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We investigate the spin wave spectra associated to a vortex domain wall confined within a

ferromagnetic nanotube. Basing our study upon a simple model for the energy functional we obtain

the dispersion relation, the density of states and dissipation induced life-times of the spin wave

excitations in presence of a magnetic domain wall. Our aim is to capture the basics spin wave physics

behind the geometrical confinement of nobel magnetic textures.
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1. Introduction

In the last years, the synthesis of magnetic nanotubes (MNs)
have triggered a new and broad research field, encompassing both
their physical properties and their possible applications in
different areas. Although their magnetic properties are slightly
different than, and potentially advantageous over the ones for
ferromagnetic nanowires, magnetic tubes have been poorly
explored in spite that they exhibits core-free magnetic configura-
tions, leading to more controllable reversal process, ensuring
reproducibility and efficiency. MNs are object of current research
interest not only for the understanding of their basic properties,
also because they exhibit potential applications in nano and bio-
technology [1,2].

From the experimental standpoint there are some methods for
the fabrication of MNs, as hydrogen reduction [3], electrodeposition
[4] and atomic layer deposition [5] into porous membranes. There
are also some fundamental works involved to the knowledge of basic
magnetic properties, as the internal magnetic structure [6–10],
nucleation phenomena [10–13], reversal process [14,15], domain
wall (DW) motion [16] and spin waves [6,17,18]. It has been argued
that the reversal process occurs via nucleation and propagation of
DWs, which may be a transverse wall for tube radius ðRÞ smaller
ll rights reserved.

os).
than a critical radius ðRcðbÞÞ, or a vortex wall for R4RcðbÞ [14]. This
critical radius depends on the magnetic material and on a shape
factor defined as b� Ri=R, with Ri the internal radius of the
nanotube. The critical radius ranges from a few nm to 20 nm
approximately, and then, since MNs currently fabricated have
R4RcðbÞ, we can expect that the nucleation and propagation of a
vortex DW be the dominant magnetization reversal mechanism for
MNs [14].

Elementary excitations in magnetism has been investigated
over decades [19,20] and still being an active and important issue,
mainly because the reduced dimensionality has dramatic con-
sequences in the magnetic behavior, as one can see in the
phenomenology that magnetic thin films presents [19,20]. More
recently, it has been reported that a DW confined within a
ferromagnetic nanostrip can interact with a SW [21–25]. The
authors argued that a SW change their phase as they pass through
a magnetic DW [21,22]. Besides, DWs in magnetic nanostripes can
be manipulated and set in motion via interaction with SWs [23].
According to the theory presented by Le Maho et al. [24], current-
driven DWs might be viewed as the generators of SWs. Besides, in
the case of 2D ferromagnets, Wieser et al. [25] have reported the
existence of SW modes bound inside a DW. Clearly, for the
prospective technological implementation of devices including or
manipulating DWs or SWs, the interplay between these magnetic
entities has to necessarily be understood. The above mentioned
interesting characteristics of SWs and DWs motivate us to
perform this study in the nanotube topology. We are interested
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here in the case that there is a vortex DW within the MN. The
paper is organized as follows: in Section 2 we present the
theoretical background, Section 3 is devoted to the SW excitations,
whereas in Section 4 we discuss the role of Gilbert damping. Our
main results and conclusions are summarized in Section 5.
2. Theoretical background

In this section we describe the evolution of the magnetization
Mðr; tÞ ¼Msmðr; tÞ in a MN with a vortex DW. The main
assumption used in this work is the ideal cylindrical shape of
the nanotubes, which simplifies in great manner the calculations.
To characterize the evolution of M we use the formalism of the
Landau–Lifshitz–Gilbert (LLG) equation [26] in a suitable form.
Then the dispersion relation for the SW and the eigen-modes of
oscillation for the precessing spins can be obtained. Since the field
dynamics we are describing conserve the norm of M, we can use
angular variables Y and F to describe the orientation of the spins
as follows:

mr ¼ sinYðf; zÞcosCðf; zÞ; ð1Þ

mf ¼ sinYðf; zÞsinCðf; zÞ; ð2Þ

mz ¼ cosYðf; zÞ: ð3Þ

Since we focus our interest in MNs with a small thickness, we
have assumed that our variables does not depend on the radial
coordinate.

