each fuzzy number.

Likewise, for (10), it is also possible to obtain a simpler gen-
eral expression:

(12)

However, in this case, the resulting support is
, which corresponds to sum the support of each fuzzy

number.
Similarly, an interesting problem consists of determining the

opposite (additive inverse) of a fuzzy number. In order to ob-
tain this result, it is supposed that the fuzzy number has the
following membership function: . Using
(9), the fuzzy number will be given by

(13)

(14)

Hence, the membership function for the opposite of a fuzzy
number is established by

(15)

Otherwise, if the fuzzy number is added to the opposite of
defined in (15), it is also possible to find a generic formula for

calculating the subtraction between two fuzzy numbers. In this
case, the membership function takes the following structure:

(16)

This result is similar to the one obtained in (12). Usually,
when systems of equations are solved, it is common to carry out
additions of numbers with opposed of other numbers. In these
situations, it is important to remember that the result will be
executed according to (12) or (16).

The operations defined in (8), (11), and (12) are applied to tri-
angular, trapezoidal fuzzy numbers, symmetrical or not, without
difficulty. However, while subtractions are performed with (11),
it may happen that central values of the fuzzy number are located
out of the support; in these cases, it is necessary to correct these
values and assign them the maximum or minimum value of the
interval.

Next, two examples showing the application of (11) and
(12) are described. The first one consists of subtracting a fuzzy
number with its opposite. Initially, the operation is made using
(12); later on, the subtraction is carried out using (11). The ob-
tained results are shown in Fig. 1. The used values correspond
to those defined in [21]. In Fig. 1, it is also observed that the
opposite of a fuzzy number is its mirror image with respect to
the ordinate axis. Moreover, the sum of a fuzzy number with its
opposite is a fuzzy number with a nonzero support. This result
has a central value in zero, but its support is equal to double
the original number. This would indicate that the opposite ac-
cording to (16) is not symmetrical respect to the “ ” operation
for two fuzzy numbers. This means that fuzzy number zero
(0,0,0) cannot be obtained by (16). On the contrary, if (11) is
applied, the result is . This means
that when the explicit definition for the subtraction is used, the

if
if

(11)

Authorized licensed use limited to: Universidad de chile. Downloaded on July 06,2010 at 13:47:42 UTC from IEEE Xplore.  Restrictions apply. 



CORTÉS-CARMONA et al.: FUZZY ARITHMETIC FOR THE DC LOAD FLOW 209

Fig. 1. Opposite of a fuzzy number and the sum between the fuzzy number
with its opposite.

Fig. 2. Operations with fuzzy numbers.

zero fuzzy number can be obtained, which is the reason why
the operation according to (11) is symmetrical for the sum.

The second example consists of subtracting any two fuzzy
numbers. The used values are those presented in [21]. Fig. 2
shows the graphs for the subtraction operations determined with
(11) and the subtraction obtained by (16). It is clearly appreci-
ated that the results are different. This divergence on the results
produces suspicion regarding which formulation, (11) or (16),
is the more adequate for performing a fuzzy subtraction.

In general, relation (12) is of common use on the calculation
of a subtraction between fuzzy numbers [13], [24]. From an-
other point of view, the use of (11) or (12) for the subtraction
operation depends on the origin of the uncertainties involved in
the operation. Equation (11) seems to be consistent with the sub-
traction of two fuzzy numbers highly dependent. Instead (12)
is more appropriate for subtraction of fully independent fuzzy
numbers.

C. Independent Variables

The behavior of independent variables is well known in the
probability theory. For instance, let and be two inde-
pendent variables whose parameters are and ,
respectively. The new random variable obtained from the sum
or subtraction of these random variables, distributes
with parameters [25]. From the previous
concept, an analogous treatment can be applied to fuzzy num-
bers. In this sense, when two fuzzy independent numbers are
added or subtracted, the resulting support should be the sum
of the supports of each fuzzy number. This result is obtained
when (12) is applied, which is consistent with the probability
theory. However, for the case of the subtraction, if (11) is ap-
plied, the resulting support is lower than the one obtained from
(12). Therefore, it is not recommended to use (11) for the sub-
traction of two fuzzy independent numbers.

