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a b s t r a c t

Image registration is the process of transforming different image data sets of an object into the same
coordinate system. This is a relevant task in the field of medical imaging; one of its objectives is to com-
bine information from different imaging modalities. The main goal of this study is the registration of renal
SPECT (Single Photon Emission Computerized Tomography) images and a sparse set of ultrasound slices
(2.5D US), combining functional and anatomical information. Registration is performed after kidney seg-
mentation in both image types. The SPECT segmentation is achieved using a deformable model based
on a simplex mesh. The 2.5D US image segmentation is carried out in each of the 2D slices employing a
deformable contour and Gabor filters to capture multi-scale image features. Moreover, a renal medulla
detection method was developed to improve the US segmentation. A nonlinear optimization algorithm
is used for the registration. In this process, movements caused by patient breathing during US image
acquisition are also corrected. Only a few reports describe registration between SPECT images and a
sparse set of US slices of the kidney, and they usually employ an optical localizer, unlike our method,
that performs movement correction using information only from the SPECT and US images. Moreover, it
does not require simultaneous acquisition of both image types. The registration method and both seg-
mentations were evaluated separately. The SPECT segmentation was evaluated qualitatively by medical
experts, obtaining a score of 5 over a scale from 1 to 5, where 5 represents a perfect segmentation. The

2.5D US segmentation was evaluated quantitatively, by comparing our method with an expert manual
segmentation, and obtaining an average error of 3.3 mm. The registration was evaluated quantitatively
and qualitatively. Quantitatively the distance between the manual segmentation of the US images and
the model extracted from the SPECT image was measured, obtaining an average distance of 1.07 pixels on
7 exams. The qualitative evaluation was carried out by a group of physicians who assessed the perceived
clinical usefulness of the image registration, rating each registration on a scale from 1 to 5. The average

e. rele
score obtained was 4.1, i.

. Introduction

The use of medical imaging for diagnosis, treatment planning
nd evaluation is crucial in current clinical procedures. The data
rovided about the organs by images can be classified as functional

r anatomical. One of the medical imaging modalities that provide
D functional information is the SPECT (Single Photon Emission
omputerized Tomography), which uses radioactive tracers, i.e.,
ubstances that are introduced into the body and tend to accumu-
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vantly useful for medical purposes.
© 2011 Elsevier Ltd. All rights reserved.

late in specific organs, without modifying their normal function
[1]. Particularly, applied to the kidney, the radiopharmaceuticals
employed in SPECT are absorbed by functioning tubular cells of the
renal cortex, allowing to quantify the perfusion and renal functional
mass. Moreover, this application can be used to detect cortical
alterations related to urinary tract infections, and acute or chronic
lesions in the renal cortex [2]. However, uncertainty in the anatomic
definition of the SPECT image may limit its usefulness. Often, there
is not enough anatomical detail to determine the exact position of a
lesion or to compare the renal functional mass with the total organ

size. A way to overcome this problem is to integrate SPECT images
with anatomical images of the kidneys. One of the most used images
for this integration are the US (ultrasound) images, because of their
relatively low cost, innocuousness (no ionizing radiation) and easy
acquisition [3]. Since the SPECT is a 3D image, it is more adequate
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http://www.sciencedirect.com/science/journal/08956111
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contours and the GVF algorithm, have been successfully applied
F.J. Galdames et al. / Computerized Medi

o use US images with spatial information. A good option is to use
D freehand US images with associated spatial coordinates (2.5D
S). To integrate both, a registration between SPECT and US images

s necessary.
Image registration is the process of transforming different

mages into the same coordinate system [4]. Images to be regis-
ered may be of the same modality (monomodal registration) or
ifferent modalities (multimodal registration). In multimodal reg-

stration, the data obtained from the same organ of a patient by
ifferent imaging modalities is transformed into a single coordi-
ate space to compare or integrate. There are different approaches
o carry out image registration. One option is to use extrinsic meth-
ds based on positioning a foreign object introduced into the image,
uch as a stereotactic frame [5], screw-mounted markers [6] or
arkers glued to the skin [7]. Although efficient, these are inva-

ive approaches. Another possibility is to base the registration on
previous spatial calibration of the coordinate systems associated
ith the scanners [8]. To use this approach, the imaging systems
ust be in the same room and the patient must remain in the same

osition for both image acquisitions. Another alternative is to use
ntrinsic methods, i.e., register with the information contained in
he images. Examples of this approach are methods based on fea-
ures identified manually [9], statistical measures [10,11] or image
egmentation [12].

In our literature review we found only a few papers on registra-
ion between SPECT images and a sparse set of US slices. In [13] they
se a method based on MI (Mutual Information) for the registration
f cardiac images. Particularly for kidney images, two studies use
n optical localizer [14,15].

