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Abstract

Let Ω be a bounded, smooth domain in R
2. We consider critical points of the Trudinger–Moser type

functional Jλ(u) = 1
2

∫
Ω |∇u|2 − λ

2

∫
Ω eu2

in H 1
0 (Ω), namely solutions of the boundary value problem

�u + λueu2 = 0 with homogeneous Dirichlet boundary conditions, where λ > 0 is a small parameter.
Given k � 1 we find conditions under which there exists a solution uλ which blows up at exactly k points in
Ω as λ → 0 and Jλ(uλ) → 2kπ . We find that at least one such solution always exists if k = 2 and Ω is not
simply connected. If Ω has d � 1 holes, in addition d + 1 bubbling solutions with k = 1 exist. These results
are existence counterparts of one by Druet in [O. Druet, Multibump analysis in dimension 2: Quantification
of blow-up levels, Duke Math. J. 132 (2) (2006) 217–269] which classifies asymptotic bounded energy
levels of blow-up solutions for a class of nonlinearities of critical exponential growth, including this one as
a prototype case.
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1. Introduction and statement of main results

Let Ω be a bounded domain in R
2 with smooth boundary and λ > 0. This paper is concerned

with the analysis of solutions to the boundary value problem

{
�u + λueu2 = 0, u > 0 in Ω,

u = 0 on ∂Ω,
(1.1)

where λ > 0 is a small parameter. This problem is the Euler–Lagrange equation for the functional

Jλ(u) = 1

2

∫
Ω

|∇u|2 − λ

2

∫
Ω

eu2
, u ∈ H 1

0 (Ω), (1.2)

which corresponds to the free energy associated to the critical Trudinger embedding (in the sense
of Orlicz spaces) [18,22,23]

H 1
0 (Ω) � u �−→ eu2 ∈ Lp(Ω) ∀p � 1,

which is connected to the critical Trudinger–Moser inequality

C(Ω) = sup

{∫
Ω

e4πu2
/u ∈ H 1

0 (Ω),

∫
Ω

|∇u|2 = 1

}
< +∞,

[17]. Observe that, in general, critical points of the above constrained variational problem satisfy,
after a simple scaling, an equation of the form (1.1). The Trudinger–Moser embedding is critical,
involving loss of compactness analogous to that of the Sobolev embeddings in dimension N � 3,

H 1
0 (Ω) � u �−→ u ∈ L

2N
N−2 (Ω),

for which the problem analogous to (1.1) is

{
�u + λu + u

N+2
N−2 = 0, u > 0 in Ω,

u = 0 on ∂Ω,
(1.3)

for λ � 0, whose associated energy is

Iλ(u) = 1

2

∫
Ω

|∇u|2 − λ

2

∫
Ω

u2 − N − 2

2N

∫
Ω

|u| 2N
N−2 , u ∈ H 1

0 (Ω).

Loss of compactness in H 1
0 (Ω) for the functionals Jλ or Iλ translates into the presence of non-

convergent Palais–Smale (PS) sequences. Let us consider for instance a sequence λn → λ0 � 0,
and a sequence un with ∇Iλn(un) → 0, Iλn(un) → c. Then, by the result in [20], un decomposes
asymptotically into a finite sum of blowing-up standard bubbles and a critical point u0 of Iλ0

yielding in particular that
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Iλn(un) = Iλ0(u0) + kSN + o(1) for some k � 1,

where SN is a positive constant. Existence of solutions, namely critical points of Iλ with the above
property and u0 = 0 is known under suitable assumptions, see [7,9,16,19]. For the Trudinger–
Moser functional (1.2), a clean classification of all PS sequences for Jλ does not seem possible
after the results in [3]. Actually PS holds as long as c < 2π , see [1,11]. On the other hand, for
solutions more is known. In [2,14] a class of nonlinearities is considered for which the one in
(1.1) may be regarded as the prototype. From the result in [14], we have the following fact:

Assume that un solves problem (1.1) for λ = λn, with Jλn(un) bounded and λn → 0. Then,
passing to a subsequence, there is an integer k � 0 such that

Jλn(un) = 2kπ + o(1). (1.4)

When k = 1 a more precise answer is obtained in [2]: the solution un has for large n only one
isolated maximum, which blows up around a point x0 ∈ Ω which is characterized as follows: Let
G(x,y) be Green’s function of the problem

−�xG = 4πδy(x), x ∈ Ω,

G(x, y) = 0, x ∈ ∂Ω,

and H its regular part defined as

H(x,y) = 4 log
1

|x − y| − G(x,y). (1.5)

Then from [2], it follows that x0 is a critical point of Robin’s function x �→ H(x,x).
It is natural to ask whether or not solutions satisfying (1.4) exist. In fact the existence and

multiplicity question seems much more difficult than its critical Sobolev exponent counterpart.
Some results are known: From the result in [3], it follows that there is a λ0 > 0 such that a
solution to (1.1) exists whenever 0 < λ < λ0 (this is in fact true for a larger class of nonlinearities
with critical exponential growth). By construction this solution falls, as λ → 0, into the bubbling
category (1.4) with k = 1. No solution other than this one is known. Struwe in [21] built in the
case of a domain with a sufficiently small hole (in the sense of Bahri and Coron [6,10]) a solution
taking advantage of the presence of topology. This solution exists for a class of nonlinearities,
perturbation of the Trudinger–Moser one, that also include λueu2−u for which no solution exists
for small λ, in a disk, see [4,12]. It is reasonable to believe that the construction of Struwe in
reality produces a second solution of Eq. (1.1), but this is so far not known.

In this paper we will address the issue of existence and multiplicity of solutions of problem
(1.1) when Ω is not contractible to a point. More precisely, we provide conditions for the exis-
tence of solutions of problem (1.1) for small λ which satisfy the bubbling condition (1.4), at the
same time giving a precise characterization of its bubbling location. In particular our main result
implies the following: if Ω has a hole “of any size”, namely Ω is not simply connected, then a
solution blowing up at exactly two points and satisfying property (1.4) with k = 2 indeed exists.
We expect this result to be true for any k � 1, provided that the domain is not contractible to a
point.
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Theorem 1. Assume that Ω is not simply connected. Then there exists a family of solutions uλ to
problem (1.1) such that

1

2

∫
Ω

|∇uλ|2 − λ

2

∫
Ω

eu2
λ = 4π + o(1)

where o(1) → 0 as λ → 0.

The location of the bubbling points (which are exactly two) for the solutions in this result can
be thoroughly described. To this end, let us introduce the following functional of k distinct points
ξ1, ξ2, . . . , ξk ∈ Ω and k positive numbers m1,m2, . . . ,mk ,

ϕk(ξ,m) = b

k∑
j=1

m2
j + 2

k∑
j=1

m2
j logm2

j

+
k∑

j=1

H(ξj , ξj )m
2
j −

∑
i 
=j

G(ξi, ξj )mimj . (1.6)

Here G and H are the Green function for the Laplacian on Ω with Dirichlet boundary condition
and its regular part, as defined above and b is an absolute constant which we will specify later.
As λ approaches 0, the solution in Theorem 1 satisfies, up to subsequences,

uλ(x) ∼ √
λ

2∑
j=1

mjG(x, ξj )

where (m1,m2, ξ1, ξ2) is a critical point of ϕ2.
Let us consider an open set D compactly contained in the domain of the functional ϕk , namely

D̄ ⊂ {
(ξ,m) ∈ Ωk × R

k+/ξi 
= ξj ∀i 
= j
}
.

We say that ϕk has a stable critical point situation if there exists a δ > 0 such that for any
g ∈ C1(D̄) with ‖g‖C1(D̄) < δ, the perturbed functional ϕk + g has a critical point in D.

Theorem 2. Let k � 1 and assume that there is an open set D where ϕk has a stable critical
point situation. Then, for all small λ > 0 there exists a solution uλ of problem (1.1) such that

1

2

∫
Ω

|∇uλ|2 − λ

2

∫
Ω

eu2
λ = 2kπ + o(1)

where o(1) → 0 as λ → 0. Moreover, passing to a subsequence, there exists (ξ,m) ∈ D such that
∇ϕk(ξ,m) = 0 and
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uλ(x) = √
λ

(
k∑

j=1

mjG(x, ξj ) + o(1)

)

where o(1) → 0 on each compact subset of Ω̄ \ {ξ1, . . . , ξk}.

As a direct consequence of the above result, we find in addition that the presence of topol-
ogy of the domain induces multiplicity of solutions with a single blow-up point: when k = 1
a bubbling solution around a critical point of the function H(x,x) exists. It is standard that
H(x,x) → +∞ as x → ∂Ω , thus we always have such a solution bubbling near a global mini-
mizer of this function. In addition, if Ω is not simply connected, Ljusternik–Schnirelmann theory
yields the presence of at least cat(Ω) = d + 1 such solutions, where d is the number of holes
of Ω .

Theorem 1 follows by showing via a topological construction that ϕ2 has a stable critical
point situation. We strongly believe that such a situation is in reality present for ϕk for any k � 3,
but the construction appears to be much harder. It is reasonable to conjecture that any family of
solutions satisfying (1.4) must have the concentration behavior described in the above theorem,
in further precision of the result in [14].

It is interesting to mention the link of the above discovered concentration phenomena with
the related Liouville equation �u + λeu = 0 under Dirichlet boundary condition in a bounded
domain Ω in R

2, see [8,13,15] and references therein. The fine blow-up structure very close to
the bubbling points is similar to that in the present problem however scalings and intermediate
regimes are much more subtle here. Our choice of first approximations to bubbling solutions is
inspired by the discovery of the blow-up shapes first in [5] then in [2,14]. However more accurate
information is needed, in particular the discovery of the role of the distinct weights mj , which
marks a strong difference with the blow-up structure in Liouville’s equation. As in other elliptic
problems involving point concentration phenomena, our strategy of proof involves linearization
about a first approximation, to later reduce the problem to a finite dimensional variational one
of adjusting the bubbling centers and corresponding weights. The critical character of this non-
linearity is very much reflected in the delicate error terms left by the first approximation, which
makes the linear elliptic theory needed fairly subtle because of the multiple-regime in the error
size. While we restrict our investigation here to the nonlinearity λueu2

, we expect that similar
analysis can be carried out for a broader class of critical exponential growth nonlinearities. For
simplicity in the exposition we shall only consider the prototype case.

