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a b s t r a c t

We discuss Lepp-centroid versus Lepp-midpoint algorithms for Delaunay quality triangulation. We
present geometrical results that ensure that the centroid version produces triangulations with both
average smallest angles greater than those obtained with the midpoint version and with bigger smallest
edges, without suffering from a rare looping case associated to the midpoint method. Empirical study
shows that the centroid method behaves significantly better than the midpoint version (and than the off-
center algorithm for angles bigger than 25◦), for geometries whose initial Delaunay triangulation have
triangle smallest edges over the boundary.
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1. Introduction

In the last two decades, the triangular mesh generation
subject has evolved into an important and interdisciplinary
research field. Triangulations have been used as an important
methodology for many problems in different applications such
as finite element analysis of complex physical problems modeled
by partial differential equations, computer graphics applications,
geometric modeling, geographical information systems, terrain
modeling and real time rendering.
In the last decade, methods that produce a sequence of

improved constrained Delaunay triangulations (CDT) have been
developed to dealwith the quality triangulation of a planar straight
line graph D. The combination of edge refinement and Delaunay
insertion has been described by George and Borouchaki [1,2] and
Rivara and collaborators, [3–6]. Mesh improvement properties for
iterative Delaunay refinement based on inserting the circumcenter
of triangles to be refined have been established by Chew, [7],
Ruppert [8], and Shewchuk [9]. Applications of this form of
refinement have been described by Weatherill et al. [10] and
Baker [11]. Baker also published a comparison of edge based
and circumcenter based refinement [12]. Algorithms based on
off-center insertions have been recently presented by Üngör and
collaborators [13,14]. Algorithms for uniform triangular meshes
are discussed in [15]. For a theoretical review on mesh generation
see the monograph of Edelsbrunner [16].
This paper discusses and compares geometrical properties and

empirical behavior of Lepp-centroid and Lepp (terminal edge)
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midpoint methods for quality Delaunay triangulation, and is
an extended and improved version of the paper presented at
GMP2008 [17].

1.1. Longest edge refinement algorithms

The longest edge bisection of any triangle t is the bisection of t
by themidpoint of its longest edge and the opposite vertex (Fig. 3).
Longest edge based algorithms [18–20,3,4,6] were designed to
take advantage of the following mathematical properties on the
quality of triangles generated by iterative longest edge bisection
of triangles [21–23], and require a reasonably good quality input
triangulation to start with.

Theorem 1. For any triangle t0 of smallest angle α0.
(i) The iterative longest edge bisection of t0 ensures that for any

longest edge son t of the smallest angle αt , it holds that αt ≥ α0/2,
the equality holding only for equilateral triangles. (ii) A finite number
of triangle similarity classes is generated. (iii) The area of t0 tends to
be covered by quasi-equilateral triangles (for which at most 4 triangle
similarity classes of good quality triangles are produced).

1.1.1. Lepp (Delaunay terminal edge) midpoint method
The algorithm was designed to improve the smallest angles

in a Delaunay triangulation. This proceeds by iterative selection
of a point M which is the midpoint of a Delaunay terminal edge
(a longest edge for both triangles that share this edge) which is
then Delaunay inserted in the mesh. This method uses the longest
edge propagating path associated to a bad quality processing
triangle to determine a terminal edge in the current mesh (see
Section 2). The algorithmwas introduced in a rather intuitive basis
as a generalization of previous longest edge algorithms in [4–6].
This was supported by the improvement properties of both the
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longest edge bisection of triangles (Theorem 1) and the Delaunay
algorithm, and by the result presented in Theorem 2 in the next
section. Later in [5] we discussed some geometrical properties
including a (rare) loop case for angle tolerance greater than 22◦
and its management. However, while empirical studies show that
the method behaves analogously to the circumcircle method in 2-
dimensions [4–6], formal proofs on algorithm termination and on
optimal size property have not been fully established due to the
difficulty of the analysis. Recently in [24] we have presented some
geometrical improvement properties of an isolated insertion of a
terminal edge midpoint M in the mesh. In [25] a first termination
proof is presented and several geometric aspects of the algorithm
are studied.

1.2. Point insertion strategies for constrained edges

For constrained edges, both the circumcenter and the off-
center algorithm use the following encroachment strategy: if a
prospective point P to be inserted is contained in the diameter
circle of any constrained edge E, the midpoint of E is inserted
instead of P , and implies that a strict Delaunay triangulation
is maintained. This imposes a strong geometry restriction: no
angle less than 90◦ can appear in the geometry. In exchange,
for the Lepp-Delaunay midpoint algorithm, a real CDT is allowed
by only considering local information associated to the terminal
triangle that contains such constrained edge. This avoids the
interaction with the whole set of constrained items, which
simplifies the algorithm implementation, specially when the
algorithm is generalized to 3-dimensions.