However, there are other examples of image registration
etween a sparse set of 2D images and a 3D image, not necessarily
SPECT volume and a set of 2D US images. A study that uses US

nd CT (computer tomography) images of kidneys is described in
16], where the registration is carried out by minimizing a correla-
ion ratio (CR) between the images pre-processed to remove noise
nd enhance edges. There are also registrations that use US and CT
mages in different organs, such as in [17], where images of head
nd neck are registered using a multi-component similarity mea-
ure involving weighted MI, intensities and edge maps. Another
xample using CT images is [18], in which US images of liver and
idney are registered with CT by a method that simulates US images
sing the CT data, and then registers the US image applying a sim-

larity measure between it and the simulation. A US simulation is
lso used in [19] for a biomechanically constrained registration of
umbar spine CT and US images. In [20] prostate phantom CT and
S images are registered using an ICP (Iterative Closest Point) algo-

ithm and a semi-manual urethral surface segmentation. Another
tudy using prostate phantom CT and US images is [21], where the
mages are registered employing MI in a user-defined bounding
ox within the images. A study using a MI technique to register
eating heart CT and 2D US images is [22]. Other studies have used
RI (Magnetic Resonance Imaging), such as [23] where US and MRI

ead images are registered using intensity and gradient informa-
ion. 3D US and MRI images of the heart are registered in [24] using

I, normalized cross-correlation, and a threshold to emphasize the
ost apparent anatomical features. Also MRI and 3D US images

re registered in [25], but using female pelvic floor images and
anually identified points as fiducial marks. The vessels have also

een used as references to registration. In [26], the vessels are seg-
ented using Doppler images to register abdominal MRI and 3D US

mages. In [27] liver models from MRI and CT images are registered

ith US images using the center lines of vessels. The probability

f existence of vessels has been used as reference in [28] to reg-
ster US and MRI liver images, minimizing the cross-correlation of
hese probabilities between both images. In an extension of that
ork [29], the probability of presence of bone edges was used in
aging and Graphics 35 (2011) 302–314 303

a similar way to register US and CT cadaver images of femur and
pelvis.

There are also publications on monomodal registration between
US images, as in [30], where a correlation measure is used together
with a mechanical elastic regularization on preoperative 3D US and
intraoperative freehand 2D US images of prostate, or in [31], where
MI is used on 3D US cardiac images. A study [32] shows registration
between 3D statistical shape models and 2D US images of cadavers,
by minimizing the distance between the model surfaces and US-
derived bone surface points. In our literature review, we found that
most studies use MRI or CT images for image registration with US
slices. The lack of structural information in SPECT images together
with the intrinsic low quality of US images are the main problems
inherent to SPECT–US registration. The aim of our work is to over-
come these registration problems using only information contained
in the images (intrinsic methods).

Our method is based on the segmentation of both SPECT and US
images, as the first step. Then this segmentation is used to drive the
registration. Patient movement during kidney image acquisition,
caused primarily by breathing, is a relevant problem for the reg-
istration task [16]. Breathing movement has been quantified to be
up to 40 mm [33], causing kidneys to appear in different positions
along the acquisition of the 2.5D US slices. These position inconsis-
tencies also happen in the image acquisition of other organs located
in the abdomen. For example, the same problem is addressed in [34]
for liver images, using a single-parameter respiratory motion model
for the registration between preoperative MRI and intraoperative
US images. We tackle this problem using specific registrations to
locally correct the position of each slice of the 2.5D US image. First,
the 2.5D US image is registered using a similarity transformation
over the entire image, and when the slices are close enough to their
correct registered positions, local registrations are used to correct
each slice individually. Subsequently, the global registration can be
improved and the specific position of each slice can be re-corrected
again.

2. Methods

The renal SPECT and US images we used in this work are
normally employed for medical diagnosis after being acquired sep-
arately. Therefore, our registration is carried out after both images
are acquired. This is different from related works found in the lit-
erature [14,15], which use an optical localizer to perform an online
registration (we used a localizer but only during the image acquisi-
tion to know the relative spatial position among the 2D US images
that constitute the 2.5D US image). Our method involves segment-
ing the 2.5D US and SPECT images first, and then carry out the
registration by finding the transformation that matches the edges
found in both segmentations. Fig. 1 shows a flow diagram of the
proposal registration process.

To segment the SPECT images we use a deformable model [35].
Two types of forces to control the model, based on gradient and
on voxels intensity respectively, were tested to establish which
of these two segmentation types would be better for registra-
tion. To segment the US images we use a deformable contour
method. The deformable contours are controlled by a field of forces
derived from multi-scale image features obtained by Gabor filters.
To obtain a smooth field of forces without undesired local minima,
the Gradient Vector Flow (GVF) algorithm [36] was used. Active
in other works of US image segmentation as [37,38]. Additionally,
we developed a method to detect the renal medulla. This detec-
tion was needed to avoid forces created at the medulla borders
from interfering in the segmentation of the outer edges of the
kidney.



