
Inertial Lubrication Theory

N.O. Rojas,1 M. Argentina,1 E. Cerda,2 and E. Tirapegui3
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Thin fluid films can have surprising behavior depending on the boundary conditions enforced, the

energy input and the specific Reynolds number of the fluid motion. Here we study the equations of motion

for a thin fluid film with a free boundary and its other interface in contact with a solid wall. Although shear

dissipation increases for thinner layers and the motion can generally be described in the limit as viscous,

inertial modes can always be excited for a sufficiently high input of energy. We derive the minimal set of

equations containing inertial effects in this strongly dissipative regime.
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When the smaller length scale in a fluid layer is its
thickness a depth average version of the Navier-Stokes
(NS) equations is much expected. The well-known shallow
water equations [1,2] describing the motion of a fluid layer
at high Reynolds numbers is the classic example provided
in fluid mechanics textbooks. Their simplicity and tracta-
bility allow for explaining phenomena such as wave propa-
gation, hydraulic jumps or shock waves. In the opposite
low Reynolds number regime, several authors have ex-
plored the buckling behavior of viscous films bounded by
free surfaces. The elasticlike response of a fluid, primarily
established as a formal analogy by Stokes and Rayleigh
more than a century ago [3], has been explained by deriv-
ing from the NS equations the equivalent of the Föpl–Von
Kármán equations in elastic plate theory [4,5]. These
equations at the leading order show the constancy of the
layer thickness and a faster motion in the out-of-plane
direction than the motion in the plane of the film.

When one of the boundaries is in contact with a solid
wall, the behavior of a viscous fluid sheet changes dramati-
cally. The free film lubrication theory [2,6] takes account
of this condition. The no-slip condition at one boundary
implies that shear plays a role and dissipation is much more
effective. The in-plane motion is now faster than the mo-
tion perpendicular to the film, and the film thickness
changes with the position of the free boundary. In this
highly dissipative condition, the dynamics of the fluid
film is obtained from the quasistatic balance between
viscous forces and external forces like gravity, surface
tension or an imposed pressure gradient. Thus, the inertial
terms in the NS equations do not play any role in the
motion of the fluid at this level of approximation.

There are, however, physical situations in which the
inertial modes are necessary to inject energy into the
system. The circular hydraulic jump observed in viscous
fluid films [7–9] is explained as a singularity line spatially
connecting a state where inertial modes are dominant

versus a state where the film is in a lubrication regime. A
different example is given by Faraday waves [10], ob-
served when a viscous fluid film is vertically and periodi-
cally accelerated, which cannot be explained by lubrication
theory alone; inertial terms have to be included in the linear
analysis of the NS equations to capture the instability
[11,12]. There is no known systematic derivation of the
effective nonlinear equations describing the behavior of a
thin fluid film under the aforementioned conditions,
although a depth averaging of the NS equations could be
expected to lead to such approximation. Here we find these
equations and apply them in these two cases. We show that
they contain the physics of the hydraulic jump and can be
used to explain the radius separating the inertial and vis-
cous regimes. We also show how these equations explain
the creation and saturation of the patterns observed in the
case of Faraday instability.
We consider a rigid plate covered by a thin fluid layer

embedded in a system with horizontal and vertical coor-
dinates x ¼ ðx; yÞ, z respectively. The velocity field is
vðx; z; tÞ, where z ¼ 0 is the position of the plate and z ¼
h corresponds to the fluid at rest. The basic configuration is
the rest state vðx; z; tÞ ¼ 0with a flat interface and a hydro-
static pressure ps ¼ p0 � �g½z� h�, where p0 is the at-
mospheric pressure, � the mass density of the fluid and g is
gravity. The incompressible Navier-Stokes equations are
[1,2]:

@tvþ ðv � rÞv ¼ �r�þ �r2v and r � v ¼ 0; (1)

where � is the kinematic viscosity of the fluid and � ¼
ðp� psÞ=� is related to the deviation of the pressure field
pðx; z; tÞ from the hydrostatic pressure. The kinematic
condition at z ¼ �ðx; tÞ is vzjz¼� ¼ @t�þ ðv?jz¼� �
r?Þ�. This condition in combination with the no-slip
boundary condition on the bottom wall gives the conser-
vation law
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@t�þr? � q ¼ 0; (2)

q ðx; tÞ ¼
Z �

0
v?ðx; z; tÞdz; (3)

where v?ðx; z; tÞ and r? ¼ ð@x; @yÞ are the horizontal

velocity field and the horizontal gradient, respectively,
and q is the horizontal flux. Motivated by the standard
lubrication theory [2,6], we aim to find a set of equations
involving just the amplitude � and the flux q; thus, the
conservation law (2) constitutes the first equation of the set.