1.3. Lepp-centroid algorithm

In order to improve the performance of the previous Lepp-
midpoint algorithm, in [17] we have introduced a new Lepp-
centroid algorithm for quality triangulation. For any general
(planar straight line graph) input data, and a quality threshold an-
gle θ , the algorithm constructs constrained Delaunay triangula-
tions that have all angles at least θ as follows: for every bad triangle
t with smallest angle less than θ , a Lepp-search is used to find an
associated convex terminal quadrilateral formed by the union of
two terminal triangles which share a local longest edge (terminal
edge) in the mesh. The centroid of this terminal quad is computed
and Delaunay inserted in the mesh. The process is repeated un-
til the triangle t is destroyed in the mesh. In this paper we prove
that the centroid version produces triangulations both with aver-
age smallest angles greater than those obtained with the midpoint
version, and with bigger smallest edges without suffering from a
rare looping case associated to the midpoint method.
In Section 2 we introduce the basic concepts of longest edge

propagating path (Lepp), terminal edges and terminal triangles,
and a relevant constraint on the largest angle of Delaunay
terminal triangles. In Section 3 we describe the Lepp-midpoint
algorithm, discuss a special loop case that rarely occurs for angles
greater than 22◦, and a geometric characterization on Delaunay
terminal triangles. For the Lepp-midpoint method, we use this
characterization to state improved angle bounds on the smallest
angles, and to prove that the new points are not inserted too
close to previous vertices in the mesh. In Section 4 we formulate
the new Lepp-centroid algorithm and state geometrical results
which explain the better performance of this method. In Section 5
we present an empirical study that compares the behavior of
Lepp-centroid and Lepp-midpoint methods for geometries whose
initial Delaunay triangulation have triangle smallest edges over
the boundary. The centroidmethod computes significantly smaller
triangulation than the terminal edge midpoint variant, produces
globally better triangulations, and terminates for higher threshold
angle θ (up to 36◦). We also show that the Lepp-centroid method
behaves better than the off-center algorithm for θ > 25◦.
Fig. 1. (a) AB is an interior terminal edge shared by terminal triangles (t2, t3)
associated to Lepp(t0) = {t0, t1, t2, t3}; (b) CD is a boundary terminal edge with
unique terminal triangle t3 associated to Lepp(t∗0 ) = {t

∗

0 , t1, t2, t3}.

2. Concepts and preliminary results

The following concepts were introduced and used in references
[4–6]. An edge E is called a terminal edge in triangulation τ if
E is the longest edge of every triangle that shares E, while the
triangles that share E are called terminal triangles. Note that in
2-dimensions either E is shared by two terminal triangles t1, t2 if
E is an interior edge, or E is shared by a single terminal triangle
t1 if E is a boundary (constrained) edge. See Fig. 1 where edge
AB is an interior terminal edge shared by two terminal triangles
t2, t3, while edge CD is a boundary terminal edge with associated
terminal triangle t3.
For any triangle t0 in τ , the longest edge propagating path of

t0, called Lepp(t0), is the ordered sequence {tj}N+10 , where tj is
the neighbor triangle on a longest edge of tj−1, and longest-edge
(tj) > longest-edge (tj−1), for j = 1, . . .N . Edge E = longest-
edge(tN+1) = longest-edge(tN ) is a terminal edge in τ and this
condition determines N . Consequently either E is shared by a
couple of terminal triangles (tN , tN+1) if E is an interior edge in
τ , or E is shared by a unique terminal triangle tN with boundary
(constrained) longest edge. See Fig. 1.
For a Delaunay mesh, an unconstrained terminal edge imposes

the following constraint on the largest angles of the associated
terminal triangles [3,4,6]:

Theorem 2. For any pair of Delaunay terminal-triangles t1, t2
sharing a non-constrained terminal edge, largest angle (ti) ≤ 2π/3
for i = 1, 2. Furthermore when the equality on the bound on the
largest angle holds for one of the triangles (say triangle ABC), then
the other triangle is equilateral, the 4 vertices are cocircular and
the distance from the terminal edge midpoint to the circumcenter is
maximal and equal to half of the circumradius (see Fig. 2(b)).

Proof Sketch. For any pair of Delaunay terminal triangles BAC,
BAD of longest edge AB (see Fig. 2(a)), the third vertex D of the
neighbor terminal triangle ABD must be situated in the exterior
of circumcircle CC(BAC) and inside the circles of center A, B and
radius AB. This defines a geometrical place R for D which reduces
to one point when ]BCA = 2π/3 where OZ = r/2 (see Fig. 2(b)),
implying that R = φ when angle BCA > 2π/3. �

For a single longest edge bisection of any triangle t, into two
triangles tA, tB, the following result holds:

Proposition 3. For the longest edge bisection of any triangle t (see
Fig. 3), where BC ≤ CA ≤ BA, its holds that: (a) α1 ≥ α0/2
which implies β ≥ 3α0/2; (b) If t is obtuse, α1 ≥ α0 which implies
β ≥ 2α0.