304 F.J. Galdames et al. / Computerized Medical Imaging and Graphics 35 (2011) 302–314

Fig. 1. Flow diagram of our image registration algorithm. (1) Acquisition of SPECT image (Section 2.1). (2) Automatic segmentation of SPECT image based on deformable
models (Section 2.1.1). (2a) The result of the segmentation is a mesh that represents the kidney borders. (3) Acquisition of 2.5D US image (Section 2.2). (4) Manual initialization
of 2.5D US image segmentation, based on fitting an ellipsoid to the kidney by the identification of the kidney main axes (Section 2.2.1.1). (5) 2.5D US image segmentation
based on deformable models and Gabor filters (Section 2.2.1.2). (5a) The segmentation gives a set of contour points (dark dots) for every slice (dark lines) of the 2.5D image.
(6) Global registration using the segmentation of both images. The registration deforms the 2.5D image using a similarity transformation over the whole image (Section 2.3.1).
( ll slice
m of regi
s er a th
( US im

2

T
b
p
c
N
t

2

d
i
s
m
m
w

s
i
i
e
d
m
c
k
w
E
p
i

ically dual of triangulations (meshes of triangles); this allows to
obtain a 2-simplex mesh by applying a dual operation to a trian-
gulation, and vice versa (Fig. 2(a)). This property is useful because
it is more convenient to represent a surface with a triangulation

Fig. 2. (a) Two-simplex mesh (dark dots) and its dual triangulation (white dots).
6a) After registration, the edges found in both images are closer, but there are sti
otion during acquisition. (7) A local registration is performed to correct the out

lices are corrected. (8) If the movement of the slices in the local registration was ov
9) After the process, both images are registered and the movements during the 2.5

.1. The SPECT modality

First we explain the kidney segmentation in the SPECT image.
he radioactive isotope used in these images is transported by the
lood flow and fixed in the renal cortex, thus exhibiting kidney
erfusion and function. The images are acquired using a gamma
amera that captures projections of the radiation at different angles.
ext, an algorithm of tomographic reconstruction is used to obtain

he 3D image with these projections.

.1.1. SPECT segmentation
The kidneys on the SPECT image were segmented using a

eformable model method because of its robustness and high noise
mmunity [35]. A simplex mesh [39] iteratively adjusted to the
hape of the kidney was used for the segmentation. The simplex
eshes have been successfully applied elsewhere, e.g., to the seg-
entation of cardiac SPECT images [40] and in our preliminary
ork on renal segmentation [41] and registration [42].

First, we introduce a general description of the simplex meshes.
A k-simplex is the convex hull of k + 1 independent points, e.g. a

egment is a 1-simplex, a triangle is a 2-simplex and a tetrahedron
s a 3-simplex. By definition a k-simplex mesh has a (k + 1)-simplex
n each vertex. For example, a 1-simplex mesh is a contour in which
ach vertex and its two neighbors define a triangle. This property
efines the connectivity of the mesh, i.e. the vertices of a k-simplex
esh have k + 1 neighbors. The type of objects that these meshes

an represent depends on this connectivity, e.g. a k-simplex with

= 1 can represent a curve, k = 2 a surface, k = 3 a volume. Since
e want to segment the kidney surface, we use 2-simplex meshes.

ach vertex of these meshes has three neighbors, and these four
oints define a tetrahedron (Fig. 2(b): Pi, PN1(i), PN2(i), PN3(i)). An

nteresting feature of 2-simplex meshes is that they are topolog-
s out of registered due to inconsistencies in the 2.5D US image caused by patient
stered US slices (Section 2.3.2). (7a) After the local registration, the misregistered
reshold, another global registration is performed, if not, the registration is finished.
age acquisition are corrected.
(b) Local geometry of a 2-simplex mesh. The tetrahedron formed by a vertex Pi

and its 3 neighbors PN1(i) , PN2(i) , PN3(i) , is shown. These four points (vertex Pi and its
neighbors) define the circumscribed sphere of the tetrahedron, with center Oi and
radius Ri . Also, the three neighbors define the circle of center Ci and radius ri . (c)
Simplex angle �i shown in a cut passing through the vertex Pi and the axis of the
sphere −−→

OiCi [39].
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or some tasks, e.g. rendering, calculation of intersections or the
onstruction of volumetric meshes. From now on we will refer to
-simplex meshes simply as simplex meshes.

Now, we give a brief explanation of the simplex mesh local
eometry.