D. Dependent Variables

Usually, the numbers obtained from operations performed
over independent variables are used in further calculations.

Let be the set of the fuzzy numbers. Considering an el-
ement , and the numbers , a sum operation
can be defined as

(17)

Applying (9), it is easy to demonstrate what is defined by

(18)

In this way, it is concluded that addition operation behaves
in accordance with the theoretical framework, even when fuzzy
numbers are dependent variables.

Consider now the subtraction between dependent fuzzy num-
bers described in the following:

(19)

Applying (9), it can be demonstrated that is given by

if
if .

(20)

From (20), it is deduced that operates in the same
way as (15), that is, as the opposite of . Additionally, if ,
the resulting support given by (20) is smaller than the one ob-
tained when the variables are independent. This result is consis-
tent with the probabilities theory, which states that the variance
of the sum or subtraction of two dependent random variables
is [25]. If the correlation among the
variables is negative, the covariance is negative,
which implies a smaller variance in the result. Therefore, it can
be concluded that subtraction performed with (11) delivers ad-
equate results for dependent fuzzy numbers.

For the case of subtraction operation by means of (12), the
obtained result is

(21)

Equation (21) shows that (12) does not operate adequately
with dependent variables. Given the previous analysis, it is not
recommended to use (12) for subtractions of fuzzy dependent
numbers.

Considering the first example presented in section B, it is nat-
ural to think that the opposite of is completely dependent of

. Hence, the subtraction between these numbers should be the
fuzzy number . In this sense, the more adequate equation to
perform this calculation must be (11). For the case of the second
example, using (11) implies supposing that fuzzy numbers
and are dependant, while the application of (12) requires to
know that both numbers are independent.

Operations defined in section B are applied without difficulty
to triangular, trapezoidal fuzzy numbers, symmetrical or not.
However, when subtractions are performed applying (11), it is
possible that central values of fuzzy numbers are located out
of its respective support; in these cases, this is adjusted by an
assignation of the interval limit value according to each case.
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Fig. 3. Three-node system.

III. FUZZY LOAD FLOW

A. Theoretical Analysis of the Fuzzy Load Flow

In Section II, two different formulas for the calculation of
fuzzy numbers subtraction were presented. Likewise, it was
demonstrated that (11) should be used when the numbers to
subtract are dependent. Moreover, (12) should be used when
the numbers are independent.

A way of working with dependent variables using (11) is op-
erating with the state variables of the system. In this sense, it is
known that voltage angles of busbars depend on the net power
injected in the nodes. In this way, some calculation regarding
voltage angles implies operating with dependent variables. Tra-
ditionally, a way of facing this problem consists of keeping
equations as a function of independent variables. However, the
result may be quite complicated in some cases, as it is a case
of determining system losses. In this section, a small system is
analyzed, and the feasibility of applying (11) in the calculation
of line flows using the busbar voltage angles is shown. Then, a
three-node radial system is considered, input data in p.u., MVA
base of 100, which is shown in Fig. 3. The membership function
for load at busbar 3 is

(22)

Transmission line series reactances are stated as a function of
parameter “ ”, with . Considering a DC model, the
theoretical solution for the fuzzy load flow should be consistent
with

(23)

This would imply that the membership function of line flows
must have the same values and shape that the load has.

Considering the solution using the conventional fuzzy opera-
tions, with busbar 1 as reference, the set of algebraic equations
that solve the problem is

(24)

(25)

(26)

(27)

In (24)–(26), the subtraction operation is not required. There-
fore, those equations are not subjected to possible calculation
errors. However, in (27), the subtraction operation is required.
Using (12) and applying it in (27), the membership function for
the flow is obtained:

(28)

It is observed that (28) does not match with the theoretical
result given in (23). Basically, the problem is originated when
(12) is applied for the calculation of . This is because (12) is
used for the subtraction , where and are dependent
variables . On the other hand, when applying (11)
to determine (28), the following is obtained:

(29)

In this case, the result matches with the expected values in
theoretical and physical terms. In this way, for this case, (11)
delivers adequate results dealing with dependent state variables.