Lemma 4. The longest edge bisection of any bad triangle BAC
produces an improved triangle tB and a bad quality obtuse triangle tA.

Remark 5. Note that usually tA has largest angle greater than 2π/3
and it is consequently eliminated by edge swapping throughout
the process.
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Fig. 2. R is the geometrical place of the fourth vertex D for Delaunay terminal
triangles ABC, ABD; (b) R reduces to one point when γ = 2π/3 (triangle ADB
equilateral).

Fig. 3. Notation for longest edge bisection.

Fig. 4. For a bad terminal triangle BAC, Lepp-midpointmethod insertsmidpointM .

3. Lepp (terminal edge) midpoint method

Given an angle tolerance θtol, the algorithm can be simply
described as follows: iteratively, each bad triangle tbad with
smallest angle less than θtol in the current triangulation is
eliminated by finding Lepp(tbad), a pair of terminal triangles t1, t2,
and associated terminal edge l(AB) (see Fig. 4). If non-constrained
edges are involved, then the midpoint M of l is Delaunay inserted
in the mesh. Otherwise the constrained point insertion criterion
described below is used. The process is repeated until tbad is
destroyed in the mesh, and the algorithm finishes when the
minimum angle in the mesh is greater than or equal to an angle
tolerance θtol.
When the second longest edge CA is a constrained edge, the

swapping of this edge is forbidden. In such a case, the insertion
of point M would imply that the later processing of bad quality
triangleMACwould introduce triangleMAM1 (see Fig. 5(a)) similar
to triangle ABC implying an infinite loop situation. To avoid this
behavior we introduce the following additional operation, which
guarantees that M is not inserted in the mesh by processing
triangle ABC.
Constrained edge point insertion: If CA is a constrained edge and
BA is a non-constrained edge, then insert midpointM1 of edge CA.
Special loop case. For the Lepp-midpoint method, there is a rare
special loop case discussed in [5], where a triangleMAM1 similar to
a bad-quality triangle ABC can be obtained for a non-constrained
Fig. 5. (a) Over constrained edge CA, the insertion of M and M1 produces triangle
MAM1 similar to triangle BAC; (b) Insertion ofM1 avoids this situation.

edge CA. This happens when quadrilaterals BEAC and ADCM (see
Fig. 5(a)) are terminal quadrilaterals (where edges BA and CA
are terminal edges respectively) together with some non-frequent
conditions on neighbor constrained items. A necessary but not
sufficient condition on the triangle ABC for this to happen is that
angle BMC ≥ π/3 which implies α0 ≥ αlimit = arctan

√
15−
√
3

3+
√
5
>

22◦ for obtuse triangle BAC [5]. This loop case can be avoided by
adding some extra conditions to the algorithm. To simplify the
analysis we restrict the angle tolerance to αlimit which is slightly
bigger than the limit tolerance, equal to 20.7◦, used to study both
for the circumcenter and the off-center methods. The algorithm is
given below:
Lepp Midpoint Algorithm
Input= a CDT, τ , and angle tolerance θtol
Find Sbad = the set of bad triangles with respect to θtol
for each t in Sbad do
while t remains in τ do
Find Lepp (tbad), terminal triangles t1, t2 and terminal edge l.
Triangle t2 can be null for boundary l.
Select Point (P, t1, t2, l)
Perform constrained Delaunay insertion of P into τ
Update Sbad

end while
end for
Select Point (P, tterm1, tterm2, lterm)
if (second longest edge of tterm1 is not constrained and second
longest edge of tterm2 is not constrained) or lterm is constrained
then
Select P =midpoint of lterm and return

else
for j = 1, 2 do
if ttermj is not null and has constrained second longest edge
l∗ then
Select P =midpoint of l∗ and return