As mentioned above, each vertex of a simplex mesh positioned
t Pi has three neighbors, positioned at PN1(i), PN2(i), PN3(i). The ver-
ex and its neighbors form a tetrahedron (see Fig. 2(b)). We can
alculate the sphere with center Oi and radius Ri defined by these
our points (the circumscribed sphere of the tetrahedron), and the
ircle of center Ci and radius ri defined by the three neighbors. The
hree neighbors also define a plane with normal −→

Ni , which includes
he circle with center Ci. With these geometric entities, the simplex
ngle �i can be defined (see Fig. 2(c)):

�i ∈ [−�, �]

sin(�i) = ri

Ri
sgn(−−−−→

PiPN1(i) · −→
Ni)

r

os(�i) =
∥∥OiCi

∥∥
Ri

sgn(
−−→
OiCi · −→

Ni) (1)

here sgn is the sign function and ( · ) is the dot product. So, the
implex angle �i is defined in every vertex Pi by means of its neigh-
ors PN1(i), PN2(i), PN3(i), and it does not depend on the position of
he neighbors within the circle they define. The simplex angle and
he height L (Fig. 2(b)) of Pi over the plane defined by its neighbors
re related by:

L(ri, di, �i) = (r2
i

− d2
i
) tan(�i)

�
√

r2
i

+ (r2
i

− d2
i
) tan2(�i) + ri

� =
{

1 if |�i| < �/2
−1 if |�i| > �/2

(2)

here di =
∥∥CiP

⊥
i

∥∥, and P⊥
i

is the projection of Pi over the plane
efined by its neighbors. Since the simplex angle is scale-invariant,

t can be considered a local and scale-invariant measure of the
eight L of Pi over the plane defined by its neighbors. Moreover,
he simplex angle is related with the surface curvature at Pi. We can
pproximate the curvature at Pi by the curvature of the sphere that
est fit the surface in a neighborhood around Pi. If we consider the
eighbors PN1(i), PN2(i), PN3(i) of Pi, this sphere is the circumscribed
phere of the tetrahedron formed by the four points (Fig. 2(b)), and
ts mean curvature is Hi = 1/Ri. This mean curvature at point Pi can
e expressed in terms of the simplex angle [39] using Eq. (1):

i = sin(�i)
ri

.

ther important geometric entities of the simplex meshes are the
etric parameters ε1i, ε2i, ε3i. These parameters are the barycentric

oordinates of the projection P⊥
i

of the vertex Pi on the triangle
efined by its neighbors (Fig. 2(b)):

P⊥
i

= ε1iPN1(i) + ε2iPN2(i) + ε3iPN3(i)
ε1i + ε2i + ε3i = 1

(3)

We know the position of a vertex projection on the plane defined
y its neighbors by Eq. (3), and the height of the vertex over this
lane by Eq. (2). Therefore, the metric parameters and the simplex
ngle completely determine the position of the vertex as follows:

i = ε1iPN1(i) + ε2iPN2(i) + ε3iPN3(i) + L(ri, di, �i)
−→
Ni (4)
The deformation of a simplex mesh can be controlled by inter-
al and external forces. The external forces are computed from the

mage, and push the mesh to the desired borders; the internal forces
re computed from the mesh, caring for a smooth deformation and
eeping the mesh regularity.
aging and Graphics 35 (2011) 302–314 305

Now, we describe how the mesh can be deformed. The dynamic
of the model is controlled by means of a Newtonian law of motion:

m
∂2Pi

∂t2
= −�

∂Pi

∂t
+ −−→

Finti
+ −−→

Fexti
, (5)

where m is the mass unit of a vertex (usually 1), � is a damping fac-
tor, Pi is the position of vertex i, Finti

represents the internal force at
vertex i, and Fexti

represents the external force. Considering discrete
time and using finite differences we obtain:

Pt+1
i

= Pt
i + (1 − �)

(
Pt

i − Pt−1
i

)
+ −−→

Finti
+ −−→

Fexti
(6)

The internal force of a simplex mesh can be locally determined
by the simplex angle �i and the metric parameters ε1i, ε2i, and ε3i.
The internal force is derived from the minimization of a local energy

Si = (�/2)
−−→
PiP

∗
i

2
, where P∗

i
is the position the vertex should have

to comply with a desired simplex angle �∗
i

and metric parameters
ε∗

1i
, ε∗

2i
, ε∗

3i
. In this way, the local curvature of the mesh may be

controlled by the simplex angle, and the vertex position relative to
its neighbors by the metric parameters. By minimizing the energy,
the internal force is: −−→

Finti
= (∂Si/∂Pi) = �

−−→
PiP

∗
i . If we use Eq. (4) to

express the vertex position, the internal force can be written as:
−−→
Finti

= �(ε∗
1i

−−−−→
PiPN1(i) + ε∗

2i
−−−−→
PiPN2(i) + ε∗

3i
−−−−→
PiPN3(i) + L(ri, di, �∗

i )−→Ni) (7)

In our work �∗
i

is defined by a mean curvature continuity con-
straint [39] computed over a neighborhood around each vertex, and
the metric parameters are fixed to 1/3, to obtain a regular mesh.