Landau–Lifshitz equations can be stated for Y and C in the
usual way. However we find it more convenient write them in
terms of canonical variables P ¼C and Q¼ cosY. Written in
those variables, the dissipation-free Landau–Lifshitz equation is
casted in an explicit Hamiltonian representation. Naturally, an
associated action principle can be created in terms of an action
functional whose minima are solutions of the dissipation-free LL
equation. This action can be written as

S¼

Z
dt d3r P _Q � g

Ms
e½M�

� �
; ð4Þ

where g is the gyromagnetic ratio and Ms the saturation
magnetization. The dynamical equations obtained from Eq. (4),
gives the evolution for Y and C, hence the dynamics of the spin
system. Stationary magnetization textures are static minima of
this action. We shall calculate the quadratic fluctuations around
such solutions and identify them as spin-wave excitations. The
main task, to which everything is reduced, is the search of an
accurate expression for the energy functional e½M� and compute
the dynamical equations, this is done in the following sections.

2.1. Basic assumptions and the energy model

First of all, we work under the assumption that the tubes are
confined within ideal cylindrical shapes. Also we assume that
their length L is much bigger than any other relevant length-scale
of the problem. Usual parameters are in the order of
R� 152300 nm, b� 0:820:95 and L� 1230mm [4,5].

We adopt a continuous description of the system defined by
the magnetization Mðr; tÞ. The total magnetic energy is composed
by four contributions [26,27], that is e½M� ¼ exþedþeZþeK where
ex ¼ A

R P
ðrmiÞ

2 dv is the exchange energy, with mi ¼Mi=Ms

(i¼ x; y; z) the cartesian components of the magnetization normal-
ized to the saturation value Ms, and A the stiffness constant. The
dipolar contribution is written as ed ¼ ðm0=2Þ

R
M � rU dv, with

U the magnetostatic potential, whereas eZ is the Zeeman term. The
last contribution eK comes from anisotropy. Depending on the
sample preparation and experimental details, the anisotropy
contribution can be either a magnetocrystalline anisotropy (cubic
or uniaxial), or a spin–orbit based surface anisotropy, or both.
Surface anisotropy can be influential in the precise results, and
this contribution can be easily included within our theory.
However, since we lack experimental information on the role of
surface anisotropy in MNs we regard the quantitative tuning that
could be achieved with its inclusion as inappropriate at this stage.
Therefore, we neglect surface anisotropy in our calculations. We
also take advantage of the geometry of the MN neglecting the
volumetric term of the dipolar energy due to the negligible
thickness of the tube. Also the dipolar surface energy is captured
by an anisotropy like term. This shape anisotropy is modeled by a
sum of infinitesimal capacitors with charge proportional to the
local magnetic charge. For the capacitors we assume that the field
lines are closed very tightly from the inner surface toward to the
outer one. After these considerations and setting aside the
external field contribution, the energy can be cast in the form:

e½M� ¼
Z

dv A
X
ðrmiÞ

2
� Kðẑ �mÞ2

h i
þ

As

2p‘2

Z
dz dfðq̂ �mÞ2; ð5Þ

where s¼ pR2ð1� b2
Þ is the tube cross section, K the uniaxial

anisotropy constant and ‘�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2A=m0M2

s

p
stands for the exchange

length of the given material. We are now in position to calculate
the explicit form of the terms involved in the energy functional. By
using the expressions for the magnetization field, the energy
functional can be expressed as

e½Y;C� ¼ sA

2p

Z
E½Y;C�dz df; ð6Þ

where

E ¼ ð@zYÞ2þ
1

b2
ð@fYÞ2

�
1

W2
cos2Yþ ð@zCÞ2þ

1

‘2
cos2Cþ

1

b2
ð1þ@fCÞ2

� �
sin2Y: ð7Þ

Here we have defined 1=b2 � 2plogð1=bÞ=s, whereas W �
ffiffiffiffiffiffiffiffiffi
A=K

p
stands for the width of a DW due to the interplay of the exchange
and uniaxial anisotropy energies in a bulk sample.