2. A first approximation and outline of the argument

It is convenient for our purposes to rewrite problem (1.1) by replacing u = √
λũ, so that the

problem becomes

{
�ũ + λũeλũ2 = 0, u > 0 in Ω,

ũ = 0 on ∂Ω.
(2.1)

Let us consider k distinct points ξ1, ξ2, . . . , ξk in Ω and k positive numbers m1,m2, . . . ,mk .
We choose a sufficiently small but fixed number δ > 0 and assume that for j = 1, . . . , k,
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dist(ξj , ∂Ω) � δ, |ξl − ξj | � δ for l 
= j, δ < mj <
1

δ
(2.2)

for some given δ > 0.
We shall build an approximation Ũ (x) which away from the points ξj satisfies, in agreement

with the statement of Theorem 1,

Ũ (x) =
k∑

j=1

mjG(x, ξj ) + o(1) as λ → 0. (2.3)

Near each point ξj , we consider positive numbers μj , εj , to be chosen in dependence from the
values of λ, ξ and m, and the function

Ũ(x) =
k∑

j=1

mj

[
log

1

(μ2
j ε

2
j + |x − ξj |2)2

− Hj(x)

]
(2.4)

where Hj is a harmonic function so that the boundary condition zero is satisfied, that is

{
�Hj = 0, in Ω,

Hj (x) = log 1
(μ2

j ε2
j +|x−ξj |2)2 , for x ∈ ∂Ω.

Let us observe that from elliptic estimates

Hj(x) = H(x, ξj ) + O
(
ε2
jμ

2
j

)
,

uniformly in Ω , where H is the regular part of Green’s function with zero Dirichlet boundary
condition in Ω , as defined in (1.5). Hence

log
1

(μ2
j ε

2
j + |x − ξj |2)2

− Hj(x) = G(x, ξj ) + O
(
ε2
jμ

2
j

)
, (2.5)

and the desired outer expansion (2.3) indeed holds for this Ũ . Let us examine Ũ in a small
neighborhood of a given ξj . We write, for |x − ξj | < δ, with sufficiently small but fixed δ,

Ũ (x) = mj

(
wj(x) + log ε−4

j + βj + θ(x)
)

(2.6)

where

mjβj := −mj log 8μ2
j − mjH(ξj , ξj ) +

∑
i 
=j

miG(ξi, ξj ),

mj θ(x) = O
(|x − ξj |

) +
k∑

i=1

O
(
ε2
i

)

and
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wj(x) := wμj

(
x − ξj

εj

)

with

wμ(y) := log
8μ2

(μ2 + |y|2)2
. (2.7)

The functions wμ, μ > 0, are the radially symmetric solutions of the Liouville equation

�w + ew = 0 in R
2.

The idea is to choose the numbers μj , εj in such a way that the error of approximation for Ũ is
small around each point ξj . This error is by definition

R(x) = �Ũ + f (Ũ). (2.8)

Here and in what follows f denotes the nonlinearity

f (ũ) = λũeλũ2
. (2.9)

Let us observe that for |x − ξj | < δ we have

−�Ũ(x) = mjε
−2
j ewj +

k∑
i=1

O
(
ε2
i

)
.

On the other hand

f (Ũ) =
(

λmj log
1

ε4
j

+ λmj

(
wj + O(1)

))

× e
2m2

j λ(βj +θ) log 1
ε4
j e

2m2
j λ(log 1

ε4
j

+βj )wj

e
λw2

j m2
j e

λm2
j log2 1

ε4
j e

λm2
j (βj +θ)2+2λm2

j θwj .

Let us make the following choice of εj ,

2m2
j λ

(
log

1

ε4
j

+ βj

)
= 1, (2.10)

so that

λŨ = 1

2mj

(
1 + 2m2

j λ
(
wj + O(1)

))
(2.11)

and

eλŨ2 = eβj /2ε−2ewj e
λm2

j w2
j
(
1 + O(θ)

)(
1 + O(λ)wj

)
. (2.12)
j
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Thus, in order to match f (Ũ) and −�Ũ at main order near ξj we must fix μj so that the number
βj satisfies

eβj /2 = 2m2
j , (2.13)

namely we require that μj satisfies

log 8μ2
j = −2 log 2m2

j − H(ξj , ξj ) +
∑
i 
=j

mim
−1
j G(ξi, ξj ). (2.14)

Then we get

f (Ũ) = mj

(
1 + 2λm2

jwj + O(λ)
)
ewj ε−2

j e
λm2

j w2
j
(
1 + O(θ)

)(
1 + O(λ)wj

)
.

Now, it is easily checked that there is a C > 0 such that for all |x − ξj | < δ we have

∣∣θ(x)
∣∣ = O

(
|x − ξj | +

∑
i

ε2
i

)
� C

log ε−4
j

(
log

(
1 + |x − ξj |

εj

)
+ 1

)

and hence

(
1 + O(θ)

)(
1 + O(λwj )

)
�

(
1 + Cλ|wj |

)
.

Hence, the error of approximation is given near ξj by

R(x) = mjε
−2
j ewj

{
1 − (

1 + 2m2
j λwj + O(λ)

)
e
m2

j λw2
j
(
1 + O(λwj )

)} +
∑

i

O
(
ε2
i

)
.

Observe that for |x − ξj | = O(ε) we have that R(x) ∼ λε−2
j ewj . On the other hand, for

|x−ξj | > δ for all j we clearly have that |R(x)| � Cλ. Hence the error of approximation satisfies
the global bound

∣∣R(x)
∣∣ � Cλρ(x),

where

ρ(x) :=
k∑

j=1

ρiχBδ(ξj )(x) + 1;

here χ denotes the characteristic function and

ρj := 1

2m2λ

{(
1 + 2m2

j λ(wj + 1)
)(

1 + λ
(
1 + |wj |

))
e
m2

j λw2
j − 1

}
ε−2
j ewj .
j
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For later reference let us notice that

ρj (x) = cγj

{(
1 + 1

γj

(wj + 1)

)(
1 + 1

γj

(
1 + |wj |

))
e

w2
j

2γj − 1

}
ε−2
j ewj , (2.15)

where γj = log ε−4
j .

This motivates us to introduce the following L∞-weighted norm for bounded functions de-
fined in Ω . Let us set

ρ(x) :=
k∑

j=1

ρiχBδ(ξj )(x) + 1

and define

‖h‖∗ = sup
x∈Ω

ρ(x)−1
∣∣h(x)

∣∣, (2.16)

so that

‖R‖∗ � Cλ. (2.17)

In the rest of this paper we will look for a solution ũ of problem (2.1) of the form ũ = Ũ + φ,
where Ũ is defined as above in (2.4), and we aim at finding a solution for which φ is small,
provided that the points ξj and scalars mj are suitably chosen.

For small φ it is natural to rewrite problem (2.1) as a nonlinear perturbation of its linearization,
namely,

{
�φ + f ′(Ũ)φ = −R − [f (Ũ + φ) − f (Ũ) − f ′(Ũ)φ] in Ω,

φ = 0 on ∂Ω.
(2.18)

Let us observe that

f ′(Ũ) = λ
(
2λŨ2 + 1

)
eλŨ2 = O(λ)

away from the points ξj , so the linearized operator is a small perturbation of the Laplacian away
from the concentration points. Using relations (2.11), (2.12), similarly to the computation for
f (Ũ) we find that very close to the points ξj , at least for distances O(εj ) from ξj , we have

f ′(Ũ ) ≈ ε−2
j ewj .

Moreover, repeating the corresponding computation for R, we readily get that

∥∥∥∥∥f ′(Ũ ) −
k∑

ε−2
j ewj

∥∥∥∥∥ � Cλ. (2.19)

j=1 ∗
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For this reason, it is more convenient to rewrite problem (2.18) in the form

{
L(φ) := �φ + [∑k

j=1 ε−2
j ewj (x)]φ = −[R + N(φ)], in Ω,

φ = 0, on ∂Ω,
(2.20)

where

N(φ) = [
f (Ũ + φ) − f (Ũ) − f ′(Ũ )φ

] +
[
f ′(Ũ) −

k∑
j=1

ε−2
j eωj (x)

]
φ. (2.21)

What we hope for is to find a small solution φ to problem (2.21) which respects the size
just defined for the error, namely so that ‖φ‖∞ � Cλ. Let us observe that the function ε−2

j ewj

is actually very concentrated near ξj : It has size O(ε2
j ) away from the point, while it globally

integrates to 8π in R
2. L is therefore a nontrivial perturbation of the Laplacian near the points

while it is essentially this operator in most of the domain. Unlike the Laplacian, the operator L

has an approximate kernel which in principle prevents any form of bounded invertibility. In fact
L can be approximately regarded as a superposition of the linear operators

Lj (φ) = �φ + ε−2
j ewj φ.

The problem Lj(φ) = 0 has bounded solutions originating in the natural invariances of the equa-
tion �w + ew = 0. Let us consider the family of solutions wμ(y) given by (2.7). Then the
functions

z0j (y) = ∂μwμj
(y), zlj (y) = ∂yl

wμj
(y), l = 1,2,

satisfy the equation �Z + e
wμj Z = 0. Hence the functions

Zij (x) := zij

(
x − ξj

εj

)
, i = 0,1,2, (2.22)

are bounded solutions of Lj(Z) = 0 in all of R
2. It is known that these actually span the space

of all bounded solutions of this equation, see [8] for a proof.
We want to solve, in a uniformly bounded way, problems of the form L(φ) = h. This is

possible, but only for a restricted class of right-hand sides. We identify them by considering
the problem projected to a suitable orthogonal of the “almost-kernel” for L. To formulate this
problem, let us consider now a large but fixed number R0 > 0 and a nonnegative function ζ(ρ)

with ζ(ρ) = 1 if ρ < R0 and χ(ρ) = 0 if ρ > R0 + 1. We denote

ζj (x) = ε−2
j ζ

(∣∣∣∣x − ξj

εj

∣∣∣∣
)

. (2.23)

Given h ∈ L∞(Ω), we consider the linear problem of finding a function φ such that for certain
scalars cij , i = 0,1,2, j = 1, . . . , k, it satisfies
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L(φ) = h +
2∑

i=0

k∑
j=1

cijZij ζj , in Ω, (2.24)

φ = 0, on ∂Ω, (2.25)∫
Ω

Zij ζjφ = 0, for all i, j. (2.26)

Consider the norm

‖φ‖∞ = sup
x∈Ω

∣∣φ(x)
∣∣.