B. Fuzzy DC Load Flow Using Arithmetical Operations

Considering the previous results, two methodologies to solve
the FLF are analyzed. In the first one, line flows are calculated
applying (11). This means, considering dependent state vari-
ables. In the second one, line flows are calculated from the pur-
chased and injected power, as a function of independent vari-
ables. Once final results for each methodology are obtained, a
comparison between both methodologies is performed looking
to determine the applicability of (11) in FLF studies. In both
cases, it is supposed that the fuzzy input data are independent.

1) Methodology A. DC Load Flow With Dependent Vari-
ables: This methodology corresponds to the classical formu-
lation of linear load flow or DC load flow and consists of the
following steps.

a) Determine the fuzzy active power injection at each
node:

(30)

where corresponds to the vector of fuzzy active power
generated and is the fuzzy load vector. A fully inde-
pendency is assumed between the source of uncertainty
for the considered power injections and loads. This calcu-
lation is performed by means of (12).

b) Calculate the fuzzy voltage phase angle at each node using
the DC load flow approximation:

(31)

c) Calculate the fuzzy active power flows in the system
branches (lines and transformers):

(32)

where is the series reactance of the branch .
In (32), subtraction is calculated with (11), because angles are

dependent variables.
2) Methodology B. DC Load Flow With Independent Vari-

ables: The procedure steps are as follows.
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a) Calculate fuzzy voltage angles at the busbars:

(33)

In (33), (12) is used because each is supposed to be
independent of .

b) Fuzzy active power flows in system branches are calcu-
lated as

(34)

where is the primitive nodal admittance matrix and
the branch-bus incidence matrix. Similarly to (33), (12) is
used to calculate (34).

C. Dependence Between Input Data

When dependencies among input data are detected, the
problem may be faced defining a dependency matrix , which
relates the dependency that could exist among input data. Then

(35)

Dimension of is , where is the number
of independent input data and is the vector of independent
power (bases). For instance, a system is supposed with four
buses where the generated power in bus 2 depends on 20% of
the demand at bus 2, and the consumed power at bus 3 depends
on 50% of the demand at bus 4. Thus, the dependency matrix is

(36)

Later, it is required to modify (33) and (34) to get the problem
in terms of the independent variables; this means

(37)

(38)

This mechanism may be applied, without distinction, to both
methodologies A and B proposed in the previous section. How-
ever, (38) is not necessary for methodology A.

Alternatively to this procedure, there is a second way to solve
the problem. In this alternative, it is not required to use the
dependency matrix . Equation (11) can be directly applied
to operate with dependent variables. However, it is required
to keep identified the variables that are dependent of the inde-
pendent ones. The procedure is explained through an example.
Picking up the example stated on the previous paragraph and
supposing the following membership functions for power
injections/purchases: , ,

, the opera-
tions required to calculate the phase angle in a certain busbar
are given by the following expression:

(39)

In this case, the subtraction between and is per-
formed with (11) given that they are dependent. Finally, the
obtained results in these operations are added. The interesting
thing about this last method (method A) is that it is not required
to know the dependency level to perform the operation. It is just
enough to know if there exists dependency among variables. For
the load flow calculation, it would be required to know the vari-
ables that are supposed to be dependent in order to operate them
in a separate way in the calculation process.

D. Considerations About the Slack Busbar

The consideration of the slack busbar in the FLF involves the
analysis of two main aspects. The first aspect requires to state
how it is going to treat the phase angle of the slack busbar. The
second aspect deals with the treatment of the resulting power
injections in the slack busbar. For the phase angle, the authors
have chosen to define that there is not uncertainty associated
to this state variable; while for the case of power, the choice
of declaring the uncertainty in all the system buses, including
the slack busbar, has been taken. In this sense, the slack busbar
must absorb (balance) the uncertainty produced by all the in-
dependent power injections (purchases) in the system. For the
case of real systems with capacity limits, the input data should
be adjusted in such a way that, if the slack generator does not
have enough capacity, the lacking uncertain power is distributed
among generators that have a capacity surplus. The mechanism
is similar to the one proposed by Dimitrovski and Tomsovic in
[26].

