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Abstract

In this journal, van Reeven (2008) develops a model aimed at showing that scale economies

on users’ time costs would not provide a justification for public transport subsidies. He
claims that a profit-maximising operator allowed to take the demand effects of its pricing
into account would offer a frequency f p at least as high as a welfare-maximising one f �,
and with no welfare losses. We show that his result depends crucially on a strong
assumption of demand. Introducing a slight modification to make it more realistic, we
show: (i) f � > f p, (ii) welfare losses emerge under profit-maximisation, (iii) subsidies are
required for first-best operation. Thus, the Mohring effect is a valid argument for

subsidisation.
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1.0 Introduction

By minimising the sum of the costs of transit users (their time) and opera-
tors, Mohring (1972) and Jansson (1979) have shown that urban public
transport operations should be subsidised in the first-best case. The novelty
is that these subsidies appear not necessarily due to economies of scale on
the operators’ side but due to the existence of economies of scale on users’
time costs. This result is sometimes known as the Mohring effect.

In a recent article in this journal, Peran van Reeven (2008) develops a
model aimed at showing that the existence of economies of scale on
users’ time costs does not provide a justification for subsidies. The author
claims that ‘if an operator is allowed to take the demand effect of their
pricing and frequency decisions into account’ — something that does not
appear in a cost minimisation framework — then a profit-maximising
operator would offer a frequency f p at least as high as a welfare-maximising
one, f �. Moreover, even though the private operator would charge a higher
price, there would be no welfare losses. In this article, we show that his
result depends crucially on a strong assumption on demand. Keeping van
Reeven’s formulation we introduce a slight modification of demand repre-
sentation to make it more realistic, and then show that:

(i) f � > f p;
(ii) welfare losses emerge under a profit-maximising operator;
(iii) subsidies are required for first-best operation.

Thus, contrary to the author’s assertion, the Mohring effect is a valid argu-
ment for subsidisation.

2.0 Demand Properties in the Original Model

Van Reevan (2008) considers X potential travellers who have preferred
departure times uniformly distributed along the period of analysis. All
the travellers share the same utility function, namely:

U ¼ v� p� t; ð1Þ
where v is a reservation utility level, p is the transit fare, and t are waiting
costs. If travellers do not know the timetable, then these waiting costs are
given by t ¼ t=2f , where t is value of time, and f is frequency. The cost
of providing the service is simply modelled as c � f . The key assumption
behind the formulation in (1) is that either all consumers travel, or none
does, depending on whether the full price is larger or smaller than v.
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Therefore, the demand model is essentially an inelastic one: for any given
frequency, price can be increased without affecting the demand level at
all, up to a point where any infinitesimal increase in price makes all
consumers vanish. This is important because the author claims that what
makes the difference between his model andMohring’s is that here, changes
in price and frequency would affect demand and that this is taken into
account by a private operator: in other words, that the demand for the
transport operator would be a function Dð p; f Þ. Yet the demand function
is quite special: D ¼ X whenever v5 pþ t while D ¼ 0 otherwise.

Without going into detail, the results that follow from such demand
specification can be obtained directly by invoking results from Spence
(1975). Spence analysed market failure when a monopolist, in addition to
price, sets some aspect of product quality; here this would obviously be
frequency. Spence showed that if pðD; f Þ is the inverse demand function
and @2p=@D@f < 0, then for a given D the monopolist undersupplies
quality, that is, the quality rule is such that f pðDÞ < f �ðDÞ, where p denotes
profit-maximisation and � denotes the first-best. If @2p=@D@f > 0, on the
other hand, then f pðDÞ > f �ðDÞ and the monopolist oversupplies quality
for a given D. Finally, if @2p=@D@f ¼ 0, then f pðDÞ ¼ f �ðDÞ. It is then
direct that if @2p=@D@f ¼ 0, and if for a given quality a monopolist
would induce no allocative inefficiency, that is, Dpð f Þ ¼ D�ð f Þ, then the
actual first-best and profit-maximising qualities will be the same. This
rare case is exactly van Reeven’s: in the range where there is a positive
demand, it holds that @2p=@D@f ¼ 0 because @p=@D ¼ 0 and, by construc-
tion, Dp ¼ D� ¼ X . Therefore, as long as the profit-maximising firm
decides to operate, Spence’s result applies and profit-maximising frequency
and first-best frequency will coincide, although prices will certainly not.
Yet, since demand is essentially inelastic, the price increase is obviously
nothing but a transfer, and therefore there are no welfare losses.