Proposition 2.1. Let δ > 0 be fixed. There exist positive numbers λ0 and C, such that for any
points ξj , j = 1, . . . ,m in Ω , parameters mj , j = 1, . . . , k, satisfying (2.2), μj given by (2.14),
and h ∈ L∞(Ω), there is a unique solution φ := Tλ(h) to problem (2.24)–(2.26) for all λ < λ0.
Moreover

‖φ‖∞ � C‖h‖∗. (2.27)

We will prove this result in the next section. It is worth mentioning that the criticality of
the Moser Trudinger situation is fairly delicate compared with other problems of concentration
phenomena. Not only is the form of the seeked solutions quite nonobvious, but also, even with
the right ansatz, the error is not small, and the invertibility theory in which the weight ρ enters is
indeed very tight.

Let us consider now the projected version of problem (2.20),

L(φ) = −R − N(φ) +
2∑

i=0

k∑
j=1

cijZij ζj , in Ω, (2.28)

φ = 0, on ∂Ω, (2.29)∫
Ω

Zij ζjφ = 0, for all i, j. (2.30)

To solve this problem in L∞(Ω), we recast it in fixed point form

φ = Tλ

(−R − N(φ)
) := A(φ) (2.31)

where Tλ is the operator in Proposition 2.1. Using estimate (2.19) and the easily checked fact
that ‖f ′′(Ũ )‖∗ � C we find that

∥∥N(φ)
∥∥∗ � C‖φ‖2∞ + Cλ‖φ‖∞.

This estimate, Proposition 2.1 and estimate (2.17) imply that A(B) ⊂ B where B = {φ/‖φ‖∞ �
Mλ} for a sufficiently large and fixed M and all small λ. Besides, it is directly checked that the
operator A has a small Lipschitz constant in B for all small λ. Thus, the contraction mapping
principle leads us to the following fact.
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Proposition 2.2. Under the assumptions of Proposition 2.1 there exist positive numbers C

and λ0, such that for all 0 < λ < λ0 problem (2.28)–(2.30) has a solution φ = φ(ξ,m) which
defines a continuous map into L∞(Ω) and satisfies

‖φ‖∞ � C λ.

The constant C is uniform on all (ξ,m) satisfying the constraints (2.2).

As a function of points and parameters, this φ is actually smooth. We will check this in
Section 4. Evaluating at this φ in problem (2.28)–(2.30), the constants cij define functions
cij = cij (ξ,m). Thus we need to find a solution (ξ,m) of the 3k × 3k system

cij (ξ,m) = 0 for all i = 0,1,2, j = 1, . . . , k. (2.32)

To solve this problem, we formulate it in variational form. Let Jλ be the energy functional of
problem (1.1) defined in (1.2). As we will see in Lemma 5.1, if (ξ,m) is a critical point of the
functional

(ξ,m) �−→ Jλ

(√
λ
(
Ũ (ξ,m) + φ(ξ,m)

)) =: Iλ(ξ,m), (2.33)

then it automatically satisfies system (2.32). In Lemma 6.1 we will show that at main order we
have

Iλ(ξ,m) = 2kπ + aλ + λ4πϕk(ξ,m) + o(λ)

where a is a fixed constant and ϕk is the functional introduced in (1.6) and o(1) → 0 in the
C1-sense as λ → 0, uniformly on (ξ,m) satisfying (2.2). From here, using the definition of
nontrivial critical point situation, the result of Theorem 1 immediately follows. Theorem 2 will
be established as a special case of this result in Section 7.

In the remainder of this paper we will carry out the above outlined construction.
A main step in solving problem (2.20) for small φ under a suitable choice of the points ξj and

the parameters mj is that of a solvability theory for the linear operator L. This is the content of
next section.

3. Analysis of the linearized operator

We will prove here Proposition 2.1. At the very core of the proof is the following estimate for
the Laplacian. Let us consider fixed positive numbers R and M and for ε > 0 the annular region

Aε =
{
x/R < |y| < M

ε

}

and the function

ρε

(|y|) = γ ew

(
e

w2
2γ

(
1 + w + 1

)(
1 + |w|) − 1

)

γ γ
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where

w
(|y|) = log

8μ2

(μ2 + |y|2)2
, γ = log ε−4.

Let us consider the problem

{−�Ψ = ρε in Aε,

Ψ = 0 on ∂Aε.
(3.1)

Lemma 3.1. There exist constants C, ε0 depending only on uniform upper and away from
zero lower bounds for R,M , such that for all ε < ε0 the solution Ψε to problem (3.1) satisfies
‖Ψε‖∞ � C.

Proof. The solution Ψ is radial, say Ψ = Ψ (r), r = |y|. Let us consider the change of variables
ψ(t) = Ψ (et ). Then it is straightforward to check that ψ satisfies the two-point boundary value
problem

−ψ ′′(t) = e2t ρε

(
et

)
, t ∈ [logR, logM + γ /4], ψ(logR) = ψ(logM + γ /4) = 0.

Since w(r) = −4 log r + O(1) in all the considered range, we find that we can estimate

e2t ρε

(
et

)
� Ce−2t

{(
1 + t

γ
+ M

γ

)(
1 + t

γ

)
e

2t2
γ − 1

}
=: g(t).

Thus, in order to prove the desired result it suffices to show that the solution of the problem

−ψ̃ ′′(t) = g(t), t ∈ [logR, logM + γ /4], ψ̃(logR) = ψ̃(logM + γ /4) = 0

is uniformly bounded. Here and in the rest of the proof, C denotes a generic constant independent
of large γ .

Since ψ̃ is concave and positive, it suffices to show that the quantity ψ̃(a) is uniformly
bounded at some point a distant of order γ from the boundary, let us say a = γ

8 . Let G(t, s)

be the Green’s function of −ψ ′′ with Dirichlet boundary conditions in the interval. Then

G

(
t,

γ

8

)
� C min

{
t − logR, logM + γ

4
− t

}
.

Hence, since

ψ̃

(
γ

8

)
=

logM+ γ
4∫

logR

G

(
t,

γ

8

)
g(t) dt

we get
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∣∣∣∣ψ̃
(

γ

8

)∣∣∣∣ � C

γ
8∫

logR

(t − logR)
∣∣g(t)

∣∣dt

+ C

logM+ γ
4∫

γ
8

(
logM + γ

4
− t

)∣∣g(t)
∣∣dt. (3.2)

The first integral in (3.2) can be estimated as follows

γ
8∫

logR

(t − logR)
∣∣g(t)

∣∣dt � C

γ
8∫

logR

e−2t e
2t2
γ

(
1 + t4)dt

� C

γ
8∫

logR

e−t
(
1 + t4)dt � C,

since in this region 2t2

γ
� t . Concerning the second integral in (3.2), we observe that in that region

|g(t)| ∼ γ e−2t e
2t2
γ (1 − t

γ
), so we get

logM+ γ
4∫

γ
8

(
logM + γ

4
− t

)∣∣g(t)
∣∣dt � C

γ
4 +O(1)∫

γ
8

e
−2t+ 2t2

γ
(
γ − t + O(1)

)2

� C

γ
4 +O(1)∫
O(1)

e−s
(
s + O(1)

)2
ds � C,

where we have used the change of variable s = γ − t .
We have thus established the existence of a positive constant C independent of ε such that

∣∣Ψ (y)
∣∣ � C, for R < |y| < M

ε
,

and the proof of the lemma is concluded. �
An immediate consequence of the above estimate is the following.

Corollary 1. Let us consider now the weight ρj (x) defined in (2.15), and the solution Ψj to the
problem

−�Ψj(x) = ρj , in Rεj < |x − ξj | < M,

Ψj = 0 on ∂Aε. (3.3)
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Then there exists a C > 0, independent of all small εj such that

∣∣Ψj (x)
∣∣ � C, for all Rεj < |x − ξj | < M.

The proof of Proposition 2.1 makes use of an a priori estimate.

Lemma 3.2. Under the assumptions of Proposition 2.1, there exist positive numbers λ0 and C,
such that for any points ξj , j = 1, . . . ,m in Ω , and positive numbers mj , μj , for j = 1, . . . , k,
which satisfy relations (2.2) and (2.14), and any solution φ to (2.24)–(2.26), one has

‖φ‖∞ � C‖h‖∗, (3.4)

for all λ < λ0.

Proof. We will carry out the proof of the a priori estimate (3.4) by contradiction. We assume then
the existence of sequences λn → 0, points ξn

j ∈ Ω and numbers mn
j , μn

j which satisfy relations
(2.2) and (2.14), functions hn with ‖hn‖∗ → 0, φn with ‖φn‖∞ = 1, and constants cijn such that

L(φn) = hn +
2∑

i=0

k∑
j=1

cijnZij ζj , in Ω, (3.5)

φn = 0, on ∂Ω, (3.6)∫
Ω

Zij ζjφn = 0, for all i, j. (3.7)

We will prove that in reality under the above assumption we must have that φn → 0 uniformly
in Ω , which is a contradiction that concludes the result of the lemma.

Passing to a subsequence we may assume that the points ξn
j approach limiting, distinct points

ξ∗
j in Ω . We claim that φn → 0 in C1 local sense on compacts of Ω̄ \ {ξ∗

1 , . . . , ξ∗
k }. Indeed,

let us observe that hn → 0 locally uniformly, away from the points ξj . Away from the ξj ’s we
have then �φn → 0 uniformly on compact subsets on Ω̄ \ {ξ∗

1 , . . . , ξ∗
k }. Since φn is bounded it

follows also that passing to a further subsequence, φn approaches in C1 local sense on compacts
of Ω̄ \ {ξ∗

1 , . . . , ξ∗
k } a limit φ∗ which is bounded and harmonic in Ω \ {ξ1, . . . , ξk} and φ∗ = 0

on ∂Ω . Hence φ∗ extends smoothly to a harmonic function in Ω , so that φ∗ = 0, and the claim
follows.