2.2. Linearization of the equations of motion

With the above energy functional in hand, we can find the
equilibrium states or investigate the SW normal modes as well. To
do this we need to expand the magnetization around a minimal
energy configuration, which is achieved by doing
Y-Y0ðz;fÞþYðz;fÞ and C-C0ðz;fÞþCðz;fÞ, where Y0ðz;fÞ
and C0ðz;fÞ stands for the minimal energy configuration. The
zeroth order correction in the energy functional does not
contribute with anything new, whereas the first order correction
give us the minimum of the energy functional. Thus, we can
write the energy functional as e½Y;C� ¼ sA=2p

R
fEð0Þ þEð1Þ þ

Eð2Þ þ � � �gdz df, where Efig is the i-th order contribution. The first
order contribution can be written as Eð1Þ ¼ Eð1Þex þE

ð1Þ
ani, where Eð1Þex

and Eð1Þani are displayed in Appendix A. One of the solutions of the
associated Euler equation is a vortex wall [14–16] given by

cosY0 ¼ tanhðz=lÞ; C0 ¼ p=2; ð8Þ

where 1=l2
¼ 1=b2þ1=W2 is a measure of the DW width and was

obtained from energy minimization. From this point onward we
shall use this width as the basic unit of length. As mentioned
earlier, depending on the geometrical parameters, the MN will
support different types of DWs [14,16]. In the case of vortex DWs
the magnetization goes from pointing upwards to downward,
through a vortex-like structure. In the center of the wall (at z¼ z0),
the magnetization wraps around the cylinder with vanishing
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Fig. 1. Illustration of a vortex domain wall confined in a ferromagnetic nanotube.

Fig. 2. Plot of the dispersion relation for the mode without transversal excitations,

m¼ 0. MN parameters are: R¼ 25 nm, b¼ 0:9, and ‘¼ l=10.
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component along the z axis. Note that a static vortex wall in a MN
does not have any radial component of the magnetization,
avoiding the creation of magnetic charges at the tube cylindrical
surfaces, and then reducing the magnetostatic energy. On the
other hand the curling of the magnetization increments the
exchange energy, which is increased if the tube radius is small
enough, and the resultant DW structure is a transverse DW
[14,16]. Recent calculations show that for MNs with radius bigger
than a few exchange lengths, the energetically favorable structure
is a vortex DW [14,16], as the reader can see schematically in
Fig. 1.

From the second order term in the energy functional we can
investigate the SW normal modes of the system. Their dynamics
could be analyzed considering or not the magnetic DW.
3. Spin wave excitations

In this section we will obtain the SW spectra associated to a
vortex DW confined within an infinite nanotube. Our aim is to
capture the basics physics behind the geometrical confinement of
nobel magnetic textures, as the vortex wall. This can be done by
inspection of the second order term of the energy functional,
which can be written as, Eð2Þ ¼ Eð2Þex þE

ð2Þ
ani, where Eð2Þex and Eð2Þani are

displayed in Appendix A. As long as we restrict the fields to be
small in magnitude we can write the Fourier expansion:

Y ¼
X
m
YmðzÞe

imf; ð9Þ

and the respective expression for C. The integration over the
variable f clearly reduces the energy into a sum of uncoupled
m�modes:

Eð2Þ ¼
X
m
Eð2Þm ; ð10Þ
where the expression for Eð2Þm is displayed in Appendix A. For each
m�mode the dynamical contribution (or Berry phase) to the
action is given by

P _Q ¼
X
m
Ym _C

�

m: ð11Þ

Away from the DW, large fluctuations of the angle C become
irrelevant, since the actual physical field mðrÞ does not change
along with them. This, of course, correspond to the well known
singularity of the polar coordinates representation and does not
represent any intrinsic feature of the physics at hand. The actual
physical variable, however, can naturally be isolated through the
change of variables:

Lm ¼CmsinY0; ð12Þ

that will be used from this point onward. The equation of motion
for the SWs reads

� _Lm ¼LmYm � 2imðl2=b2ÞtanhðzÞLm; ð13Þ

_Ym ¼ ðLm � l2=‘2ÞLmþ2imðl2=b2ÞtanhðzÞYm; ð14Þ

where we have made:

Lm ¼ @2
z � m

2l2=b2 � 1þ2sech2z: ð15Þ

In these equations and in the following manipulations we have
chosen l as the basic unit of length and 1=t� gA=Msl

2 as the unit
of time. Our main task of characterizing the SWs of a MN reduces
now to solve the eigen-problem given by Eqs. (13) and (14).
A special note is deserved by the rather interesting close analogy
between the resulting equations and the well known time
dependent Bogoliubov or Bogoliubov–de Gennes equations [28].

3.1. Exact solution for m¼ 0

The special case m¼ 0, correspond essentially to a 1D-system
and admits an straightforward solution, along the same lines of
Refs. [29,30]. The equation is simply:

� _L
_Y

 !
¼

0 L0

L0 � d2 0

 !
L
Y

� �
; ð16Þ

in which L0 ¼ @
2
z � 1þ2sech2z and d2 � l2=‘2. If L and Y are

chosen to be eigenfunctions of L0 with eigenvalue �s, it follows
that:

€Y ¼ � sðsþd2ÞY; ð17Þ

€L ¼ � sðsþd2ÞL: ð18Þ

To obtain the eigenvalues and eigenvectors of L0 we recognize the
form of a Schrödinger equation with a Pöschl–Teller type potential
with a specific selection of parameters. This kind of equations has
been observed recently by Wieser et al. [25] for one dimensional
systems with a transverse DW. We note, however that, for this
specific set of parameters, bound states localized around the DW
structure are not allowed. The diagonalization of such system can
be found in standard text of elementary quantum mechanics [31]
in terms of associated Legendre polynomials. After some elemen-
tary manipulations, the SW eigenstates are given by

LkðzÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2pð1þk2Þ
p eikzð�ikþtanhzÞ; ð19Þ

where the dimensionless wave vector has been normalized to 1=l.
The dispersion relation oðkÞ is obtained by substituting
L¼LðzÞe�iot in Eq. (18),

o2
wall ¼ ðk

2þ1Þðk2þ1þðl=‘Þ2Þ: ð20Þ
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Fig. 3. The left panel depicts the SW energy spectrum (Eq. (25)) showing the local energy density as a function of the frequency of the mode. Notice that the vortex DW is

located at the center of the tube (at z¼ 0). The right panel shows the power density spectrum, defined in the text through Eq. (24). It correspond to the momentum

representation of the eigen-mode.
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Now from Eq. (16) the relation between L and Y is established:

Y¼ � i
owall

s L¼ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2þ1þðl=‘Þ2

k2þ1

s
L: ð21Þ

Eqs. (19) and (21) fully determine the behavior of the axially
symmetric spin-wave excitations. From them we can clearly
recognize a k-dependent phase shift of the spin-wave modes as
they pass across the domain wall, in agreement with recent
articles [21,22,25]. The value of the phase shift fk is given by
tanfk ¼ 2k=ðk2 � 1Þ.
Fig. 4. Net SW density of states showing the aggregated spectrum along the

momentum axis. The plots are based on the case with R¼ 25 nm, b¼ 0:9, and

‘¼ l=10. Note the relation of the branches here calculated and the ones of Fig. 2.
3.2. Solutions in the general case ma0

Now we look back into Eqs. (13) and (14) and found the general
dispersion relation for m40. To do this, we take the asymptotic
limit ðz-1Þ, and we obtain

� _L
_Y

 !
¼

�2iml
2

b2
�Lð1Þm

Lð1Þm �
l2

‘2
2iml

2

b2

0
BBB@

1
CCCA L

Y

� �
; ð22Þ

where Lð1Þm ¼ @
2
z � m2l2=b2 � 1. The last equation can be easily

diagonalized, finding the following dispersion relation,

o2 ¼ k2þ1þm2 l
2

b2

 !
k2þ1þm2 l

2

b2
þ
l2

‘2

 !
þ4m2 l

4

b4
: ð23Þ

We remark that if we take the limit ðz-�1Þ, the same results
are obtained. Naturally by using m¼ 0 in Eq. (23), the expression
(20) is regained.