end if
end for

end if

3.1. Angle and edge size bounds for the Lepp-midpoint method

The results of this section improve results discussed in [17,
25]. Firstly we present a characterization of Delaunay terminal
triangles based on fixing the second longest edge CA and choosing
the smallest angle at vertex A. The diagram of Fig. 6(a) shows the
possible locations for vertex B and the midpointM . The diagram is
defined as follows: (1) Since CB is a shortest edge, B lies inside the
circular arc EFA of center C and radius |CA|. Consequently, M lies
inside the circular arc E ′F ′A of center N = (C + A)/2 and radius
|CA|/2; (2) Since BA is a longest edge, B lies outside the circular arc
CF of center A and radius |C − A|, and soM lies outside circular arc
NF ′ of center A, radius |CA|/2; (3) According to Theorem 2, the line
CE makes an angle of 120◦ with CA.
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Fig. 6. (a) EFC and E′F′N′ are geometrical places for vertex B and midpoint M for a terminal triangle BAC with respective smallest and largest angles of vertices A and C.
(b) Distribution of angles (α0, α1).
Nowweuse the diagramof Fig. 6(a) both to improve the bounds
on α1 (Fig. 3) and to bound the minimum distance from M to the
previous neighbor vertices in the mesh. To this end consider the
distribution of the ordered pair of angles (α0, α1) illustrated in
Fig. 6(b). A sketch of the ideas involved in the proofs is as follows:
For the right triangles (B over CG) α1 = α0. The ratio α1/α0
decreases from 2 to 1 along line EC (obtuse triangles with largest
angle equal to 2π/3), while the ratio α1/α0 increases from 1/2 to 1
along arc F to C (isosceles acute triangles with two longest edges).
Note that segment lines UW and EH correspond to fixed smallest
angle equal to αlimit and 30◦ respectively.
The following proposition simplifies the analysis:

Proposition 6. Let ABC be any Delaunay terminal triangle of longest
edge AB and smallest angle α0, with α0 ≤ 30◦ (see Fig. 3).
(a) Let d(M) be theminimum distance fromM,midpoint of AB, to the
previous vertices in the mesh. Then
(i) If t is acute then d(M) = BM
(ii) If t is obtuse then d(M) = CM.

(b) Consider the set of acute Delaunay terminal triangles with
smallest edge α0 and fixed edge CA, then the smallest d(M)/BC
ratio corresponds to the isosceles triangle for which BA = CA.

(c) Consider the set of obtuse Delaunay terminal triangles with
smallest angle α0 and fixed edge CA, then the smallest d(M)/BC
ratio corresponds to the most obtuse triangle of angles 2π/3, α0,
(π/3− α0).

Proof. Consider Fig. 7 that shows the possible locations of vertex
B (B going from B0 to Bi) of all the Delaunay terminal triangles
of smallest angle α0 and fixed edge CA. Note that B0, Br , Bi
respectively correspond to the triangle of largest angle equal to
2π/3, the right triangle, and the isosceles triangle (BiA = CA),
whose respectively longest edge midpoints areM0,Mr ,Mi.
Now consider the right triangle BrAC . For this triangle BrMr =

CMr (for α0 = 30◦ also BrMr = BrC). Then for any acute triangle
BAC (B going from Br to Bi), CM increases as BM and CB decrease,
which implies that d(M) = BM , and the result of (a) (i) follows.
Note also that for these triangles, the worst d(M)/BM ratio is
obtained for the isosceles triangle, B = Bi, which implies (b). On the
other hand, for any obtuse triangle BAC (B going from Br to B0), CM
decreases, as BM and CB increase, which implies that d(M) = CM ,
the result of (b) (ii) holds. Note also that theworst d(M)/BC ratio is
obtained for the most obtuse triangle with B = B0, which implies
the result of (c). �

Lemma 7. (I) For acute Delaunay terminal triangles of smallest angle
α0 (see Fig. 3), there exist constants C1, C2 such that:
(a) α0 ≤ 30◦ (B in region CIH) implies α1 ≥ C1α0 with C1 ≈ 0.79.
(b) α0 ≤ αlimit (B in region CVW) implies α1 ≥ C2α0 with

C2 ≈ 0.866
(c) The ratio α1/α0 approaches 1.0 both when α0 decreases, and

when BAC becomes a right triangle.
(d) Using the notation of Fig. 3, β ≥ (1+ C1)α0 for α0 ≤ 30◦.
(II) For an obtuse Delaunay terminal triangle, α1 > α0.
Fig. 7. Delaunay terminal triangles of smallest angle α0 and fixed second longest
edge CA. For acute triangles, vertex B goes from Br (right triangle) to Bi (isosceles
triangle). For obtuse triangle, B goes from B0 (obtuse triangle) to Br . Points M0 , Mr
andMi are midpoints of B0A, BrA and BiA respectively.