To compute the external force Fexti
in each vertex, a field of

external forces −→v is used. We tested two types of mesh deforma-
tions with different external force fields. The first type was based
on the voxels intensity. The field of forces for this segmentation
is defined by the potential P = −‖∇[G	 ∗ Ib]‖2 (normalized in [0,1])
that must be minimized in each vertex, where Ib is a binarized SPECT
image of the kidneys and G	 is a Gaussian function. Thus, in order
to obtain forces that push the model to low-potential zones, the
external force field is computed as: −→v = −∇P. The result of this
segmentation is similar to an isosurface but smoothed because of
the mesh internal forces. The second type of deformation was a
gradient related segmentation that uses the GVF algorithm [36] to
compute the field of forces. The GVF algorithm compute a field of
forces using an edge map as input, preserving only the forces that
point towards the main edges. To compute the edge map H as high
gradient zones, a Sobel filter was used:

H =
√

(I ∗ Sx)2 + (I ∗ Sy)2 + (I ∗ Sz)2 (8)

where I is the SPECT image, and Sx, Sy, Sz are the components of a
3D Sobel filter. This edge map was normalized in the interval [0,1]
before being used in the GVF algorithm. In this way, the deformable
model is pushed to higher gradient zones that correspond to edges
in the image.

Only the projection of the external force on the unit vector nor-
mal to the mesh surface is considered in every vertex, since the
tangent component affects only the parameterization of the surface
but not its shape. Therefore the external force is:
−−→
Fexti

= 

−→
Ni · −→vi , (9)

where 
 is the weight of the external force.
The initial mesh to segment each kidney is defined by an iso-

surface at 15% of the maximum value in the image, and computed
by the “marching tetrahedra” algorithm [43]. This algorithm gen-
erates a triangulation from which we can directly calculate the

dual simplex mesh. Eq. (6) is used iteratively over the Np points
of the mesh, until the mean deformation of the mesh in one step
MD = (1/Np)

∑Np

i=1‖Pt+1
i

− Pt
i
‖ is smaller than a threshold. Fig. 3

shows a kidney segmentation by a simplex mesh deformed by
forces derived from image gradient.
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Fig. 3. SPECT image segmented by a simplex mesh using deformable models.

Fig. 4. Spatial localization of the US slices that compose the 2.5D US image. An
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kidney shape is simplified as an ellipsoid (3D), and the intersections
between this ellipsoid and the different planes of the US slices are
used as the initial estimation of the kidney position in the 2D US
images (Fig. 7).
ptical localizer tracks the position of two rigid bodies, one fixed to the bed and
nother fixed to the US probe. The relative spatial location among the slices can be
btained using a spatial transformation between the reference systems associated
ith the two rigid bodies.

.2. The 2.5D US modality

The US images were acquired using a localizer that tracked the
ositions of two rigid bodies, one fixed to the US probe and another
xed to the bed. The relative spatial location among the US slices
an be known using a spatial transformation between the reference
ystems associated with the two rigid bodies (Fig. 4). The resulting
mage does not constitute a proper 3D reconstruction, because the
rbitrary manual displacement of the US probe leads to 2D images
ocated in different places and orientations. However, knowing the
patial location allows us to compensate for the lack of a full regular
olume; this image is known as a 2.5D image. Every of the 2.5D US
mages used in this work was composed of approximately 400 2D
S slices.

.2.1. Segmentation of 2.5D US images
Unlike other medical imaging modalities, segmentation of US

mages is particularly difficult because the image quality is rel-
tively low, with significant noise. Moreover, the kidney tissue
oundary in US images is more difficult to localize than the
dges of other organs; even for an expert the segmentation is not
traightforward [44], and usually requires manual initialization.
ur method uses manual initialization, which consists in aligning

he axes of an ellipsoid with the kidney position in a single 2D US
lice (Fig. 5). After this initialization, an automatic 2D segmentation
s performed on each 2D image of the set that conforms the 2.5D
S image, applying a deformable contour [44,45] method and a set

f Gabor filters [46–49] to capture multi-scale image features.

The aim of our method is to find enough points in the US image
o carry out the registration, rather than finding the whole kidney
eometry.
Fig. 5. The initialization of the 2.5D US image segmentation of each kidney is based
on the manual location of the axes of an ellipsoid in a single 2D US slice, so that they
are aligned with the principal axes of the kidney in 3D.