The task of finding the eigenmodes of the SW spectrum cannot
be done analytically, and then we resort on a numerical approach.
For each m�mode we solve Eqs. (13) and (14) with the harmonic
time dependence. This is simply an eigenvalue equation that in
the discretized version can be solved by diagonalizing a matrix.
We label the different eigenvalues with the index s. The eigen-
frequencies are then labeled by oms, and the eigen-modes by the
pair YmsðzÞ and LmsðzÞ. To identify a momentum dependence of
the eigenvalues we perform a numerical Fourier transform.

To summarize the main results of our calculations we present
two distinct plots for the power density spectrum and the energy
density spectrum. The first can be defined as

rðk;oÞ ¼
X
ms

dðo�omsÞðjYmsðkÞj
2þjLmsðkÞj

2Þ; ð24Þ

while the energy density spectrum is defined as

rEðz;oÞ ¼
X
ms

dðo�omsÞEmsðzÞ: ð25Þ

The density spectra just defined, along with the density of states
DðoÞ ¼

P
krðk;oÞ, are displayed in Figs. 3 and 4, respectively.
4. Effects of Gilbert damping

To account for damping effects we must leave the simple
action principle provided by Eq. (4). The action still is given by Eq.
(4) but must be complemented by a dissipative function [32], that
in the case of the LLG phenomenology is

R¼ a
2

Z
dt d3x

_Q2

1�Q2
þð1�Q2

Þ _P2

 !
: ð26Þ
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Fig. 5. Power density spectrum, defined in the text through Eq. (24). It correspond

to the momentum representation of the eigen-mode. The plots are based on the

case with a¼ 0:1, R¼ 25 nm, b¼ 0:9 and ‘¼ l=10. Note the relation of the

branches here calculated and the ones of Fig. 2. The thickness of the branches is

related to the life-time of the excitations.
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The equations of motion can be cast in the form:

dS
dQ ¼

dR
d _Q

and
dS
dP ¼

dR
d _P

: ð27Þ

For the sake of simplicity we will focus the discussion again in the
simpler case of m¼ 0. The analysis is completely analogous in the
case of ma0, but the algebra is more involved. The only effect of
the Gilbert damping is the addition of a dissipation term to the
equations, which now take the form:

� _S
_Y

 !
¼

0 L0

L0 � d2 0

 !
S
Y

� �
þ

0 a
a 0

� � _S
_Y

 !
: ð28Þ

Following the path of previous sections, we look for solutions in
terms of eigenstates of L0 and we obtain:

io ðk2þ1þ iaoÞ
ðk2þ1þd2þ iaoÞ �io

 !
S
Y

� �
¼ 0: ð29Þ

This equation can be easily diagonalized and the resulting
dispersion relation can be expressed as:

ða2þ1Þo¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk2þ1Þðd2þk2þ1Þ � d4a2=4

q
þ iaðd2=2þk2þ1Þ:

ð30Þ

Clearly, by setting a¼ 0 the above dispersion relation (see Eq. (20)) is
regained. The complex term in the frequency accounts for the energy
dissipation, manifesting itself in the form of a life-time for the spin-
waves.