Proof. (I) Consider the acute Delaunay terminal triangles of
smallest angle α0, which in the Fig. 7 correspond to the triangles of
vertex B going from Br (right triangle) to Bi (isosceles triangle). Note
that for any acute Delaunay terminal triangle with fixed smallest
angle α0, the angle α1 is minimum for the isosceles triangle with
BiA = CA. In Fig. 7, the points Mr ,Mi correspond to the terminal
edge midpoints for right and isosceles triangle respectively. Now
assume BiA = 1 which implies that BiC = 2 sin(α0/2). Then
use the cosine theorem over triangle BiMC for computing CMi
and the following sine formula (applied over triangle MiAC) for
computing α1:

sinα1
sinα0

=
1/2
CM

. (1)

In particular, for the case α0 = 30◦, this computation gives
α1 > 23.79◦, which impliesα1/α0 > 0.79. Nownote that for these
isosceles triangles, CM decreases as α0 decreases, and according to
(1), the ratio α1/α0 is minimum for the biggest value of α0, and
the result of (a) follows. The result of (b) is obtained analogously.
Finally note that CM tends to be equal to BM whenα0 approaches 0,
which implies (c). The result of (d) follows from the fact that angle
BMC is equal to α0 + α1 for any triangle ABC .
(II) Follows directly from part (b) of Proposition 3.
In order to bound the minimum distance from M to previous

vertices in themesh,we use both the properties of the longest edge
bisection of a Delaunay terminal triangle BAC and the constraint on
the empty circumcircle. Note that the circumcenter O of an obtuse
(acute) triangle is situated in the exterior (the interior) of the
triangle. Furthermore for any non-constrained obtuse Delaunay
terminal triangle t, the distance d = MO from the circumcenter O
to the longest edge BA (see Fig. 4) satisfies that 0 < d < r/2, where
r is the circumradius. We will consider the limit cases d = r/2 and
d = 0, which respectively correspond to largest angles equal to
2π/3 and π/2, as well as the cases α = αlimit and α = 14◦ to state
bounds for obtuse and acute triangles.

Lemma 8. Consider any Delaunay terminal triangle t of smallest
angle α and terminal edge AB of midpoint M (Fig. 4), and let d(M) be
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the minimum distance from M to any vertex of the mesh. Then there
exists constants C1, C2, C3, C4, C5 such that

(a) For acute t
(i) α ≤ αlimit implies d(M) ≥ C1 | BC | with C1 > 1.3
(ii) α ≤ 30◦ implies d(M) ≥ C2 | BC | with C2 > 0.96.

(b) For obtuse t
(i) α ≤ 14◦ implies d(M) ≥ C3 | BC | with C3 > 1
(ii) α ≤ αlimit implies d(M) ≥ C4 | BC | with C4 > 0.66
(iii) α ≤ 30◦ implies d(M) ≥ C5 | BC | with C5 = 0.5

(c) obtuse t with α > 14◦ implies β2 > 28◦ > αlimit .

Proof. (a) According to part (b) of Proposition 6, for acute triangles
with smallest angle α ≤ α̃, the worst ratio d(M)/BC holds for the
isosceles triangle BiAC with BiA = CA and smallest angle α̃. Also
note that for the right triangles with α ≤ 30◦, when α decreases,
the ratio d(M)/BC increases. Then for acute triangles of smallest
angle α ≤ α̃, it suffices to study the acute isosceles triangle of
smallest angle α̃. In particular for proving a(ii), corresponding to
the case α ≤ 30◦, assume BA = 1, compute BC = 2 sin 15◦ =
0.517638 and MB/BC < 0.9659, and the result follows. For α ≤
αlimit , assume BA = 1, compute BC = 2 sin(αlimit/2) = 0.38504
andMB/BC < 1.32, and the result follows.
(b) According to Proposition 6, for obtuse Delaunay terminal

triangles with α ≤ α̃, the worst d(M)/BC ratio is obtained for the
obtuse triangle of angles 2π/3, α̃,π/3− α̃. For α ≤ 30◦ we need to
consider the simple obtuse isosceles triangles of angles 120◦, 30◦,
30◦, for which CM = CB/2, and b(iii) follows. Analogous reasoning
and computations gives cases b(ii) and the result of b(iii).

As shown in [25], the following theorem based on Proposition 3
and Lemmas 7 and 8 ensures that bad quality terminal triangles
are quickly improved by introducing a sequence of better triangles
of edge CB (see Fig. 3), but not introducing points too close to the
previous vertices in the mesh. Furthermore, here we also prove
that, for triangle smallest angle less than 14◦, no edge smaller than
the existing neighbor edges is introduced in the mesh.

Theorem 9. Consider the Lepp-midpoint method and θtol ≤ αlimit .
Then for any bad quality terminal triangle of smallest angle α, at
most a finite sequence of improved triangles {tBj} (Fig. 3), can be
obtained until tB is good (if edge swapping does not occur), such that
βj ≥ (3/2)jα0. Furthermore (a) For α ≤ 14◦, no edge smaller than
the existing neighbor edges is inserted in the mesh. (b) Only at the
last improvement step (when α > 14◦) a small smallest edge, at
least 0.66 times the size of a previous neighbor smallest edge, can be
occasionally introduced in the mesh for obtuse triangle t.