For notational convenience, we shall omit the explicit dependence on n in the rest of the proof.
Next we claim that cij → 0 for all i = 0,1,2 and j = 1, . . . , k. Fix j and multiply Eq. (3.5)

against Zij (x) = zij (
x−ξj

εj
), with zij given by (2.22). We integrate the resulting relation in

B(ξj , δ) and obtain

∫
B(ξj ,δ)

hZij +
2∑

l=0

clj

∫
ZijZlj ζj =

∫
B(ξj ,δ)

L(φ)Zij

=
∫

B(ξ ,δ)

φL(Zij ) +
∫

∂B(ξ ,δ)

[Zij∇φ · ν − φ∇Zij · ν].

j j
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Let us observe that L(Zij ) = ∑
l 
=j ε2

l = o(1) and that the C1 convergence to zero of φ on
∂B(ξj , δ) imply that the boundary integral in the above relation also approaches zero. On the
other hand, we have

∣∣∣∣
∫

B(ξj ,δ)

hZij

∣∣∣∣ � C‖h‖∗, and
∫

ZijZlj ζj = κiδlj

where κi is a positive universal constant. Then we get cij → 0, as desired. Observe then that
h̃n := hn + ∑

cn
ijZij ζj satisfies ‖h̃n‖∗ → 0.

Our next claim is that φn approaches zero uniformly, close to the concentration points. More
precisely, we have that

sup
|x−ξj |<Rεj

∣∣φ(x)
∣∣ → 0 for all R > 0.

Let us assume the opposite, so that there exists an index j and R > 0 such that, for all n,

sup
|x−ξn

j |<Rεj

∣∣φn(x)
∣∣ � κ > 0.

Let us set φ̂n(z) = φn(ξ
n
j + εj z). Elliptic estimates imply that φ̂n converges uniformly over com-

pacts to a bounded solution φ̂ 
= 0 of the problem in R
2

�φ + 8μ2
j

(μ2
j + |z|2)2

φ = 0.

According to the nondegeneracy result in [8], φ̂ is therefore a linear combination of the functions
zij , i = 0,1,2. However, our assumed orthogonality conditions on φn pass to the limit and yield∫

ζ(|z|)zij φ̂ = 0, for i = 0,1,2, thus a contradiction from which the claim follows.
Let us fix such a number R > 0 which we may take larger whenever it is needed and consider

the quantity

‖φ‖i = sup⋃k
j=1 B(ξj ,Rεj )

|φ|.

The desired result, ‖φn‖∞ → 0 is a consequence of the following fact: there is a uniform constant
C > 0 such that

‖φ‖∞ � C
[‖φ‖i + ‖h‖∗

]
. (3.8)

We will establish this with the use of barriers. Indeed, a crucial fact is that the operator L satisfies
the maximum principle in Ω outside balls centered at the points ξj of radius Rεj , for some fixed
R > 0. Let us check this. Given a > 0, consider the function
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Z(x) =
k∑

j=1

z0

(
a
|x − ξj |

εj

)
, x ∈ Ω, (3.9)

where z0(r) = r2−1
1+r2 is the radial solution in R

2 of �z0 + 8
(1+r2)2 z0 = 0. Then we have

−�Z =
k∑

j=1

ε−2
j

8a2(a2ε−2
j |x − ξj |2 − 1)

(1 + a2ε−2
j |x − ξj |2)3

.

So that for |x − ξj |2 > 100a−2ε2
j for all j ,

−�Z � 2
k∑

j=1

a2ε−2
j

(1 + a2ε−2
j |x − ξj |2)2

�
m∑

j=1

ε2
j

a2|x − ξj |4 .

On the other hand, in the same region,

(
k∑

j=1

ε−2
j eω̃j

)
Z � C

m∑
j=1

ε2
j

|x − ξj |4 .

Hence if a is taken small and fixed, and R > 0 is chosen sufficiently large depending on this a,
then we have that L(Z) < 0 in Ω̃ := Ω \ ⋃m

j=1 B(ξj ,Rεj ) and Z > 0 in Ω̃ . Thus in this region

L satisfies the maximum principle, namely if L(ψ) � 0 in Ω̃ and ψ � 0 on ∂Ω̃ then ψ � 0 in Ω̃ .
Let us consider the function Ψj in Corollary 1. Since Ψj is uniformly bounded, it is easy to

see that if R is chosen sufficiently large then the uniformly bounded function ψj (x) := Ψj (4x)

satisfies −L(ψj ) > ρj for Rεj < |x − ξj | < M , where we fix M > 0 such that Ω ⊂ B(ξj ,M).
Let us set

φ̃(y) = 2‖φ‖iZ(x) + ‖h‖∗
k∑

j=1

ψj(x),

where Z is the function defined above in (3.9). Then, it is easily checked that, choosing R larger
if necessary, −L(φ̃) � h, φ̃ � φ on ∂Ω̃ , where Ω̃ = Ω \ ⋃m

j=1 B(ξj ,Rεj ). Hence |φ| � φ̃ on Ω̃

and estimate (3.8) follows. The proof of the lemma is concluded. �
We have now the main ingredient to prove Proposition 2.1.

Proof of Proposition 2.1. It only remains to prove the solvability assertion. To this purpose we
consider the space

H =
{
φ ∈ H 1

0 (Ω):
∫

ζjZijφ = 0 for i = 0,1,2, j = 1, . . . , k

}
,

Ω
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endowed with the usual inner product [φ,ψ] = ∫
Ω

∇φ∇ψ . Problem (2.24)–(2.26) expressed in
weak form is equivalent to that of finding a φ ∈ H , such that

[φ,ψ] =
∫
Ω

[Wφ − h]ψ dx, for all ψ ∈ H,

where W = ∑k
j=1 εj

−2ewj . With the aid of Riesz’s representation theorem, this equation gets

rewritten in H in the operator form φ = K(φ) + h̃, for certain h̃ ∈ H , where K is a compact
operator in H . Fredholm’s alternative guarantees unique solvability of this problem for any h

provided that the homogeneous equation φ = K(φ) has only the zero solution in H . This last
equation is equivalent to (2.24)–(2.26) with h ≡ 0. Thus existence of a unique solution follows
from the a priori estimate (2.27). This finishes the proof. �

Proposition 2.1 says in particular that the unique solution φ = T (h) of (2.24)–(2.26) defines a
continuous linear map from the Banach space C∗ of all functions h in L∞ for which ‖h‖∗ < ∞,
into L∞, with norm bounded uniformly in λ.

4. Differentiability with respect to parameters

Let φ be the solution to the nonlinear projected problem (2.28)–(2.30), whose existence is
guaranteed by Proposition 2.2. This section is devoted to study the dependence of φ on (ξ,m) =
(ξ1, . . . , ξk,m1, . . . ,mk), where the points ξj and the parameters mj satisfy the constraints (2.2).
A direct consequence of the fixed point characterization of φ given by Proposition 2.2 together
with the fact that the error term R in the right-hand side of Eq. (2.28) depends continuously (in
the ∗-norm) on (ξ,m), is that the map (ξ,m) → φ into the space C(Ω̄) is continuous (in the
∞-norm).

We analyze next the differentiability of this map, say with respect to ξ11.
We start with the following fact: Fix h ∈ C∗ and let φ = Tλ(h) be the solution to the linear

projected problem (2.24)–(2.26) whose existence is guaranteed by Proposition 2.1. Then, under
the same assumptions of Proposition 2.1, there exist positive constants λ0 and C such that, for
all λ < λ0,

∥∥∂ξ11Tλ(h)
∥∥∞ � C‖h‖∗. (4.1)

Indeed, we have in general

∥∥∂ξhl
Tλ(h)

∥∥∞ � C‖h‖∗,
∥∥∂mj

Tλ(h)
∥∥∞ � C‖h‖∗. (4.2)

Differentiating Eq. (2.24) and the orthogonality condition (2.26), we get that Z := ∂ξ11φ sat-
isfies

L(Z) = −∂ξ11

(
k∑

ε−2
j eω̃j (x)

)
φ +

∑
cij ∂ξ11(Zij ζj ) +

∑
dijZij ζj ,
j=1 i,j i,j
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with dij = ∂ξ11(cij ), and

∫
Ω

Zij ζjZ = −
∫

∂ξ11(Zij ζj )φ.

Define

αab =
∫

φ∂ξ11(Zabζb)∫
(Zabζb)2

, Z̃ = Z +
∑
a,b

αabZabζb

for a = 0,1,2 and b = 1, . . . , k. We have
∫

Z̃Zij ζj = 0 for all i, j . Furthermore

Z̃ = Tλ(f ), where

f = −∂ξ11

(
k∑

j=1

ε−2
j eω̃j (x)

)
φ +

∑
i,j

cij ∂ξ11(Zij ζj ) +
∑
ab

αabL(Zabζb).

Using the result of Proposition 2.1, we get ‖Z̃‖∞ � C‖h‖∗ and hence the validity of (4.1).
Let φ be now the solution to (2.28)–(2.30). Since φ = Tλ(−(N(φ) + R)), we have formally

that

∂ξ11φ = (∂ξ11Tλ)
(−(

N(φ) + R
)) + Tλ

(−(
∂ξ11N(φ) + ∂ξ11R

))
.

From (4.1) we get

∥∥(∂ξ11Tλ)
(−(

N(φ) + R
))∥∥∞ � C

∥∥N(φ) + R
∥∥∗ � Cλ.

On the other hand, a direct computation gives

∂ξ11N(φ) = [
f ′(U + φ) − f ′(U) − f ′′(U)φ

]
∂ξ11U + ∂ξ11

[
f ′(U) −

k∑
j=1

ε−2
j eω̃j (x)

]
φ

+ [
f ′(U + φ) − f ′(U)

]
∂ξ11φ +

[
f ′(U) −

k∑
j=1

ε−2
j eω̃j (x)

]
∂ξ11φ.

Thus, using (2.19)

∥∥∂ξ11N(φ)
∥∥∗ � C

[
λ−1‖φ‖2∞ + λ‖φ‖∞ + λ‖∂ξ11φ‖∞ + λ‖∂ξ11φ‖∞

]
.

Since ‖∂ξ11R‖∗ � Cλ, we can conclude that

‖∂ξ11φ‖∞ � Cλ.

Analogous computation holds true if we differentiate with respect to mj .
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The above computation can be made rigorous by using the implicit function theorem and the
fixed point representation (2.31) which guarantees C1 regularity in (ξ,m). Thus we have the
validity of the following:

Lemma 4.1. Consider the map (ξ,m) �→ φ into the space C(Ω̄), where φ is the unique solution
to the nonlinear projected problem (2.28)–(2.30), whose existence is guaranteed by Proposi-
tion 2.2. Under the assumptions of Proposition 2.1 the derivative Dξφ (or Dmφ) exists and
defines a continuous function of (ξ,m). Besides, there is a constant C > 0, such that

‖Dξφ‖∗ � Cλ, ‖Dmφ‖∗ � Cλ.