3.0 A Slightly More Realistic Model and the Case

for Subsidies

There are several ways in which one can make more realistic demand
assumptions, for example — following transport economics practice —
one could add an alternative mode (for example, car) and use a binomial
Logit model. Here, however, in order to make our point, it is enough to
make only a slight change to van Reeven’s model, namely, that not all
consumers are identical. For this, it is sufficient to assume that the reserva-
tion utility v is uniformly distributed in the interval ½v; �vv� and that this is
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independent of the distribution of preferred departure times. It is clear then
that a consumer characterised by v will travel if UðvÞ5 0; thus, the critical
traveller’s v is given by v� ¼ pþ t=2f and everyone with v5 v� travels.
Given the assumption about the uniformity of the distribution, then the
demand for transit services will be given by Xð�vv� v�Þ=ð�vv� vÞ. Replacing
v� and letting Y � X=ð�vv� vÞ we obtain the demand and inverse demand
functions, respectively:

Dð p; f Þ ¼ Y

�
�vv� p� t

2f

�
pðD; f Þ ¼ �vv� D

Y
� t

2f
: ð2Þ

It is apparent that this demand is indeed sensitive to price in a smooth
way and that, in fact, it is linear in the full price or generalised cost,
pþ t. Moreover, since @2p=@D@f ¼ 0 it will still be true that frequency
rules will coincide, that is, f pðDÞ ¼ f �ðDÞ, following Spence (1975).

In order to calculate first-best frequency, price, and traffic, we need to
obtain an expression for consumer surplus, which is given by
CS ¼

RD
0 pðD; f ÞdD� pD. Straightforward calculations lead to

CS ¼ ð1=2ÞðD2=YÞ.1 Then, using the inverse demand function from (2),
social welfare can be written as:2

Max
D; f

1

2

D2

Y
þ pðD; f Þ �D� c � f ;

where the first term is consumer surplus, and the last two represent the
firm’s profits. First-order conditions lead to the following frequency and
traffic rules:

f �ðDÞ ¼
ffiffiffiffiffiffi
Dt

2c

r
; ð3Þ

D�ð f Þ ¼ Y

�
�vv� t

2f

�
: ð4Þ

On the other hand, the frequency and traffic rules that would maximise
profit pðD; f Þ �D� c � f happen to be:

f pðDÞ ¼
ffiffiffiffiffiffi
Dt

2c

r
; ð5Þ

Dpð f Þ ¼ Y

2

�
�vv� t

2f

�
: ð6Þ

1The same result is obtained if we calculate instead CS ¼ Y
R �vv
v� ðv� p� t=ð2f ÞÞ dv.

2Obviously, results do not depend on whether we takeD and f, or p and f as decision variables. We useD

and f because it leads more directly to the results we want to show.
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As advanced, the frequency rules are the same. But now the traffic rules
are not the same: a profit-maximising firm will induce— through pricing—
a contraction of traffic for any given frequency. Replacing (4) in (3) and (6)
in (5), we obtain the equations for the actual (not dependent onD) first-best
and profit-maximising frequencies:

f � ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
�vv� t

2f �

�
Yt

2c

vuuut
; ð7Þ

f p ¼
ffiffiffi
1

2

r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
�vv� t

2f p

�
Yt

2c

vuuut
: ð8Þ

Equations (7) and (8) define fixed points for f � and f p. In the Appendix
we show that if the fixed point for f p has a solution, then the fixed-point for
f � has only one stable solution, and it fulfils f � > f p. Therefore, it is not true
that if a private operator is allowed to choose price freely, it would provide
the first-best frequency; it would actually undersupply frequency. This
shows that a very simple and reasonable generalisation of van Reeven’s
formulation yields a completely different result.

Next we deal with the need for subsidies. To analyse this it is sufficient to
replace equations (6) and (4) in the inverse demand function in (2). We
obtain:

p� ¼ 0 pp ¼ 1

2

�
�vv� t

2f

�
:

Note that the first-best frequency requires a first-best price that does not
cover costs. In fact, the first-best requires a subsidy equal to c � f �, just as
Mohring (1972), Jansson (1979), and others claimed within cost minimisa-
tion contexts.3

We now also show that our results do not change if consumers know the
timetable. According to van Reeven, in this case things improve because
customers no longer have to wait. Yet it is still true that customers suffer
a dissatisfaction caused by the fact that they cannot take the bus at the

3It is worth looking at the findings of Evans (1987) who compares theoretically different regimes for a

bus line regarding welfare, frequency, and price. Among other things, he finds that for every level of

demand, the monopolist charges a larger than optimal fare and offers a lower than optimal frequency,

producing a large welfare loss. Recently, Jara-Dı́az and Gschwender (2009) have shown that, as the

subsidy given to the transit system decreases from its optimal level, frequency and bus size decrease

as well. Furthermore, they show that if no subsidies are provided but the resulting price is so large

that the authority decides to impose a smaller price, then frequency would be reduced even more

while bus size would increase.
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time they would like to: customers now wait at home instead of the bus
stop, but wait nevertheless. This time cost, caused by the difference between
actual and preferred departure times, is usually known as schedule delay
cost.