The continuity of the stress across the free surface is
Tjkn̂kjz¼� ¼ ½p0 þ ���n̂j where Tjk is the usual stress

tensor [1], n̂ is the normal unitary vector at the free surface,

� is the surface tension, and � ¼ �r2
?�=ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðr?�Þ2

p Þ3
is the mean curvature of the surface. The no-slip boundary
condition on the plate is vðx; z; tÞjz¼0 ¼ 0. We will ignore
lateral boundary conditions since, for a highly viscous fluid
and large aspect ratio, they have no influence [13].

In order to render these equations dimensionless, we
scale all the variables. The horizontal coordinates are
scaled with a characteristic horizontal length L as ð~x; ~yÞ ¼
ðx; yÞ=L and the vertical coordinates are naturally scaled

with the height of the fluid as ð~z; ~�Þ ¼ ðz; �Þ=h, where the
tilde denotes dimensionless quantities. For the velocities,
the scaling is ð~vx; ~vyÞ ¼ v?=�L and ~vz ¼ vz=�h, where

� is a characteristic frequency of energy injection in the
system. Hence, the new time, ~t, and pressure, ~�, are ~t ¼ �t
and ~� ¼ h2�=��L2.

Substitution of these scaling into the bulk equations and
boundary conditions yields: (The tilde notation is hence-
forth dropped.)

Re½@t þ ðv � rÞ�v? ¼ �r?�þ ð�2r2
? þ @2zÞv?;

�2Re½@t þ ðv � rÞ�vz ¼ �@z�þ �2ð�2r2
? þ @2zÞvz;

(4)

where the slenderness ratio � ¼ h=L characterizes the
thickness of the sheet to L and Re ¼ �h2=� is the
Reynolds number. For very thin films � � 1, the continu-
ity of the stress in the tangential direction gives

@zv?jz¼� þ �2AþOð�4Þ ¼ 0 (5)

where A¼fr?vzþðr?� �@zv?Þr?��r?ðr?� �v?Þþ
½v?;r?��gz¼��2r?�fr? �ðv?jz¼�Þg, and ½� � �� is the

Lie bracket ½a;b� ¼ ða � rÞb� ðb � rÞa. For the normal
component, the continuity of the stress yields

�jz¼� þ 2�2r? � ðv?jz¼�Þ ¼ G½�� 1� � Br2
?�þOð�4Þ;

(6)

where G ¼ gh3=��L2 and B ¼ �h3=���L4. These scal-
ings leave invariant the incompressibility relation, the con-
servation law (2) and (3) and the no-slip boundary
condition.

In order to develop the nonlinear equation for the inter-
facial disturbance �ðx; tÞ and the lateral flux qðx; tÞ, we
need further approximations. Starting from the definition

of boundary layer � ¼ ffiffiffiffiffiffiffiffiffiffi
�=�

p
[1], and assuming that thick-

ness is the smaller length scale in the system, we conclude
that h � � or Re � 1. Thus, we have two expansion
parameters, �2 and Re, that we will study at the lowest
order by neglecting Oð�4; �2Re;Re2; . . .Þ terms. Since the
fluid layer is thin, we perform a Taylor expansion on the
variable z where the incompressibility relation and the no-
slip boundary condition on the plate has been used to get

the relations v?ðx;z;tÞ¼P1
n¼0vnðx; tÞ znþ1

ðnþ1Þ! , vzðx;z;tÞ¼
�P1

n¼0r? �vnðx; tÞ znþ2

ðnþ2Þ! , and �ðx;z;tÞ¼P1
n¼0�nðx; tÞznn! .

Replacing these expansions into (4) and solving for each
order we get at first order in �2 and Re:

�1 ¼��2r? � v0; �2 ¼��2r2
?�0; �3 ¼Oð�4Þ

v1 ¼r?�0; v2 ¼ Re@tv0 � �2½r2
?v0 þr?ðr? � v0Þ�;

v3 ¼ Re½@tr?�0 þ 2ðv0 � r?Þv0 � v0ðr? � v0Þ�
� 2�2r2ðr?�0Þ;

v4 ¼ Re½3ðr?�0 � r?Þv0 � 3ðr? � v0Þr?�0

þ 3ðv0 � r?Þr?�0 � v0ðr2
?�0Þ�þOð�4; �2Re;Re2Þ;

v5 ¼ Re½�4r?�0ðr2
?�0Þ þ 6ðr?�0 � r?Þr?�0�

þOð�4; �2Re;Re2Þ v6 ¼Oð�4; �2Re;Re2Þ: (7)