3.2. An explanation on reported convergence

In practice, the Lepp-midpoint method shows slower conver-
gence for θtol greater than 25◦, than for smaller θtol values [6]. This
can be explained by using the results of this section as follows.
Firstly note that the worst d(M)/BC ratio is obtained for obtuse
Delaunay terminal triangles t1 of largest angle close to 2π/3 and
smallest angles close to 30◦. Note also that for this t1, its associ-
ated terminal triangle t2 is close to an equilateral triangle. Con-
sequently, the longest edge bisection of both t1, t2, not only does
not improve significantly the smallest angles, but introduces four
triangles whose smallest angles remain around 30◦. Even further-
more, according to part (I) (a) of Lemma 7, the longest edge bisec-
tion of either t1, t2 can produce an acute son t∗ of smallest angle
close to 30◦, whose longest edge bisection (if this becomes a termi-
nal triangle) can in turn produce a worst son of smallest angle ap-
proximately equal to 23.7◦. Note that t∗ cannot become a terminal
triangle and can need of more point insertions for its elimination.
Fig. 8. Estimating location of centroid Q for Delaunay terminal triangles BAC, BDA,
where BAC is an obtuse triangle.

4. Lepp-centroid algorithm

The Lepp-centroid method was designed both to avoid the
loop situation discussed in Section 3 and to improve the slower
convergence discussed at the end of last section, and reported in [6]
for θtol > 25◦. It would be also desirable that for a bad triangle
t1 belonging to a couple t1, t2 of Delaunay terminal triangles, the
point selection strategy be a function of both t1, t2, not only of t1 as
happens with Lepp-midpoint algorithm. Since t1, t2 form a convex
(terminal) quadrilateral we choose to insert the centroid which is
always in the interior of the terminal quad.Note that this strategy is
related with the smart Laplacian smoothing but without requiring
an expensive optimization step [26–29].
Thus, instead of selecting an edge alignedmidpointM , we select

the centroid of a terminal quad defined as the quadrilateral ACBD
formed by a couple of terminal triangles BAC and BDA (Fig. 8)
sharing an unconstrained terminal edge. The algorithm is given
below:
Lepp–Terminal-Centroid Algorithm
Input= a CDT, τ , and angle tolerance θtol
Find Sbad = the set of bad triangles with respect to θtol
for each t in Sbad do
while t remains in τ do
Find Lepp (tbad), terminal triangles t1, t2 and terminal edge l.
Triangle t2 can be null for boundary l.
New Select Point (P, t1, t2, l)
Perform constrained Delaunay insertion of P into τ
Update Sbad

end while
end for
New Select Point (P, tterm1, tterm2, lterm)
if lterm is constrained then
Select P =midpoint of lterm and return

end if
if (second longest edge of tterm1 is not constrained and second
longest edge of tterm2 is not constrained) then
Select P = centroid of quad (tterm1, tterm2) and return

else
if (second longest edge of tterm1 is constrained and second
longest edge of tterm2 is constrained) then
Select P =midpoint of a constrained second longest edge

else
for t∗ in { tterm1, tterm2 }with constrained second longest edge
l∗ do
Select ConstrainedQuad (P, tterm1, tterm2, lterm, l∗)

end for
end if

end if
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Fig. 9. Initial triangulations for the test problems.
Remark 10. For the examples presented in this paper we have
used a simple Select ConstrainedQuad function. For pairs of De-
launay terminal triangles where only one of them has constrained
second longest edge, we proceed as follows: if the centroid is in-
side the non-constrained triangle, the centroid is selected for point
insertion; otherwise the midpoint of the second longest edge is
selected. As discussed in Section 5, with this simple criterion, the
centroid method works significantly better than the off-center al-
gorithm for geometries such that the Delaunay triangulation of the
input data has triangles with smallest edges over the boundary. In
exchange, for geometries having a rougher and irregular boundary
point distribution the centroid introduces more points close to the
boundaries as compared with the off-center method. It is worth
noting that the set of problems whose geometry has a fine bound-
ary point distribution is an important class of problems for finite
element applications, where usually the first mesh generation step
consists on introducing Steiner points over the boundary. Anyway,
in future research we expect to tune the algorithm also for rough
boundary point distribution problems.