After problem (2.28)–(2.30) has been solved, we will find solutions to the full problem (2.20)
(or equivalently (1.1)) if we manage to adjust (ξ,m) in such a way that cij (ξ,m) = 0 for all i, j .
A nice feature of this system of equations is that it turns out to be equivalent to finding critical
points of a functional of (ξ,m) which is close, in an appropriate sense, to the energy of the first
approximation U . We make this precise in the next sections.

5. Variational reduction

As we have said, after problem (2.28)–(2.30) has been solved, we find a solution to prob-
lem (2.20) and hence to the original problem if ξ and m is such that

cij (ξ,m) = 0 for all i, j. (5.1)

This problem is indeed variational: it is equivalent to finding critical points of a function of ξ

and m. To see this let us recall the energy functional Jλ associated to problem (1.1), namely

Jλ(u) = 1

2

∫
Ω

|∇u|2 dx − λ

2

∫
Ω

eu2
dx. (5.2)

We define, as in (2.33),

Iλ(ξ,m) ≡ Jλ

(√
λ
(
Ũ (ξ,m) + φ(ξ,m)

))
, (5.3)

where φ is the solution of problem (2.28)–(2.30) given by Proposition 2.1. Critical points of Iλ

correspond to solutions of (5.1) for small λ, as the following result states.

Lemma 5.1. Under the assumptions of Proposition 2.1, the functional Iλ(ξ,m) is of class C1.
Moreover, for all λ > 0 sufficiently small,

Dξ,mIλ(ξ,m) = 0 �⇒ cij (ξ,m) = 0 for all i, j.

Proof. A direct consequence of the results obtained in Section 4 and of the definition of the
function Ũ is the fact that the map (ξ,m) → Iλ(ξ,m) is of class C1.
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Furthermore, thanks to Lemma 4.1, we have that

Dξ,mIλ(ξ,m) = DJλ

(√
λ
(
U(ξ,m) + φ(ξ,m)

))[√
λDξ,mU(ξ,m)

]
+ DJλ

(√
λ
(
U(ξ,m) + φ(ξ,m)

))[√
λDξ,mφ(ξ,m)

]
= DJλ

(√
λ
(
U(ξ,m) + φ(ξ,m)

))[√
λDξ,mU(ξ,m)

](
1 + o(1)

)
. (5.4)

Let ũ(x) = U(ξ,m)(x) + φ(ξ,m)(x). For any l define

Il(v) = m2
l

2

∫
Ωl

|Dv|2 −
∫
Ωl

eveλm2
l v

2
, (5.5)

where Ωl = Ω−ξl

εl
. If we perform the change of variables ũ(x) = mlvl(

x−ξl

εl
) + 1

2λml
, we get

J̃λ(ũ) := Jλ(
√

λu) = Il(v)

and, as a direct consequence of (2.6), (2.10) and (2.13),

vl(y) = ωμl
(y) +

∑
j

(
O

(|εly + ξl − ξj |
) + O

(
ε2
j

))
for |y| � δ

εl

. (5.6)

Furthermore, we have

�ũ + λũeλũ2 =
∑
ij

cij ζjZij (x), x ∈ Ω,

and that ṽl(y) solves in Ωl

mlε
−2
l

[
�ṽl + ev

(
1 + 2λm2

l ṽl

)
eλm2

l ṽ
2
l
] =

∑
ij

cij ζ

(
εly + ξl − ξj

εj

)
ε−2
j Zij

(
εly + ξl − ξj

εj

)
.

Thus we start with the computation of Dm1 Iλ(ξ,m). From (5.4), we get

Dm1 Iλ(ξ,m) = Dm1Il(ṽl) = DIl(ṽl)[Dm1 ṽl]

=
∑
ij

(∫
Ωl

ζ

(
εly + ξl − ξj

εj

)
ε−2
j Zij

(
εly + ξl − ξj

εj

)
Dm1vl dy

)
cij .

Fix now i and j . To compute the coefficient in front of cij in the above expression, we choose
l = j and obtain

∫
ζ

(
εly + ξl − ξj

εj

)
ε−2
j Zij

(
εly + ξl − ξj

εj

)
Dm1vl dy = ∂μj

∂m1

∫
2

z2
0j (y) dy

(
1 + o(1)

)
.

Ωl R
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Thus we conclude that, for any h = 1, . . . , k,

Dmh
Iλ(ξ,m) =

∑
j

∂μj

∂mh

∫
R2

Z2
0j (y) dy c0j

(
1 + o(1)

)
.

A direct argument shows on the other hand that, for a = 1,2, b = 1, . . . , k,

Dξab
Iλ(ξ,m) =

∑
j

(
∂μj

∂ξab

∫
R2

Z2
0j (y) dy c0j +

∫
R2

Z2
1j (y) dy

)
cab

(
1 + o(1)

)
.

We can conclude that Dξ,mIλ(ξ,m) = 0 implies the validity of a system of equations of the
form

[∑
j

∂μj

∂mh

c0j

](
1 + o(1)

) = 0, h = 1, . . . , k, (5.7)

[
A

∑
j

∂μj

∂ξab

c0j + cab

](
1 + o(1)

) = 0, a = 1,2, b = 1, . . . , k, (5.8)

for some fixed constant A, with o(1) small in the sense of the L∞ norm as λ → 0. The conclusion
of the lemma follows if we show that the matrix (

∂μj

∂mh
) of dimension k × k is invertible in the

range of the points ξj and parameters mj we are considering. Indeed, this fact implies unique
solvability of (5.7). Inserting this in (5.8) we get unique solvability of (5.8).

Consider the definition of the μj ’s, in terms of mj ’s and points ξj given in (2.14). These
relations correspond to the gradient DmF(m, ξ) of the function F defined as follows

F(m, ξ) = 1

2

k∑
j=1

m2
j

[−2 log 2m2
j − log 8μ2

j − 1 − H(ξj , ξj )
] +

∑
i 
=j

G(ξi, ξj )mimj .

It is natural to perform the change of variable sj = m2
j . With abuse of notation, the above function

now reads as follows

F(s, ξ) = 1

2

k∑
j=1

sj
[−2 log 2sj − log 8μ2

j − 1 − H(ξj , ξj )
] +

∑
i 
=j

G(ξi, ξj )
√

sisj .

This is a strictly convex function of the parameters sj , for parameters sj uniformly bounded
and uniformly bounded away from 0 and for points ξj in Ω uniformly far away from each other

and from the boundary. For this reason, the matrix ( ∂2F
∂si∂sj

) is invertible in the range of parameters
and points we are considering. Thus, by the implicit function theorem, relation (2.14) defines a
diffeomorphism between μj and mj . This fact gives the invertibility of (

∂μj

∂ml
) we were aiming

at.
This concludes the proof of the lemma. �
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In order to solve for critical points of the functional Iλ, a key step is its expected closeness to
the functional Jλ(

√
λŨ), which we will analyze in the next section.

Lemma 5.2. The following expansion holds

Iλ(ξ,m) = Jλ(
√

λŨ) + θλ(ξ,m),

where

|θλ| + |∇θλ| = O
(
λ3),

uniformly on points and parameters satisfying the constraints in Proposition 2.1.

Proof. Taking into account DJλ(
√

λ(Ũ + φ))[φ] = 0, a Taylor expansion gives

Jλ

(√
λ(Ũ + φ)

) − Jλ(
√

λŨ)

= λ

1∫
0

D2Jλ

(√
λ(Ũ + tφ)

)[φ]2 (1 − t) dt (5.9)

= λ

1∫
0

(∫
Ω

[
N(φ) + R

]
φ +

∫
Ω

[
f ′(Ũ ) − f ′((Ũ + tφ)

)]
φ2

)
(1 − t) dt. (5.10)

Since ‖φ‖∞ � Cλ, we get

Jλ

(√
λ(Ũ + φ)

) − Jλ(
√

λŨ) = θ̃λ = O
(
λ3).

Let us differentiate with respect to ξ . We use the representation (5.9) and differentiate directly
under the integral sign, thus obtaining, for each j = 1,2, l = 1, . . . , k,

∂ξjl

[
Jλ

(√
λ(Ũ + φ)

) − Jλ(
√

λŨ)
]

= λ

1∫
0

(∫
Ω

∂ξjl

[(
N(φ) + R

)
φ
] +

∫
Ω

∂ξjl

[
f ′(Ũ) − f ′(Ũ + tφ)

]
φ2

)
(1 − t) dt.

Using the fact that ‖∂ξφ‖∞ � Cλ and the computations in the proof of Lemma 4.1 we get

∂ξjl

[
Jλ

(√
λ(Ũ + φ)

) − Jλ(
√

λŨ)
] = ∂ξjl

θ̃λ = O
(
λ3).

In a very analogous way one gets

∂mj

[
Jλ

(√
λ(Ũ + φ)

) − Jλ(
√

λŨ)
] = O

(
λ3).

The continuity in ξ and m of all these expressions is inherited from that of φ and its derivatives
in ξ and in m in the L∞ norm. The proof is complete. �
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6. Asymptotics of energy of approximate solution

The purpose of this section is to give an asymptotic estimate of Jλ(U) where U(x) = √
λŨ .

The function U is defined as

U(x) = √
λ

k∑
j=1

mj

[
log

1

(μ2
j ε

2
j + |x − ξj |2)2

− Hj(x)

]
(6.1)

(see (2.4)) and Jλ is the energy functional associated to (1.1), whose definition we recall below

Jλ(u) = 1

2

∫
Ω

|∇u|2 dx − λ

2

∫
Ω

eu2
dx.

We have the following result.

Lemma 6.1. Let δ > 0 be a fixed small number and U be the function defined in (6.1). With the
choice (2.14) for the parameters μj , the following expansion holds

Jλ(U) = 2kπ + aλ + 4πλϕk(ξ,m) + λ2Θλ(ξ,m) (6.2)

where the function ϕk(ξ,m) = ϕk(ξ1, . . . , ξk,m1, . . . ,mk) is defined by

ϕk(ξ,m) = b

k∑
j=1

m2
j + 2

k∑
j=1

m2
j logm2

j

+
k∑

j=1

H(ξj , ξj )m
2
j −

∑
i 
=j

G(ξi, ξj )mimj . (6.3)

Here G and H are the Green function for the Laplacian on Ω with Dirichlet boundary condition
and its regular part, as defined in Section 1, and a, b are absolute constants. In (6.2), Θλ is
a smooth function of (ξ,m) = (ξ1, . . . , ξk,m1, . . . ,mk), bounded together with its derivatives,
as λ → 0, uniformly on points ξ1, . . . , ξm ∈ Ω and parameters (m1, . . . ,mk) ∈ (R+)k satisfying
(2.2).