2.2.1.1. Initialization. The manual initialization consists on fitting
a 3D ellipsoid to the location of each kidney. To define the position
of the ellipsoids, the user has to choose two 2D US images, one per
kidney, and in each image to identify two kidney principal axes over
three. The axes that must be identified are the longest axis, which
are the axial axis, and one of the two smaller axes: the sagittal or
the coronal. The third axis of the ellipsoid is calculated using the
other two, it is orthogonal to them and has the same length as the
identified small axis. Fig. 5 shows the two images and the kidney
principal axes in 3D. A graphical interface is used to choose a central
slice of each kidney and then locate two principal axes by moving,
rotating and selecting the length of each axis, as shown in Fig. 6. The
Fig. 6. Localization of two ellipsoid axes for the initialization of the US segmentation.
The ellipsoid axes must be placed coincident with two of the kidney axes in a central
slice of the kidney. The user can rotate, move and adjust the length of the lines shown
in the figure.
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ig. 7. The initial contours for the segmentation of US images are obtained as the
ntersection between each image plane in 3D space and an ellipsoid defined by

anual initialization.

.2.1.2. Using Gabor filters. The Gabor functions [47] are linear fil-
ers located in both the spatial and frequency domains. In the spatial
omain, they can be decomposed into a complex sinusoid mod-
lated by a Gaussian function, and in the frequency domain are
aussians centered in the frequency of the sinusoid. This prop-
rty of space and frequency location makes them ideal for local
requency analysis, and thus have often been used for texture
nalysis and feature extraction. A bank of Gabor filters with differ-
nt frequencies and orientations of the sinusoid can be generated
sing a mother function. The mother function of our filter bank

s:

(x, y) = g(x′, y′) exp(2�jFx′), (10)

here (x′, y′) = (xcos � + ysin �, − xsin � + ycos �) are the coordi-
ates rotated by angle �, F is the spatial central frequency of the

unction, and

(x, y) =
(

1
2�	x	y

)
exp

(
−1

2

(
x2

	2
x

+ y2

	2
y

))
(11)

s a Gaussian function. Since circular functions were considered,
he variances of the Gaussian were 	x = 	y = 	. This variance 	 is
elated to the frequency bandwidth of the Gabor filters, which
n octaves is b = log2[(F	� + ˛)/(F	� − ˛)], where ˛ =

√
ln 2/2.

e set the bandwidth of the Gabor filters to 1 octave. The cen-
ral frequencies for the filter bank were selected empirically as
= {0.08, 0.2, 0.35}. The frequencies were adjusted by choosing

hose that visually emphasize the difference between the kidney
issue and surrounding tissue in a set of training images, different
rom that used for testing. The usual set of angles � = {0, �/6, �/3,
/2, 2�/3, 5�/6}, covering 180 ◦, has been used.

The Gabor functions of the bank are applied to the 2D US images,
nd for each combination of F and � a texture feature is obtained
or each image. Because Gabor functions are complex, the texture
eatures have a real Hreal

F,�
and an imaginary Himg

F,�
part. With these

exture features we can define the output energy of each filter:√

F,� = Hreal

F,�

2 + Himg
F,�

2
(12)

These energies are normalized on the interval [0, 1] and used to
ontrol the active contours [50,51,35], as shown later.
aging and Graphics 35 (2011) 302–314 307

2.2.1.3. Adjustment of the initial contour. As initial contour for each
2D US image, we use the ellipse obtained from the intersection
between the plane of the US image located in 3D space, and the pre-
viously defined initial ellipsoid (Fig. 7). Every contour is defined by a
set of points {Pi}NP

i=1. First, the ellipse is fit in each 2D US image using
a 2D similarity transformation to better match the kidney edges.
The transformation parameters are calculated finding the transfor-
mation that maximizes the integral along the ellipse of the energy
gradient in the direction normal to the ellipse. The energies EF� used
for this computation are those corresponding to the lowest central
frequency F1. In this way, the parameter vector p∗ = [˛∗, s∗, t∗

x , t∗
y]

of optimal rotation ˛∗, scaling s∗, and translation t∗, is obtained for
each ellipse, with:

p∗ = argmaxp

N�∑
n�=1

NP∑
i=1

∇EF1�n�
(T (Pi; p)) · −→

N (T (Pi; p)) , (13)

where ∇EF1�n�
is the energy gradient corresponding to the lowest

central frequency (0.08) and angle �n� , N� is the number of orien-
tations used in the Gabor filters, −→

N (Pi) is the unit vector normal
to the ellipse at point Pi, and T( · ;p) is a similarity spatial trans-
formation with vector of parameters p. In the maximization, only
a limited number of transformations are used, among which the
best is chosen. These transformations are defined by the follow-
ing set of parameters: translations tx = {10 · nx}, ty = {10 · ny} with
nx = ny =[− 10, 10], rotations ˛ ={− �/6, 0, �/6} and scaling s = {0.9,
1, 1.1}.