4.1. Geometrical properties of the centroid selection

Consider a terminal quadrilateral ACBD formed by the union of
a pair of terminal triangles ABC, ABD sharing a non-constrained
terminal edge AB (Fig. 8). In what follows we will prove that
inserting the terminal centroid Q , defined as the centroid of the
terminal quadrilateral ACBD, tends to produce better new triangles
tB and tA (Fig. 3). Consider a coordinate system based on a bad
quality triangle ABC of longest edge BA, with center in B and x-
axis over BA as shown in Fig. 8. This is the longest edge coordinate
system introduced by Simpson [30].
Firstly consider the case of obtuse Delaunay terminal triangles.

As discussed in the proof of Theorem 2, Dmust lie in the ‘triangle’
UVW defined by circumcircle CC(ABC) and the lens VA and VB
which are arcs of the circles of radius BA and respective centers
A and B. The coordinates of the vertices are B(0, 0), A(lmax, 0),
C(ac, bc) and D(aD, bD).
Let U(amin, bmin) [W (amax, bmin] be the leftmost [rightmost]

intersection point of the lens and CC(ABC) as shown. The following
lemma bounds the location of Q by parameters determined by
triangle ABC .

Lemma 11. Let ABC be any obtuse Delaunay terminal triangle. Let
the centroid Q have longest edge coordinates (aQ , bQ ) with respect
to triangle ABC. Then

amin/4+ lmax/4 < aQ < amax/4+ lmax/2, and
bD/4 < bQ < (bc + bmin)/4.

Proof. The proof follows from computing the centroid coordinates

aQ = (aC + aD + lmax)/4 and bQ = (bc + bD)/4.
Corollary 12. For any terminal quad, the quad centroid is situated in
the interior of the best smallest angled triangle.

Remark 13. Let ta, tb be terminal triangles forming a terminal
quadrilateral, and sharing a terminal edge, E. (1) If theworst quality
triangle is obtuse, then the shortest edge that results from the
insertion of the terminal centroid into themesh is in general longer
than the shortest edge that results from inserting the midpoint
of E. In fact for obtuse triangle of angles 2π/3, π/6, π/6, (and
equilateral terminal edge neighbor), the ratio d(Q )/BC = 0.75.
This is the worst case for the midpoint method. (2) In exchange,
if the worst quality triangle is non-obtuse, then the worst d(Q )/BC
ratio holds now for a pair of bad quality right triangles of smallest
angle π/3, where one is the mirror image of the other one. For
this case also d(Q )/BC = 0.75. Note however that this is a less
probable case, since for other locations of vertex D, the d(Q )/BC
ratio is better.

Theorem 14. The algorithm does not suffer from the special loop case
(Section 3).

Proof. The centroid Q is not aligned with the vertices of the
terminal edge excepting the case of right isosceles triangles sharing
a longest edge. �

Remark 15. The constraint on θtol is not necessary and the analysis
of the algorithm can be extended until θtol = 30◦.

5. Empirical study and concluding remarks

Note that in the previous version of this paper we had not real-
ized that the Lepp-centroid and the off-center algorithms behave
differently for different classes of geometries. In what follows we
present the empirical study reported in [17] considering this new
evidence.

5.1. Triangulations with boundary smallest edges

We consider the 3 test problems of Fig. 9 whose (bad quality)
initial triangulations are shown in this figure. They correspond to
a square with 400 equidistributed boundary points (Square400),
a discretized circle having a discretized circular hole close to the
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Fig. 10. Evolution of the minimum area quality measure as a function of the number of vertices for Lepp-centroid and Lepp-midpoint algorithms.
Fig. 11. Evolution of the average smallest angle (degrees) as a function of the number of vertices for Lepp-centroid and Lepp-midpoint algorithms.
Fig. 12. Area quality distribution for Square 400 for θtol = 10◦ (midpoint 230 points, centroid 185 points) and θtol = 25◦ (midpoint 668 points, centroid 491 points).
boundary with 240 boundary points (Circle 240) and a rectangle
having 162 boundary points distributed as shown in Fig. 9
(Rectangle 162). The initial triangulations are Delaunay excepting
the triangulation of the Rectangle 162 case, which is an example
proposed by Edelsbrunner [16] for the point triangulation problem.
Note that for these problems, the initial Delaunay triangulation has
bad triangles with boundary smallest edges.