The other remaining functions are neglected at order
Oð�4; �2Re;Re2; . . .Þ. Our strategy to obtain the dynamic
equation connecting the flux q and � is the following: First,
the last two unknowns v0 and �0 can be computed in terms
of the lateral flux q and the surface profile � by solving
Eq. (3) and the surface condition (5). Second, by replacing
these functions into (6) we obtain a dynamic equation for q
and � that, with Eq. (2), completes our set of equations for
the fluid film. [See supplementary material [14] for a de-
tailed description of the inversion process and evaluation of
Eq. (6).] At the lowest order in the parameters �2 and Re,
we obtain

@t�þr? �q¼0;

ReEð�;qÞþ�2F ð�;qÞþ3qþ�3ðG�Br2
?Þr?�¼0: (8)

Here

E ¼ 6

5

��
�3@t þ 9

7
�2ðq � r?Þ

��
q

�

�
þ 1

7
�qðr? � qÞ

�

F ¼ � 3

2

�
��2Aþ �3r?

�
r? �

�
q

�

��
þ 5

4
�4

�
r2

?

�
q

�2

�

þr?
�
r? �

�
q

�2

���
� 9

10
�5r2

?

�
q

�3

��

where A is after the inversion process A ¼ �r?ðr? �
qÞ þ 3

2 ½q� ;r?�� � 3
2r?�½r? � ðq�Þ�. Note that in the ex-

tremely viscous (Re ! 0) and shallow water limit (�2 !
0), Eqs. (8) reduces to the Reynolds lubrication equation
[6] @t� ¼ 1

3r? � ½�3fðG� Br2
?Þr?�g�.
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As a first application, our equations can be used to study
the steady state flow observed in circular hydraulic jumps
(see Fig. 1). We observe that the conservation law is now
r? � q ¼ 0 which can be solved using cylindrical coordi-
nates for the axisymmetric case as q ¼ qðrÞr̂, where
qðrÞ ¼ Q=2�r andQ is a dimensionless constant. In terms
of our unscaled variables Q ¼ Q0=ð�hcR

2
cÞ where Q0 is

the total volume of fluid per unit of time injected at the
center of the system. Inspired by the experiments of
Hansen et al. [9], we take L as the radius of the circular
container, Rc, and h as the height of the fluid layer in its
perimeter, hc (see Fig. 1). It gives � ¼ hc=Rc. The total
kinetic energy in the system is proportional to the volume
of fluid in the container V � �R2

chc so that the time scale
for injection of new energy into the system is of the order
��1 ¼ V=Q0. Thus, the characteristic frequency is � ¼
Q0=ð�R2

chcÞ. It gives a Reynolds number Re ¼
Q0hc=ð�R2

c�Þ. A straightforward calculation from the sec-
ond of Eqs. (8) yields

54Re

35
qðq0�� q�0Þ þ 3�2

10
ð24q��00 þ 9q0��0 � 16q�02Þ

þ 3qþ �3½G�0 � Bð�000 þ �00=r� �0=r2Þ� ¼ 0: (9)

Here ð� � �Þ0 ¼ dð� � �Þ=dr. We numerically compute the
solution to this equation by using a standard Runge-Kutta
method with the boundary conditions �ð1Þ ¼ 1, and
�0ð1Þ ¼ �00ð1Þ ¼ 0. The last two boundary conditions en-
force a flat horizontal profile at the boundary of the con-
tainer as observed in the experiments. Figure 1 shows the
profile computed from Eq. (9) for a set of experimental

parameters obtained from Ref. [7]. It contains one region
of high velocity where the fluid layer is shallow and a
slower region where the height of the fluid is of the order
Oð1Þ. Both regions are connected by a narrow region where
there is a sharp variation in the height defining the radius of
the hydraulic jump rj. More precisely, we define this radius

as the point where a change of curvature is detected from
being positive in the faster region to being negative in the
slower region [�00ðrjÞ ¼ 0 at that point].

It is noteworthy how our solution reproduces the eddy
observed in Refs. [7,9] that helps to slow down the velocity
and increases the height of the fluid (see Fig. 1). Moreover,
our numerical simulations show a slow dependence of rj
with the height hc, but a strong dependence on the value of
the flux Q0. This is also consistent with the experimental
observations made by Hansen et al. [9] and the scaling
proposed in [7,15]
A more systematic analysis of our solutions is made in