2.2.1.4. Renal medulla preprocessing. As mentioned before, it is
of advantage for US renal image segmentation to eliminate the
forces derived from the renal medulla, to avoid contours from being
attracted into a local minimum. To this end, we need to detect the
medulla. An image where the medulla is easier to detect can be
obtained using the energies EF,� of the Gabor filters:

B = 1
N�NF

NF∑
nF=1

N�∑
n�=1

EFnF ,�n�
(14)

where NF and N� are the number of frequencies and orientations
used in the Gabor filters, respectively. As can be seen, the B image
is the mean of the resulting energies of each Gabor filter. To local-
ize the renal medulla, this image is binarized with an empirical
threshold of 0.4, obtaining Bbin. Next, all the zk connected elements
are searched in Bbin, and the ones that have no neighboring pixels
outside the ellipse adjusted to the kidney are labeled as belonging
to the renal medulla. This may be expressed as:

M = {zk ∈ Bbin|(¬L ⊕ r) ∩ zk = ∅}, (15)

where M is the binary image of the medulla, L is the binary image
of the ellipse adjusted to the kidney, ⊕ is the morphological dila-
tion operator and r is a 3 × 3 structural element. Fig. 8 shows the
procedure to identify the medulla.

2.2.1.5. Active contours. In each 2D US image, the ellipse previously
adjusted to the kidney is deformed using active contours. As in the
3D case, the contour is deformed by internal and external forces,
and the dynamic of each vertex is given by a Newtonian law of
motion (Eq. 5).

The internal force is defined as:
2 4
Finti
= ˛

∂i2
− ˇ

∂i4
(16)

where ˛ and ˇ are weights that control tension and rigidity of the
curve, and Pi = (x(i), y(i)) is the parameterization of the curve. As
in the SPECT segmentation, the external force is derived from an
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F average of the energies resulting from each Gabor filter EF� . (2) Binarization of image B.
( utside the ellipse adjusted to the kidney. (4) Elements that represent the position of the
r he reader is referred to the web version of the article.)
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of the 2.5D US image segmentation (ellipsoids), and on the seg-
mentation of the SPECT image. The centers of gravity and the main
directions of these data are matched using a similarity transfor-
mation. Next, to achieve the registration, a nonlinear optimization
ig. 8. Renal medulla identification in the US images: (1) Computing image B as the
3) Search the zk connected elements (red) in Bbin that have no neighboring pixels o
enal medulla. (For interpretation of the references to colour in this figure legend, t

xternal force field −→v . To achieve a coarse-to-fine deformation of
he contour, we first deform the contour using the features obtained
ith the lowest central frequency and then with the higher ones.

he field of forces related with each frequency F is computed using
he GVF algorithm [36], in order to obtain smooth external force
elds without undesired local minima. To compute the edge maps
F used as input for the GVF algorithm, the energies EF� are used:

F = 1
N�

N�∑
n�=1

∥∥∥∇EF�n�

∥∥∥ (17)

In order to avoid forces created by the renal medulla edges, the
mage M is used to delete these edges before using the edge maps
s input of the GVF algorithm. First, the zone identified as renal
edulla in M (Fig. 8) is dilated with an 8 × 8 structural element.

hen, the edges within this zone are deleted in HF , and the GVF
lgorithm is used in the edge maps, obtaining the fields of forces.
nly the normal to contour component of the force is used, as in
q. (9), because the tangent component only affects the parameter-
zation. First, the adjusted ellipse is deformed using the force field
btained with the lowest frequency Gabor filter, and then the resul-
ant contour is deformed sequentially using the other force fields,

aking possible a coarse-to-fine deformation.

.2.1.6. Extracting valid contours. After the deformation step, only
ome of the points Pi are considered as reliable. Let hi be the value
f Pi in the edge map HF obtained with the highest frequency F;
nly the points with hi greater than 20% of the maximal value
n the curves are kept. These curve segments are joined if they
re close enough (30 pixels approx.). Finally, all the small curves
re eliminated, providing with highly confident border segments.
ig. 9 illustrates the final result of the whole 2.5D US segmentation
rocess.
.3. Registration

The edges of the kidneys found in both images are used to per-
orm the registration. But first, the images are per-registered to put
hem closer and in the same orientation. This pre-registration is
Fig. 9. Superimposition of automatic (darker/green) and manual (lighter/yellow) US
segmentation of the kidney contours. (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of the article.)