If the desired departure times were distributed uniformly across
customers, and we redefine t to be the subjective value of schedule delay,
then the demand and inverse demand functions would be exactly as the
ones used above — given by (2) — and hence the conclusions would not
change: a simple reinterpretation of waiting costs as schedule delay costs
would deliver the same conclusions. But what if desired departure times
are not uniformly distributed? In that case, the derivation of the demand
function would be more complex and obviously dependent on the assump-
tion about the distribution. Yet, it is easy to foresee that the resulting
demand functions would fit into the general framework of the following
demand function: Dð p; f Þ ¼ Yð�vv� p� gð f ÞÞ, where g is a general
aggregated schedule delay function, whose precise functional form depends
on the distribution of preferred departure times. Yet, for any distribution,
function g would fulfil g > 0, g0 < 0 and limf !1 gð f Þ ¼ 0. In other words,
a marginal increase in frequency would raise demand in some general way
given by �Y � g0ð f Þ > 0.

Having recognised this, it is now easy to see how our previous results go
through: first since it is still true that @2p=@D@f ¼ 0, it will still be true that
frequency rules will coincide, that is, f pðDÞ ¼ f �ðDÞ, following Spence
(1975). Next, the optimisation problem would be identical as before,
since the expression for consumer surplus does not change. Consequently,
one would obtain the same frequency and traffic rules as the ones obtained
before— equations (3) to (6)— only that now gð f Þ replaces t=2f ; and since
gð f Þ is also decreasing in f, the proof that f � > f p is similar to the one
provided in the Appendix for the case of t=2f . Finally, it is also easy to
show, following the same procedure as before, that the first-best requires
subsidies: the unknown and known timetable cases lead to the same
qualitative results.

4.0 Final Comments

Van Reeven argues that the main problem with the Mohring–Jansson
reasoning would be that they do not take price effects into consideration.
His model, however, incorporates price in a way that a change in bus
fare induces no demand effect. By using a demand model that does respond
to price changes — something that here was obtained simply by assuming
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away that all users are identical — we have shown that their conclusions do
not change: profit-maximising frequencies are smaller than optimal and
subsidies are required for first-best operation.

Furthermore, incorporating consumers’ own time — which they use in
the consumption of scheduled transport services — and then minimising
the resources used is actually no different from considering demand effects
and then maximising social welfare. To see this, consider for simplicity the
unknown timetable case and note that the cost that would be minimised in a
Mohring–Jansson setting would be the sum of users costs plus operator
costs, that is, Dt=2f þ cf , which yields the same optimal frequency rule
as in (3). The optimal price, on the other hand is the difference between
total marginal cost and average user costs, both of which are easily
shown to be t=2f � leading to p� ¼ 0 and to an optimal subsidy c � f �, as
obtained above.

References

Evans, A. (1987): ‘A Theoretical Comparison of Competition with other Economic
Regimes for Bus Services’, Journal of Transport Economics and Policy, 21, 7–36.

Jansson, J. O. (1979): ‘Marginal Cost Pricing of Scheduled Transport Services’, Journal of
Transport Economics and Policy, 13, 268–94.

Jara-Dı́az, S. R. and A. Gschwender (2009): ‘The Effect of Financial Constraints on the
Optimal Design of Public Transport Services’, Transportation, 36(1), 65–75.

Mohring, H. (1972): ‘Optimization and Scale Economies in Urban Bus Transportation’,
American Economic Review, 62, 591–604.

Spence, M. (1975): ‘Monopoly, Quality and Regulation’, The Bell Journal of Economics, 6,
417–29.

van Reeven, P. (2008): ‘Subsidisation of Urban Public Transport and the Mohring Effect’,
Journal of Transport Economics and Policy, 42(2), 349–59.

Subsidisation of Urban Public Transport and the Mohring Effect Basso and Jara-Dı́az

371

http://www.ingentaconnect.com/content/external-references?article=0022-5258()42:2L.349[aid=9295126]
http://www.ingentaconnect.com/content/external-references?article=0002-8282()62L.591[aid=1476974]


Appendix

Equations (7) and (8) define fixed points for f � and f p of the form:

f � ¼ �ð f �Þ f p ¼
ffiffiffi
1

2

r
� �ð f pÞ �ð f Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
�vv� t

2f

�
Yt

2c

vuuut
:

It is then evident that�ð f Þ ¼ 0 when f ¼ t=ð2�vvÞ > 0, that�ð f Þ is real only
when f 5 t=ð2�vvÞ and that d�ð f Þ=df > 0. Further, when f ! 1 then
�ð f Þ !

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�vvYt=2cÞ

p
. Next, the solutions for f � are at the intersection

between �ð f Þ and the 458 line; the solutions for f p are at the intersection
between

ffiffiffiffiffiffiffiffiffiffiffi
ð1=2Þ

p
�ð f Þ and the 458 line. Therefore, it follows that if f p has

one solution, then f � will have two solutions as shown in Figure A1 but
only the one that fulfils f p < f � is stable. If f p has two solutions, then
one is unstable, f � will also have two solutions, and the stable solutions
fulfil f p < f �.

Figure A.1

Optimal Stable Solution for Frequency

f π

f * unstable

f * stable
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