Fig. 2 where we compare the experiments in Ref. [9] with
the value of the jump radius given by our numerical
simulations. There is a very good agreement between the
model and experiments except for small values of Q0 and
high viscosity. This is explained in the insets of Fig. 2 by
observing that the jump is spread over a wider region under
these conditions. As noted in [9] the radius of the jump for
low viscosity is difficult to define experimentally and we
expect differences between our numerical definition and
their experimental optical method.
A second application of Eqs. (8) is the study of Faraday

instability for a thin layer of fluid of height h. The accel-
eration of the supporting plate is equivalent to having an
effective gravity that depends on time. For a sinusoidal
acceleration with a single frequency forcing this means
gðtÞ ¼ g½1þ � cos�t� or GðtÞ ¼ G½1þ � cost� in dimen-
sionless variables. Here � ¼ a=g is the ratio of the forcing
acceleration a to the gravitational one. The horizontal
length scale L can be reabsorbed in the horizontal deriva-
tives of Eqs. (8) reflecting the fact that it can be chosen by
the system itself. To fix our scale L in the horizontal
direction, we measure the lengths in units of h. Thus, we
take L ¼ h in our equations [16]. The definitions of Re, G,
and B are straightforward.
The linearization of Eqs. (8) gives the Mathieu equation

predicted in [12] at first order in �2

6

5
Re@2t �þ

�
3� 27

5
r2

?

�
@t�� ½GðtÞ � Br2

?�r2
?� ¼ 0:

(10)

Thus, our equations are linearly unstable for a sufficiently
high forcing and can predict the critical acceleration and
wave number observed at the onset of instability [12,17].
Figure 3 shows the critical acceleration obtained from
Eq. (10) compared to the experiments of Wagner et al.
[18] for low values of Reynolds number (Re< 4:6) and
near a bicritical point where harmonic and subharmonic
waves are observed. We also show in supplementary ma-

FIG. 1. 3D view of a circular hydraulic jump in dimensionless
coordinates obtained using the inertial lubrication theory. On the
plane y ¼ 0, we represent the profile of the film thickness � and
the streamlines of the fluid. The black dots are experimental
measures of the surface profile extracted from Ref. [7]. Here the
fluid is ethylene-glycol (� ¼ 1:1� 103 kg=m3, � ¼
4:5� 10�2 N=m, and � ¼ 7:6� 10�6 m2=s) and the experi-
mental parameters are Rc ¼ 3:8� 10�2 m, hc ¼ 2:76�
10�3 m, and Q0 ¼ 27� 10�6 m3=s. These parameters give
the dimensionless numbers � ¼ 7:2� 10�2, Re ¼ 2:2, G ¼
8:7, and B ¼ 2:5� 10�2 (see text).
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terial that Eqs. (8) can saturate the instability by numeri-
cally computing the solutions of (8) on a staggered spatial
mesh. (See supplementary material [14] for a detailed
description of our numerical simulations and comparison
with experiments.)

We close our discussion by pointing out that Eqs. (8)
represents the minimal form of a formal expansion in two

parameters Re and �2. Inertial terms in the NS equations
and nonlinearities in the boundary conditions are described
at the lowest order allowing the use of Eqs. (8) in different
situations. Here we have explored the circular hydraulic
jump and Faraday instability in very simple situations, but
our analysis could be modified to study hydraulic jumps in
nonaxisymmetric cases and planar geometries, Faraday
instability with different types of forcing and boundary
conditions, or any other physical situation in which inertial
terms play a fundamental role in understanding the dynam-
ics of a shallow viscous layer of fluid.
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FIG. 2. Radius of the jump position as function of the flow rate
for three liquids with different relative viscosities ~� ¼ �=�water.
The symbols, including the error bars, represent experimental
measures extracted from Ref. [9] for water (squares, ~� ¼ 1, � ¼
1:0� 103 kg=m3, � ¼ 7:4� 10�2 N=m, Rc ¼ 2� 10�1 m,
hc ¼ 1:5� 10�3 m), oil (triangles, ~� ¼ 15, Rc ¼ 1:7�
10�1 m, hc ¼ 1:5� 10�3 m) and a much more viscous oil
(circles, ~� ¼ 95, Rc ¼ 1:7� 10�1 m, hc ¼ 1:5� 10�3 m)
[19]. The solid curves are the prediction for the jump radii
obtained from Eq. (9). Insets: numerical profiles of the fluid
surface in dimensionless coordinates for different values of fluid
flow and viscosity.
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FIG. 3. Critical acceleration � as a function of the driving
frequency �=2� for a silicon oil layer (h ¼ 7� 10�4 m, � ¼
5� 10�6 m2=s, � ¼ 1:94� 10�2 N=m, and � ¼ 9:2�
102 kg=m3). The circles and squares (with error bars) mark the
experimental values of Ref. [18] for the harmonic and the
subharmonic responses, respectively. The black line shows the
threshold for subharmonic waves obtained from Eq. (10).
Similarly, the dotted line gives the threshold for harmonic waves.
At a critical frequency�=2� � 6:5 both lines intersect marking
a bicritical point.
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