5.2. Centroid versus midpoint for triangulations with boundary
smallest edges

We used the test cases of Fig. 9 to compare the algorithms. We
ran every case for different θtol values, with the input meshes of
Fig. 9, until reaching the maximum practical tolerance angle θtol.
We studied the mesh quality both with respect to the smallest
angle and with respect to the area quality measure defined as
q(t) = CA(t)/l2, where A(t) is the area of triangle t , l is its longest
edge and C is a constant such that q(t) = 1 for the equilateral
triangle. For both algorithms we studied the evolution of the
minimum smallest angle, the minimum area quality measure, the
average smallest angle, the normalized minimum edge size (wrt
the minimum edge size in the input mesh) and the average Lepp
size. As expected the smallest angle and the area quality measure
show analogous behavior.
The empirical study shows that for every test problem, the

Lepp-centroid method computes significantly smaller triangula-
tions than the Lepp-midpoint variant and terminates for higher
threshold angle θtol. The Lepp centroidworks for θtol up to 36◦while
the previous midpoint method works for θtol ≤ 30◦ for these ex-
amples. It is worth noting that the Lepp-centroidmethod produces
globally better triangulations having both significantly higher av-
erage smallest angle and a smaller percentage of bad quality
triangles than the Lepp-midpoint variant for the same θtol value.
To illustrate this see Figs. 10 and 11 which respectively show the
behavior of the minimum area quality measure and of the average
smallest angles for both algorithms. This is also illustrated in Fig. 12
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Table 1

Number of points added

Minimummesh angle (◦) Square400 Circles240 Rectangle162 A-case
Centroid Triangle Centroid Triangle Centroid Triangle Centroid Triangle

20 391 310 274 202 217 156 30 27
25 491 553 335 266 271 270 43 35
28 543 557 371 386 286 277 44 45
30 595 880 416 501 310 411 49 47
32 703 1202 493 639 363 592 57 63
34 919 1700 722 897 490 968 85 81
35 1264 1997 911 1811 570 4853 121 112
36 1843 – 1630 – 5473 – 239 –
Fig. 13. Triangulations obtained with Lepp-centroid and Triangle methods, θtol =
32◦ .

which shows the evolution of the area quality distribution for the
Square 400 test problem for θtol equal to 10◦, 25◦.
The normalized minimum edge size in the mesh (wrt the

smallest edge in the initial mesh) behaves accordingly to the
theoretical results of Section 3 (see [17]) even for the Lepp-
midpoint method. For all these problems the average Lepp size
remains between 3 and 5, this value being slightly higher for the
Lepp-centroid method. Finally the triangulation obtained with the
Lepp-centroidmethod (and for the Trianglemethod) for the Circles
240 test problem for θtol = 32◦ is shown in Fig. 13.

6. A comparison with Triangle for triangulations with bound-
ary smallest edges

As reported previously in [6] the Lepp-midpoint method
showed a behavior analogous to the circumcenter algorithm
implemented in a previous Triangle version [9]. Here we use the
current Triangle versionbasedon the off-center point selection [13,
14], to perform a comparison with the Lepp-centroid method for
the test problems of Fig. 9 and the A test case having 21 boundary
points provided at the Triangle site. The evolution of the minimum
angle in the mesh as a function of the number of vertices is shown
in Fig. 14 for the same set of θtol values used in the preceding
subsection. Note that for all these cases the Lepp-centroid method
worked well (with reasonable number of vertices inserted) for θtol
up to 36◦, while that the Triangle method worked for θtol up to
35◦ but increasing highly the number of points inserted for θtol
bigger than 25◦. Only for the small A-test-case, where basically
boundary points are inserted, both algorithms have more similar
behavior. A quantitative view of the behavior of both algorithms
is given in the Table 1 which shows the number of points added
Fig. 14. Evolution of the minimum angle in the mesh as a function of the number of vertices for Lepp-centroid and Triangle methods.
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to the mesh for all the test problems and different values of
θtol. The triangulations obtained for the Circles240 case with the
Lepp-centroid and Triangle methods for θtol = 32◦ are shown in
Fig. 13.

6.1. Concluding remarks

The results of this paper suggest that for Lepp-centroid method
the algorithm analysis can be extended until 30◦. In effect, in
Section 3 we prove that for the Lepp-midpoint method, under the
constraint θtol ≤ αlimit ≈ 22◦, and for improving a bad quality
triangle ABC and its tB sons (Fig. 3), a small number of points is
introducedwhich are not situated too close to the previous vertices
in the mesh. In exchange, the results of Section 4 guarantee both
that the centroid method does not suffer from special looping
conditions and that smallest edges bigger than those introduced by
themidpoint method are introduced. In this paper we also provide
empirical evidence that show that the Lepp-centroid method
behaves in practice better than the off-center algorithm for θtol >
25◦ for initial triangulations having boundary smallest edgeswhich
is an important class of problems for finite element applications.
We have also obtained empirical evidence that show that the
off-center method behaves better than the centroid method for
rough irregular boundary polygons. We believe that to correct this
behavior we need to tune the Select ConstrainedQuad function.
Recently Erten and Üngör [14] have introduced algorithms that

improve the off-center performance with respect to the mesh size
and the angle θtol by using point selections depending on some
triangle cases. We plan to improve the Lepp based algorithms also
in this direction.
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