The calculation for the case of ma0 goes along the same lines.
We start by numerically diagonalizing the discrete version of the
problem and then display the frequency–momentum dependence.
We restrict ourselves just to show the final results summarized in
the power density spectrum shown in Fig. 5. The width of the lines
here convey the information of the life-time for each mode.
5. Final remarks

In this paper we have work out the spin wave spectrum of
isolated ferromagnetic nanotubes supporting vortex domain
wall configurations. By taking advantage of the reduced
thickness of the tubes we can reliably simplify the field degrees
of freedom to those on the cylindrical shell. The cylindrical
geometry of those systems provides a natural way to partially
diagonalize the SW system in to several quasi-one dimensional
subsystems labeled by the axial angle dependence mode. We
have derived the small amplitude SW spectrum as a function of
the reduced 1D wave vector. Two effects are the main results of
the interplay of the SWs and the magnetic DW. First, SWs are
scattered by the DW, and this scattering results in phase shifts
associated with SWs moving to and from the domain wall. The
other result is the increment of the band gap for spin waves.
This effect is related to the higher energy associated with
perturbing a DW. Our results are based in the exact solution of
the linearized Landau–Lifshitz–Gilbert equation.
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Appendix A

In what follows we show explicitly the first and second order
terms in the expansion of the energy functional. The first order
exchange term can be cast in the form:

Eð1Þex ¼ 2ð@zY0Þð@zYÞþð2=b2Þð@fY0Þð@fYÞ

þfð@zC0Þ
2
þð1=b2Þð1þ@fC0Þ

2
gYsinð2Y0Þ

þ2ð@zC0Þð@zCÞþð2=b2Þð1þ@fC0Þð@fCÞ; ð31Þ

while the first order anisotropy term reduces to

Eð1Þani ¼ ð1=W2þcos2ðC0Þ=‘
2ÞYsinð2Y0Þ

�ð1=‘2ÞCsinð2C0ÞsinY0: ð32Þ

The corresponding second order terms are given by

Eð2Þex ¼ ðsA=pÞfð@zYÞ2þsin2Y0ð@zCÞ2g

þðsA=pb2Þfð@fYÞ2þcosð2Y0ÞY
2

þsin2Y0ð@fCÞ2þ2sinð2Y0ÞY@fCg; ð33Þ

and

Eð2Þani ¼ cosð2Y0ÞY
2
=W2 � sin2Y0C

2
=‘2: ð34Þ

Finally, the term Eð2Þm in Eq. (10) is given by

Eð2Þm
2sA
¼ j@zYmj

2þsin2Y0j@zCmj
2

þð1=b2Þfm2jYmj
2þcosð2Y0ÞjYmj

2

þsin2
ðY0Þm2jCmj

2þ2isinð2Y0ÞYmC�mg

þcosð2Y0ÞjYmj
2=W2 � sin2Y0jCmj

2=‘2: ð35Þ
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[16] P. Landeros, A.S. Núñez, Domain wall motion on ferromagnetic nanotubes,
submitted.

[17] H. Leblond, V. Veerakumar, Phys. Rev. B 70 (2004) 134413.
[18] T.M. Nguyen, M.G. Cottam, Surface Sci. 600 (2006) 4151–4154.
[19] M.G. Cottam, Linear and Nonlinear Spin Waves in Magnetic Films and

Superlattices, World Scientific, Singapore, 1994.
[20] S.O. Demokritov, B. Hillebrands, Spin waves in laterally confined magnetic

structures, in: B. Hillebrands, K. Ounadjela (Eds.), Spin Dynamics in Confined
Magnetic Structures, vol. I, Springer, Berlin, Heidelberg, 2002.

[21] R. Hertel, W. Wulfhekel, J. Kirschner, Phys. Rev. Lett. 93 (2004) 257202.
[22] C. Bayer, H. Schultheiss, B. Hillebrands, R.L. Stamps, IEEE Trans. Magn. 41

(2005) 3094.
[23] D.S. Han, S.K. Kim, J.Y. Lee, S.J. Hermsdoerfer, H. Schultheiss, B. Leven, B.

Hillebrands, Appl. Phys. Lett. 94 (2009) 112502.
[24] Y.L. Maho, J.V. Kim, G. Tatara, Phys. Rev. B 79 (2009) 174404.
[25] R. Wieser, E.Y. Vedmedenko, R. Wiesendanger, Phys. Rev. B 79 (2009) 144412.
[26] A. Aharoni, Introduction to the Theory of Ferromagnetism, Clarendon Press,

Oxford, 1996.
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