Remark 6.1. In the sequel, by θλ, Θλ we will denote generic functions of ξ and m that are
bounded, together with its derivatives, in the region dist(ξi, ∂Ω) > δ and |ξi − ξj | > δ, and
δ < mj < 1

δ
.

Proof. We write

U(x) =
k∑

Uj (x), with Uj (x) = √
λmj

[
uj (x) − Hj(x)

]

j=1
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and

uj (x) = log
1

(μ2
j ε

2
j + |x − ξj |2)2

.

We start with

1

2

∫
Ω

|∇U |2 dx = 1

2

(
m∑

j=1

∫
Ω

|∇Uj |2 dx +
∑
j 
=i

∫
Ω

∇Uj∇Ui dx

)
. (6.4)

Fix j . We have

1

2

∫
Ω

|∇Uj |2 dx = λm2
j

[
1

2

∫
Ω

|∇uj |2 dx −
∫
Ω

∇uj∇Hj dx + 1

2

∫
Ω

|∇Hj |2 dx

]

= λm2
j

[
1

2

∫
Ω

|∇uj |2 dx −
∫

∂Ω

uj

∂Hj

∂ν
dσ + 1

2

∫
∂Ω

Hj

∂Hj

∂ν
dσ

]

= λm2
j

[
1

2

∫
Ω

|∇uj |2 dx − 1

2

∫
∂Ω

Hj

∂Hj

∂ν
dσ

]
(6.5)

where ν denotes the unitary outer normal of ∂Ω . In the above equation we used the facts that Hj

is harmonic in Ω and Uj is zero on the boundary ∂Ω .
We will now evaluate

∫
Ω

|∇uj |2 dx. Let δ̃ > 0 be small and fixed. We split the previous
integral into two pieces, namely

∫
Ω

|∇uj |2 dx =
∫

B(ξj ,δ̃)

|∇uj |2 dx +
∫

Ω\B(ξj ,δ̃)

|∇uj |2 dx. (6.6)

Direct computations show, using (2.10), (2.13) and (2.14)

∫
B(ξj ,δ̃)

|∇uj |2 dx

= 16
∫

B(ξj ,δ̃)

|x − ξj |2
(μ2

j ε
2
j + |x − ξj |2)2

dx

= 16
∫

B(0, δ̃
μj εj

)

|y|2
(1 + |y|2)2

dy

(
y = x − ξj

εjμj

)

= 16π

[
−2 log εjμj − 1 + log

[
(εjμj )

2 + δ̃2] + (εjμj )
2

2 ˜2

]

(εjμj ) + δ
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= 16π

[
−2 log εj − log 8μ2

j + log 8 − 1 + log
[
(εjμj )

2 + δ̃2] + (εjμj )
2

(εjμj )2 + δ̃2

]

= 16π

[
1

4m2
j λ

− βj

2
+ 2 log 2m2

j + H(ξj , ξj ) −
∑
i 
=j

mim
−1
j G(ξi, ξj ) + log 8 − 1

+ log
[
(εjμj )

2 + δ̃2] + (εjμj )
2

(εjμj )2 + δ̃2

]

= 16π

[
1

4m2
j λ

+ log 2m2
j + H(ξj , ξj ) −

∑
i 
=j

mim
−1
j G(ξi, ξj ) + log 8 − 1

+ log
[
(εjμj )

2 + δ̃2] + (εjμj )
2

(εjμj )2 + δ̃2

]
. (6.7)

On the other hand, taking into account that for the fundamental solution Γ we have
∇Γ (x, ξ) = 4

|x−ξ | and that H = Γ on ∂Ω , we have

∫
Ω\B(ξj ,δ̃)

|∇uj |2 dx = 16
∫

Ω\B(ξj ,δ̃)

|x − ξj |2
(μ2

j ε
2
j + |x − ξj |2)2

dx

=
∫

Ω\B(ξj ,δ̃)

∣∣∇Γ (x, ξj )
∣∣2

dx + (εjμj )
2Θδ̃(ξj ),

=
∫

∂Ω

H(x, ξj )
∂Γ

∂ν
(x, ξj ) dσ − 32π log

1

δ̃
+ (εjμj )

2Θδ̃

=
∫
Ω

H(x, ξj )�Γ (x, ξj ) dx +
∫

∂Ω

Γ (x, ξj )
∂H

∂ν
(x, ξj ) dσ

− 32π log
1

δ̃
+ (εjμj )

2Θδ̃

= −8πH(ξj , ξj ) +
∫

∂Ω

H(x, ξj )
∂H

∂ν
(x, ξj ) dσ

− 32π log
1

δ̃
+ (εjμj )

2Θδ̃. (6.8)

In the above formula Θδ̃(ξj ) is a function dependent on δ̃ which is uniformly bounded, together
with its derivatives, in the region dist(ξj , ∂Ω) > δ.

Noticing that the integral on the left-hand side in (6.6) is independent from δ̃ and that

∫
H(x, ξj )

∂H

∂ν
(x, ξj ) dσ −

∫
Hj(x)

∂Hj

∂ν
(x) dσ = O

(
(εjμj )

2),

∂Ω ∂Ω
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from (6.5)–(6.8) we thus conclude that, for j = 1, . . . , k,

∫
Ω

|∇Uj |2 dx = λm2
j 16π

[
1

4m2
j λ

+ log 2m2
j + 1

2
H(ξi, ξi)

−
∑
i 
=j

mim
−1
j G(ξi, ξj ) + log 8 − 1 + ε2

j log
1

εj

O(1)

]
. (6.9)

We next deal with the mixed term in (6.4). Fix i 
= j .
Notice that

�Ui(x) = −√
λmi

8μ2
i ε

2
i

((εiμi)2 + |x − ξi |2)2
.

Moreover Ui = 0 on ∂Ω . Hence we can write

∫
Ω

∇Ui∇Uj dx = √
λmi

∫
Ω

8μ2
i ε

2
i

((εiμi)2 + |x − ξi |2)2
Uj (x)dx

= λmimj

∫
1

εiμi
(Ω−ξi )

8

(1 + |y|2)2
log

1

(εjμj )2 + |εiμiy + ξi − ξj |2 dy

− λmimj

∫
1

εiμi
(Ω−ξi )

8

(1 + |y|2)2
Hj(εiμiy + ξi + ε) dy

= 8πλmimjG(ξi, ξj ) + O

(
ε2
j log

1

εj

+ ε2
i log

1

εi

)
+ O

(
ε2
i + ε2

j

)
, (6.10)

where the O(·) terms have uniform bounds in ξ in the region considered.
Summing up all the previous information contained in (6.9)–(6.10) and using the definition

(2.14) for μj , we finally get the estimate for (6.4), namely

1

2

∫
Ω

|∇U |2 dx = 2πk + 4πλ

[
(2 log 8 − 2)

k∑
j=1

m2
j + 2

k∑
j=1

m2
j log 2m2

j

+
k∑

j=1

m2
jH(ξj , ξj ) −

∑
i 
=j

mimjG(ξi, ξj ) +
k∑

j=1

ε2
j log

1

εj

O(1)

]
. (6.11)

Let us now evaluate the second term in the energy. We have

λ

∫
Ω

eU2
dx = λ

[
k∑

j=1

∫
B(ξ ,δ

√
ε )

eU2
dx

]
+ Aλ. (6.12)
j j
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Taking into account (2.3), we first observe that

Aλ = λ
[|Ω| + λΘλ(ξ,m)

]
(6.13)

with Θλ a function, uniformly bounded together with its derivatives, as λ → 0. Now, we write

∫
B(ξj ,δ

√
εj )

eU2
dx =

∫
B(ξj ,δεj | log εj |)

eU2
dx +

∫
B(ξj ,δ

√
εj )\B(ξj ,δεj | log εj |)

eU2
dx

= I1 + I2.

We will show next that

I1 = 16πm2
j + λΘλ(ξ,m), I2 = λΘλ(ξ,m) (6.14)

for some function Θλ, uniformly bounded together with its derivatives, as λ → 0. Indeed, per-
forming the change of variables y = x−ξj

εj
and using the notations Vj (y) = 2γjU(εjy+ξj )−2γ 2

j

and γj = log ε−4
j , we have

I1 = ε2
j e

γ 2
j

∫
B(0,δ| log εj |)

e
Vj (y)+ V 2

j
(y)

4γ 2
j dy

= 2m2
j

∫
R2

8

(1 + |y|2)2
dy + λΘλ(ξ,m) = 16πm2

j

[
1 + λΘλ(ξ,m)

]
.

On the other hand

|I2| � C

δε
− 1

2
j∫

δ| log εj |

1

r4
e

log2 r

γ 2
j r dr

(t = log r)

= C

R2+
γ 2
j
4∫

R1+logγ 2
j

e
−2t+ 4t2

γ 2
j dt � C

R2+
γ 2
j
4∫

R1+logγ 2
j

e−t dt = O(λ).

We can thus conclude that estimate (6.2) holds true in C0-sense. The C1-closeness is a direct
consequence of the fact that Θλ(ξ,m) is bounded together with its derivatives in the considered
region. �
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7. Proofs of the theorems

In this section we carry out the proofs of our main results.

Proof of Theorem 2. Let D be the open set such that

D̄ ⊂ {
(ξ,m) ∈ Ωk × R

k+: ξi 
= ξj , ∀i 
= j
}
,

where ϕk has a stable critical point situation. Then any C1-perturbation of ϕk has a critical point
in D. Thanks to the results contained in Lemma 5.2 and Lemma 6.1, we thus conclude that the
function Iλ(ξ,m), which is C1-close to ϕk(ξ,m) when λ is small enough, has a critical point
(ξ̄λ, m̄λ) in D, for all such λ. From Lemma 5.1 we have then that

cij (ξ̄λ, m̄λ) = 0 for all i, j,

and therefore

uλ(x) = √
λ
(
Ũ (ξ̄λ, m̄λ)

)
(x) + φ(ξ̄λ, m̄λ)(x)

is a solution to our problem (1.1). The qualitative properties of this solution predicted by Theo-
rem 2 are a direct consequence of our construction. This concludes the proof. �
Proof of Theorem 1. We shall apply the result of Theorem 2 for the case k = 2. Thus we want
to prove that the function ϕ2 has a stable critical point situation in some open set D, compactly
contained in Ω2 × R

2+.
We make the change of variables sj = m2

j . With slight abuse of notation we write

ϕ2(ξ, s) =
∑

j=1,2

(
bsj + 2sj log sj + H(ξj , ξj )sj

) − 2G(ξ1, ξ2)
√

s1s2.