IV. NUMERICAL VALIDATION AND EXAMPLE CASES

In this section, results obtained by computational simulations
are presented. The simulations were performed applying both
models for networks with radial and meshed topologies.

A. Radial System of Five Nodes

This system consists in a radial network of five busbars.
Fuzzy loads are modeled at busbars 2, 3, 4, and 5 with a
unique membership function given by
p.u. and a series reactance of 0.1 p.u. for each line with
an MVA base of 100. Fuzzy generations are modeled in
busbar 4 p.u. and busbar 5 with

p.u. Once the proposed model was
applied, Fig. 4 shows the network with the obtained results.

Table I shows the obtained results for both methods A and
B; in this case, results are the same for both methods. The ob-
tained results for the proposed methods correspond to the the-
oretical result, which can be inferred by visual inspection in
Fig. 4. These results allow concluding that solutions found by
FLF are adjusted to what is expected for this type of problem. In
this way, it is concluded that for radial networks, both proposed
methodologies deliver results consistent with the physical prop-
erties of the problem.

B. Meshed System of Five Nodes

The system shown in Fig. 5 consists in a meshed network
of five nodes [28]. A fuzzy load is supposed for busbars 2, 4,
and 5 with membership functions: ,

, and and a
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Fig. 4. Five-node radial network with results from the proposed methodology.

TABLE I
POWER FLOWS FOR METHOD A AND B IN THE RADIAL SYSTEM

Fig. 5. Five-node meshed network.

fuzzy generation at busbars 1 and 3 with a membership function
. The series reactance for each line

has a value of 0.1 p.u. with an MVA base of 100.
On Tables II and III, results of the line flows for methodolo-

gies A and B are detailed, verifying that even if central values
match up, the extremes of fuzzy numbers are different. It is also
observed that supports of the fuzzy numbers associated to the
line flows are often lower in the case of method A. In other
words, method A provides a more conservative value of uncer-
tainty.

Additionally, MCS were carried out for this case in order to
compare the obtained results with methods A and B, as it is
usually performed in other studies such as in [8] and [10]. In
this case from the obtained results shown in Table IV, it is ob-
served that mean values obtained with MCS are close to the
ones of methods A and B. In order to verify the consistency of

TABLE II
LINE FLOWS FOR METHOD A IN THE MESHED SYSTEM

TABLE III
LINE FLOWS FOR METHOD B IN THE MESHED SYSTEM

Fig. 6. Comparison of cumulative possibility functions for line flow 2–3.
(Left) Method A with MCS. (Right) Method B with MCS.

TABLE IV
LINE FLOWS WITH MONTE CARLO SIMULATION IN THE MESHED SYSTEM

the proposed methods with MCS, the average root mean square
(ARMS) error [29] for each line was calculated. In this context,
comparing method A with MCS, the value of the ARMS av-
erage for all the lines is 0.22% while for method B is 0.34%. In
Fig. 6, cumulative possibility function of line flow 2–3 obtained
by MCS are compared with the ones of the possibility triangular
function. The similarity of both possibility functions (MCS with
methods A and B) is observed, providing an additional consis-
tency proof for the proposed methods.

C. IEEE Reliability Test System of 24 Nodes

With the aim of comparing the obtained results by the pro-
posed algorithms and the results obtained with another fuzzy
method proposed in the international literature, a test system of
real size, IEEE RTS 24, is analyzed. This system is composed
of 24 buses and 38 branches. The used data were obtained from
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TABLE V
LINE FLOWS FOR METHOD A IN THE IEEE RTS SYSTEM

TABLE VI
LINE FLOWS FOR METHOD B IN THE IEEE RTS SYSTEM

TABLE VII
LINE FLOWS FOR METHOD [18] IN THE IEEE RTS SYSTEM

[18], and bus 23 was elected as a slack bus. Tables V–VII show
the obtained results.