To establish Theorem 1 we need to show the existence of a stable critical point situation for
ϕ2(ξ, s). To do so we shall show the existence of a critical point for ϕ2 obtained through a min–
max characterization, which is in fact preserved for small C1 perturbations of the functional. The
rest of the section is devoted to carry out this construction.

Let us fix a small number δ > 0 to be chosen later. We define D to be

D = R
2+ × Ω2

δ , where Ω2
δ = {

y ∈ Ω2/dist
(
y, ∂Ω2) > δ

}
.

Denote by Ω1 a bounded nonempty component of R
2 \ Ω̄ and assume that 0 ∈ Ω1. Consider a

closed, smooth Jordan curve γ contained in Ω which encloses Ω1. We let S be the image of γ

and B = [δ, δ−1]2 × S × S. Thus B is a closed and connected subset of D.
Let Γ be the class of all maps Φ ∈ C(B, D) with the property that there exists a function

Ψ ∈ C([0,1] × B, D) such that

Ψ (0, ·) = IdB, Ψ (1, ·) = Φ. (7.1)
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Then we define

C = inf
Φ∈Γ

sup
z∈B

ϕ2
(
Φ(z)

)
. (7.2)

We will show that

C � −K (7.3)

for some fixed constant K independent of δ, and also that if δ > 0 is chosen sufficiently small,
then for all (ξ, s) ∈ ∂D such that ϕ2(ξ, s) = C there exists a vector τ tangent to ∂D at (ξ, s) such
that

∇ϕ2(ξ, s) · τ 
= 0. (7.4)

Under the conditions (7.3) and (7.4), a critical point (ξ̄ , s̄) for ϕ2 with ϕ2(ξ̄ , s̄) = C exists, as a
standard deformation argument involving the negative gradient flow of ϕ2 shows. This structure
is clearly preserved for small C1(D̄)-perturbations of ϕ2 and hence a stable critical point situation
for this functional is established.

We begin with proving inequality (7.3).

Lemma 7.1. There exists K > 0, independent of the small number δ used to define D such that
C � −K .

Proof. We need to prove the existence of K > 0 independent of small δ such that if Φ ∈ Γ , then
there exists a point z̄ ∈ B for which

ϕ2
(
Φ(z̄)

)
� −K. (7.5)

We write

z = (z1, z2, z3, z4), Φ(z) = (
Φ1(z),Φ2(z),Φ3(z),Φ4(z)

)
,

with

(z1, z2),
(
Φ1(z),Φ2(z)

) ∈ R
2+, (z3, z4),

(
Φ3(z),Φ4(z)

) ∈ Ω2.

We claim that for any (z1, z2) ∈ R
2+ there exists a ẑ ∈ S × S such that Φ3(z1, z2, ẑ) and

Φ4(z1, z2, ẑ) have antipodal directions, more precisely

Φ3(z1, z2, ẑ)

|Φ3(z1, z2, ẑ)| = Rπ

Φ4(z1, z2, ẑ)

|Φ4(z1, z2, ẑ)| , (7.6)

where Rπ denotes a rotation in the plane of an angle π . This fact clearly implies that the existence
of a number M > 0 depending only on Ω such that G(Φ3(z1, z2, ẑ),Φ4(z1, z2, ẑ)) � M . Thus
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ϕ2
(
Φ(z1, z2, ẑ)

)
� 2

∑
j=1,2

Φj(z1, z2, ẑ) logΦj(z1, z2, ẑ)

− 2M
√

Φ1(z1, z2, ẑ)Φ2(z1, z2, ẑ)

� min
r>0,s>0

[
2(r log r + s log s) − 2M

√
rs

]
� −K,

for some explicit number K , which depends on M , but it is independent of δ. This gives the
validity of estimate (7.5).

We will prove (7.6) by means of a degree argument. Fix (z1, z2). Let us consider an
orientation-preserving homeomorphism h : S1 → S and the map f : S1 × S1 → S1 × S1 defined
as f (ζ ) = (f1(ζ ), f2(ζ )) with

f1(ζ1, ζ2) = Φ3(z1, z2, h(ζ1), h(ζ2))

|Φ3(z1, z2, h(ζ1), h(ζ2))| , f2(ζ1, ζ2) = Φ4(z1, z2, h(ζ1), h(ζ2))

|Φ4(z1, z2, h(ζ1), h(ζ2))| .

If we show that f is onto, we get in particular the validity of (7.6).
By definition, there exists a Ψ ∈ Γ such that Ψ (1, ·) = Φ . If we denote by Ψi(t, ·) the

components of the map Ψ and Ψ̃i(t, ξ1, ξ2) = Ψi(t, z1, z2, ξ2, ξ2), it follows that, for i = 3,4,
Ψ̃i ∈ C([0,1] × S1 × S1,Ω2

δ ), Ψ̃i(0, ·) = IdS1×S1 and Ψ̃i(1, ·) = Φi . Define a homotopy
F : [0,1] × S1 × S1 → S1 × S1 by

F1(t, ζ ) = Ψ̃3(t, h(ζ1), h(ζ2))

|Ψ̃3(t, h(ζ1), h(ζ2))|
and F2(t, ζ ) = Ψ̃4(t, h(ζ1), h(ζ2))

|Ψ̃4(t, h(ζ1), h(ζ2))|
.

Let us notice that F(1, ζ ) = f (ζ ) and

F(0, ζ ) =
(

h(ζ1)

|h(ζ1)| ,
h(ζ2)

|h(ζ2)|
)

.

This function defines a homeomorphism of S1 × S1, which we regard as embedded in R
3,

parametrized as follows:

ζ : (θ1, θ2) ∈ [0,2π)2 �→ (ρ1 cos θ1, ρ1 sin θ1,0) + (0, ρ2 cos θ2, ρ2 sin θ2),

for 0 < ρ2 < ρ1. The map f defined above can be read in the introduced variables as

f (ζ ) = (
ρ1f1(ζ ),0

) + (
0, ρ2f2(ζ )

)
.

The function f can be extended to a continuous map f̃ : T → T , where T is the solid torus
described by

(θ1, θ2, ρ) ∈ [0,2π)2 × [0, ρ2] �→ (ρ1 cos θ1, ρ1 sin θ1,0) + (0, ρ cos θ2, ρ sin θ2)

and

f̃ (ζ, ρ) = (
ρ1f1(ζ ),0

) + (
0, ρf2(ζ )

)
.
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The function f̃ is homotopic to a homeomorphism of T , along a deformation which maps ∂T =
S1 ×S1 into itself. Thus deg(f̃ , T ,P ) 
= 0 for all P in the interior of T . We see next how this fact
implies that f is onto. Take (θ∗

1 , θ∗
2 ) ∈ [0,2π)2 and ρ∗ ∈ (0, ρ2) then there exist ζ ∗∗ ∈ S1 × S1

and ρ∗∗ ∈ (0, ρ2) such that

(
ρ1f1

(
ζ ∗∗),0

) + (
0, ρ∗∗f2

(
ζ ∗∗)) = (

ρ1 cos θ∗
1 , ρ1 sin θ∗

1 ,0
) + (

0, ρ∗ cos θ∗
2 , ρ∗ sin θ∗

2

)
.

Thus we get f1(ζ
∗∗) = (cos θ∗

1 , sin θ∗
1 ), f2(ζ

∗∗) = (cos θ∗
2 , sin θ∗

2 ) and ρ∗ = ρ∗∗. It then follows
that f is onto. This concludes the proof. �

We now prove (7.4).

Lemma 7.2. There exists a sufficiently small δ > 0 with the following properties: If (ξ̄ , s̄) ∈ ∂Dδ

is such that ϕ2(ξ̄ , s̄) = C , then there exists a vector τ , tangent to ∂Dδ at the point (ξ̄ , s̄), so that

∇ϕ2(ξ̄ , s̄) · τ 
= 0.

Proof. Let us assume there exist a sequence δ = δn → 0 and points (ξn, sn) ∈ Dδ such that
(omitting the subscript n), (ξ, s) → (ξ̄ , s̄) ∈ Ω̄2 × R

2+ and ϕ2(ξ, s) → C < 0. We shall show that
there exists a tangent vector τ , tangent to Ω̄2 × R

2+, such that ∇ϕ2(ξ̄ , s̄) · τ 
= 0.
Assume first that ξ̄ ∈ Ω2. If |s| → ∞, then ϕ2(ξ, s) → ∞. Thus we may assume that |s| is

bounded.
Let us observe now the following fact: for any points ξ = (ξ1, ξ2) fixed and far from each

other and from the boundary, the function

ϕ2(ξ, s) =
∑

j=1,2

(
bsj + 2sj log sj + H(ξ,ξj )sj

) − 2G(ξ1, ξ2)
√

s1s2

is strictly convex as a function of s, and it is bounded below. Hence it has a unique minimum
point, which we denote by (s̄1, s̄2). Then each component s̄i of s̄ is a function of ξ1 and ξ2,
namely s̄i = s̄i (ξ1, ξ2) for i = 1,2. Furthermore, a direct computation shows that

ϕ2(ξ, s̄) = −2(s̄1 + s̄2) (7.7)

and

ϕ2(ξ, s̄) � min
i=1,2

(
min
si=0

ϕ2(ξ, s)
)

� −2e− b+2
2 min

i=1,2
e− H(ξi ,ξi )

2 . (7.8)

Assuming again that ξ̄ ∈ Ω2, if s = (s1, s2) → (0,0), then we would get that C = 0, which is
impossible. On the other hand, if say s1 is far away from 0 and s2 → 0, then ∂s2ϕ2(ξ, s1, s2) →
−∞, and then we can take τ = ∂s2ϕ2.

Let us consider now the case in which dist(ξ2, ∂Ω) = δ. As δ → 0, this fact implies that
H(ξ2, ξ2) → ∞, then we must also have that |ξ1 − ξ2| → 0 to keep the value of ϕ2 bounded. By
construction we have dist(ξ1, ∂Ω) � δ. Two cases arise: if ∇sϕ2(ξ, s) 
= 0, then we can chose
τ parallel to ∇sϕ2(ξ, s). Otherwise, we are in the case in which ∇sϕ2(ξ, s) = 0. It remains to
analyze this case.
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Formula (7.7) leads us to change variables as

r = s1 + s2, rt = s1 with 0 < r < ∞, 0 < t < 1.