In this system, the possibility functions used are trapezoidal
and the terms , , , and correspond
to the cuts , respectively. The results shown
in Tables V and VI have the same behavior observed for the
meshed case of section B. This means that method A presents
a more conservative and bounded uncertainty. Table VII shows
the results obtained in [18]; these are similar to the ones pre-
sented in Table VI (method B), except for line 19–20. The
difference between these methods is attributed to the fact that
the model presented by Matos [18] considers the constraint

, which restricts uncertainty. If this constraint is not
considered, the results are similar to the ones obtained with
method B.

D. Chilean Central Interconnected System

An application of the proposed methodologies in larger real
power systems is also provided. The analysis is performed on
the Central Interconnected System (CIS) of Chile. The CIS
covers an area of 2000 km in length, and supplies a peak load of
6850 MW in 2008. The major load is in Santiago, Chile’s cap-
ital, located in the central part of the system. The annual peak
load growth rate, during the last ten years, has been approxi-
mately 5.0% on average. For modeling purposes, the system
comprises 101 busbars, 110 lines, and 27 transformers. The
uncertainty assigned to each load or power generation located at
the busbars is 2.5%, and trapezoidal functions were considered
for this case. It is supposed that there is independency among
load input data, and also among load and power injections. All
network parameters are available in [30].Tables VIII and IX
show the results obtained by methods A and B for three lines
of the system.

The results present a similar tendency to what was observed in
the systems of sections B and C; this means, the uncertainty ob-
tained for method A is lower than the one obtained in method B.
In these tables, line 18 represents the power line Carrera Pinto-
Diego de Almagro located at the northern part of the system,
which is characterized by power flows in the southern direction

TABLE VIII
LINE FLOWS FOR METHOD A IN THE CIS

TABLE IX
LINE FLOWS FOR METHOD B IN THE CIS

because of the small amount of demand. On the other hand, lines
49 and 96 represent the power lines Quillota-San Luis and Cerro
Navia-Los Almendros, respectively, located near by the major
load center of the system (Santiago). It can observed that for line
18, the uncertainty is lower than the other ones due to its almost
unique dependency on power generations, while lines 49 and 96
show high influence of the variation on the major load center.

Finally, for this real case, comparing the difference of the sup-
ports for all the lines between both methods, an average differ-
ence of 20.8% of method A with respect to method B is ob-
tained. In other words, uncertainties achieved by method B are
systematically greater than method A.

V. CONCLUSIONS

In this work, a novel theoretical analysis of arithmetical fuzzy
operations for the solution of the fuzzy DC load flow problem
is presented. It has been demonstrated that the main conceptual
difficulty when fuzzy operations are performed is the subtrac-
tion operation.

Assuming input data as independent variables, this work is
focused on analyzing the fuzzy subtraction between dependent
state variables of the system, such as voltage phase angle. This
property is strongly related with the dependency of the fuzzy
numbers involved during the DC load flow algorithm opera-
tions. Accordingly, two valid alternative methodologies are pro-
posed to solve the fuzzy DC load flow and applied to case studies
based on radial and meshed networks.

Obtained results are compared to previous related works [18]
showing the consistency of both proposed methodologies. The
case studies allow concluding for radial systems both methods
deliver the same results. On the other hand, for meshed net-
works, uncertainties achieved by method B are systematically
greater than method A. Additionally, method A shows a more
similar behavior compared to the general MCS approach, and it
is not required to know the dependency level among variables
to perform the operation.

Finally, a novel discussion of concepts about two valid al-
ternative ways that deal with the arithmetic operation subtrac-
tion between dependent and independent fuzzy numbers is pre-
sented.

Future research will be focused on the application of the pro-
posed methodologies in the case of the DC load flow with ohmic
losses and the AC load flow, in the context of expansion planning
studies. Besides, more concluding arguments will be studied in
order to recommend one of the proposed methodologies (A or
B).
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