In these new variables the function ϕ2 gets rewritten as

ϕ2(ξ, r, t) = r
[
b + 2t log t + 2(1 − t) log(1 − t)

] + 2r log r

+ r
[
H(ξ1, ξ1)t + H(ξ2, ξ2)(1 − t) − 2G(ξ1, ξ2)

√
t (1 − t)

]
.

The relation ∂ϕ2(r,t)
∂r

= 0 gives r = e− C+h(ξ,t)
2 , where C is an explicit positive number and h(ξ, t),

for 0 < t < 1 is given by

h(ξ, t) = H(ξ1, ξ1)t + H(ξ2, ξ2)(1 − t) − 2G(ξ1, ξ2)
√

t (1 − t) + 2t log t + 2(1 − t) log(1 − t).

(7.9)

To get the minimum value of ϕ2 in the variable s is thus equivalent to get the minimum of the
function h as a function of t in the interval (0,1). Differentiating h(ξ, t) with respect to t we get

H(ξ2, ξ2) − H(ξ1, ξ1)

2G(ξ1, ξ2)
= t − 1

2√
t (1 − t)

− 1

G(ξ1, ξ2)
log

t

1 − t
. (7.10)

This relation defines uniquely the value of t . Thus the relation ∇sϕ2(ξ, s) = 0 implies that

ϕ2(ξ, s) = −2r = −2e− C+h(ξ,t)
2 (7.11)

with t uniquely defined by (7.10) and h given by (7.9). Next we want to analyze the dependence
of this t on the points ξ1 and ξ2. Our first claim is that t is away both from 0 and 1. This fact is a
direct consequence of the following statement: there exists a positive number C such that∣∣∣∣H(ξ2, ξ2) − H(ξ1, ξ1)

2G(ξ1, ξ2)

∣∣∣∣ � C. (7.12)

We show the validity of (7.12). We assume by contradiction that∣∣∣∣H(ξ2, ξ2) − H(ξ1, ξ1)

2G(ξ1, ξ2)

∣∣∣∣ → +∞. (7.13)

We have δ = dist(ξ2, ∂Ω). Let us denote d1 = dist(ξ1, ∂Ω), and d = |ξ1 − ξ2|. Condition (7.13)
implies that d1 and d → 0, with δ � d1 and δ = o(d). Let us consider the expanded domain
Ω̃ = δ−1Ω and observe that for this domain its associated Green’s function and regular part are
given by

H̃ (x1, x2) = 4 log δ + H(δx1, δx2), G̃(x1, x2) = G(δx1, δx2). (7.14)

Furthermore, dist(ξ2, ∂Ω) = δ implies dist( ξ2
δ
, ∂Ω̃) = 1. After a rotation and translation, we

assume that ξ2 = (0,1) and as δ → 0 the domain Ω̃ becomes the half-plane x2 > 0. We denote

δ
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respectively by G0 and H0 Green’s function and its regular part, associated to the half plane
x2 > 0. The expressions for G0 and H0 are explicit:

H0(x, y) = 4 log
1

|x − ȳ| , ȳ = (y1,−y2)

where y = (y1, y2), and

G0(x, y) = 4 log
1

|x − y| − 4 log
1

|x − ȳ| .

We thus compute the expression in (7.13)

H(ξ2, ξ2) − H(ξ1, ξ1)

2G(ξ1, ξ2)
= H̃ (

ξ2
δ
,

ξ2
δ
) − H̃ (

ξ1
δ
,

ξ1
δ
)

2G̃(
ξ1
δ
,

ξ2
δ
)

=
H0((0,1), (0,1)) − 4 log δ

|ξ1−ξ̄1| + o(1)

4 log δ
|ξ1−δ(0,1)|

= O(1),

but this is in contradiction with (7.13).
The next step is to study the dependence of t on the points ξi . Let us call

μ = H(ξ2, ξ2) − H(ξ1, ξ1)

2G(ξ1, ξ2)
, λ = 1

G(ξ1, ξ2)
.

Let us analyze how t depends on μ and λ. Let us set z = t − 1
2 . Then Eq. (7.10) defines uniquely

z = z(μ,λ)

μ = z√
1
4 − z2

+ λf (z). (7.15)

We observe that

z(μ,0) = 1

2

H(ξ2, ξ2) − H(ξ1, ξ1)√
G(ξ1, ξ2)2 + (H(ξ2, ξ2) − H(ξ1, ξ1))2

.

Differentiating expression (7.15) with respect to μ and to λ we get that |zμ| + |zλ| is bounded if
μ and λ are bounded. Now we replace the values of t = t (μ,λ), defined by the relation t = z+ 1

2 ,
in (7.9). We thus get a function h = h(H(ξ1, ξ1),H(ξ2, ξ2),G(ξ1, ξ2), t (μ,λ)).

Our next claim is that the derivatives of h with respect to H(ξ1, ξ1), to H(ξ2, ξ2), and to
G(ξ1, ξ2) are bounded above and below away from 0. We show this fact for ∂

∂G(ξ1,ξ2)
h. We have

∂
h
(
H(ξ1, ξ1),H(ξ2, ξ2),G(ξ1, ξ2), t (μ,λ)

)

∂G(ξ1, ξ2)
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= ∂

∂G(ξ1, ξ2)
h + ∂h

∂t

[
∂t

∂μ

∂μ

∂G(ξ1, ξ2)
+ ∂t

∂λ

∂λ

∂G(ξ1, ξ2)

]

= −√
t (1 − t) + O

(
1

G(ξ1, ξ2)

)
= O(1) + O

(
1

G(ξ1, ξ2)

)
.

The above conclusion holds true since we have that |tμ| + |tλ| is bounded. Furthermore,

∂λ

∂G(ξ1, ξ2)
= − 1

G(ξ1, ξ2)2
= o(1),

∂μ

∂G(ξ1, ξ2)
= −H(ξ1, ξ1) − H(ξ2, ξ2)

G(ξ1, ξ2)2
= o(1).

Finally, we Taylor expand

∂h

∂t

(
H(ξ1, ξ1),H(ξ2, ξ2),G(ξ1, ξ2), t (μ,λ)

)
= ∂h

∂t

(
H(ξ1, ξ1),H(ξ2, ξ2),G(ξ1, ξ2), t (μ,0)

)
+ ∂2h

∂2t

(
H(ξ1, ξ1),H(ξ2, ξ2),G(ξ1, ξ2), t̃(μ,λ)

)(
t (μ,λ) − t (μ,0)

)
= O(1),

since

∂2h

∂2t

(
H(ξ1, ξ1),H(ξ2, ξ2),G(ξ1, ξ2), t̃(μ,λ)

) = O(1)G(ξ1, ξ2)

and

(
t (μ,λ) − t (μ,0)

) ∼ λ ∼ 1

G(ξ1, ξ2)
.

In a similar fashion we get that the quantities

∂h

∂H(ξ1, ξ1)
,

∂h

∂H(ξ2, ξ2)

are bounded above and below away from 0 in the considered region.
We have now the tools to conclude the proof of our lemma. We recall that the case we are

discussing is the following: dist(ξ2, ∂Ω) = δ, ξ1 → ξ2, with dist(ξ1, ∂Ω) � δ, ∇sϕ2(ξ, s) = 0
which implies the validity of (7.11), namely

ϕ2(ξ, s) = −2e− C+h(ξ,t)
2

with t uniquely defined by (7.10) and h given by (7.9). We argue by contradiction, assuming that
(7.4) does not hold. Then we have in particular that

∇ξ ϕ2(ξ, s) · τ = 0 (7.16)
2
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for any vector τ tangent to ∂Ωδ at ξ2, where Ωδ = {x ∈ Ω: dist(x, ∂Ω) > δ}. Note that

∇ξ2ϕ2(ξ, s) = e− C+h(ξ,t)
2

[
∂h

∂G(ξ1, ξ2)
∇ξ2G(ξ1, ξ2) + ∂h

∂H(ξ2, ξ2)
∇ξ2H(ξ2, ξ2)

]
.

We recall that ∂h
∂G(ξ1,ξ2)

and ∂h
∂H(ξ2,ξ2)

are bounded above and below away from 0. We denote

ρ = |ξ1 − ξ2| → 0. Only two cases may occur, namely δ
ρ

→ ∞ or δ
ρ

� c0, for some constant c0.
We shall show that in both cases relation (7.16) is impossible.

Let us assume first that δ
ρ

→ ∞ and define

xj = ξj − ξ1

ρ
for j = 1,2,

and x̃j = limδ→0 xj . Let us define

ϕ̃(x1, x2) = ϕ2(ξ1 + ρx1, ξ1 + ρx2, s).

After rotation we may assume that in (7.16) we have τ = (0,1), and hence (writing ξ2 = (ξ1
2 , ξ2

2 ))

lim
δ→0

∂x2
2
ϕ̃(x1, x2) = lim

δ→0
ρ ∂ξ2

2
ϕ2(ξ1 + ρx1, ξ1 + ρx2, s) = 0.

On the other hand, since away from the boundary the function H(x,x) is bounded, we get

lim
δ→0

∂x2
2
ϕ̃(x1, x2) = −C∂x2

2
log

1

|x̃1 − x̃2| 
= 0,

a contradiction. Thus, we necessarily have that δ
ρ

is bounded. The interesting case is when
ξ1 ∈ ∂Ωδ . If not, we can reproduce the argument above to reach a contradiction. Let us assume
first that δ = o(ρ). In this case we find that (7.13) holds true, which leads us to a contradiction.
Let us assume then that δ

ρ
→ c. We consider the scaled domain Ω̃ = δ−1Ω , whose associated

Green’s function G̃ and regular part H̃ are given by (7.14). Furthermore, in this scaled domain
the number t defined by relation (7.10) remains away from 0 and 1, since the quantity

H̃ (ξ2, ξ2) − H̃ (ξ1, ξ1)

2G̃(ξ1, ξ2)

remains bounded. Furthermore, after a rotation and translation, we may assume that ξ̃2 := ξ2
δ

→
(0,1), ξ̃1 := ξ1

δ
→ (a,1), for some a > 0, as δ → 0 and the domain Ω̃ becomes the half-plane

x2 > 0. Under this condition, we see that the derivative of ϕ2 in the direction e = (0,1) is not 0,
reaching again a contradiction with (7.16), and the proof is concluded. �
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