based on the position of the kidneys delivered on the initialization
Fig. 10. 3D kidney model extracted from the SPECT image and points found in the
2.5D US image, after the registration. (a) Global registration without local registra-
tions for movement correction. (b) Registration using local registrations for each US
splice.
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Fig. 11. Example of SPECT–US image registration. (a) US image superimposed with re-sliced SPECT image. (b) 3D SPECT model with US image in 3D.
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(Iterative Closest Point) algorithm [54,52]. After this distance min-
imization, we assume that each US slice is close enough to model
S to correct movements caused by breathing using a local rigid
transformation Tr( · ;pr).
Fig. 12. SPECT segmentations. (a) Intensity relate

lgorithm [52] is used to minimize the quadratic distance between
he points found in the 2.5D US image and the 3D kidney meshes
xtracted from the SPECT image. Nevertheless, as we said in Sec-
ion 1, movements caused by breathing during the acquisition of the
.5D US images, induce that the kidney position in each 2D image

s slightly different. To correct this movement, the position of each
S slice is adjusted iteratively together with a global registration
f the entire 2.5D US image, as we show below.

We have assumed that the 3D model extracted from the SPECT
mage is the real shape of the kidney, therefore, the position of each
S slice is adjusted using this model. In this way, the SPECT is the

arget image and the 2.5D US image is the floating image.

.3.1. Global registration
A similarity transformation, with vector of parameters ps (three

otation angles, three translations, and one scale parameter), is used
n a global registration to minimize the distance between the edges
ound in both images. Thus, the minimization to find the optimal
ector of parameters p∗

s is:

∗
s = argmin

ps

Nc∑
c=1

Np(c)∑
i=1

d2(Ts(Pc,i; ps), S) (18)

here Ts( · ;ps) is a similarity transformation with vector of param-
ters ps, Nc is the number of contours in the 2.5D US image (slices
here kidney edges were detected), Np(c) is the number of points

n contour c, Pc,i is the position of point i of contour c, and d2(Pi,
) is the minimum squared distance between point Pi and the sur-
ace represented by mesh S. This minimization is performed using

he Levenberg–Marquardt algorithm, which is especially suitable
or minimizing functions that are a sum of squared residuals. The
ector of residuals to minimize can be defined as:

s(ps)=
[
E1,1(ps), · · · , E1,Np(1)(ps), E2,1(ps), · · · , ENc,Np(Nc)(ps)

]
, (19)
entation and (b) gradient related segmentation.

where:

Ec,i(ps) = d(Ts(Pc,i; ps), S). (20)

Thus, Eq. (18) can be expressed as:

p∗
s = argmin

ps

‖es(ps)‖2, (21)

and the sum of square residuals ||es(ps)||2 can be minimized with
the Levenberg–Marquardt algorithm. To optimize the minimiza-
tion, distances d(Ts( · ;ps), S) are pre-computed using a distance
transform [53], which is also used to directly estimate the Jaco-
bian required for the minimization algorithm. This implementation
of the minimization is comparable in speed with the popular ICP
Fig. 13. 3D SPECT automatic segmentation and manual US segmentation after
registration. The distance between both segmentations was used as a quality mea-
surement of the registration.
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Table 1
Results of our US segmentation relative to manual segmentation.

Patient Bad initialized
images [%]

Edges detected
[%]

Average
distance [mm]

P1 7.69 48.85 3.64
P2 8.33 73.51 4.67
P3 5.26 58.25 3.06
P4 0.0 63.85 2.63
P5 11.11 74.57 3.84
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Table 2
Quantitative registration evaluation.

Patient OL method Our method with GS Our method with IS

Distance [pix]
P1 2.25 1.46 1.39
P2 2.10 0.92 0.88
P3 2.07 1.29 1.15
P4 4.28 0.91 1.17
P5 2.33 1.03 0.94
P6 2.84 1.06 1.17
P7 2.49 0.84 0.79

Mean 2.62 1.07 1.07

Distance [mm]
P1 8.98 5.84 5.57
P2 8.40 3.66 3.52
P3 8.28 5.16 4.61
P4 17.11 3.65 4.68
P5 9.33 4.11 3.77
P6 11.37 4.24 4.70
P7 9.97 3.37 3.14

Mean 10.49 4.29 4.28

Comparison between the OL (Optical Localizer) method, and our method using GS
(Gradient related Segmentation) and IS (Intensity related Segmentation).

Table 3
Qualitative registration evaluation.

Type of registration Score

OL method 3.19
P6 6.25 74.50 2.42
P7 11.76 65.40 2.82

Mean 7.2 65.56 3.30

.3.2. Local registration
The distance between the contour points in the US images and

, is minimized independently for each US slice. In this way, the
nconsistency in the position of some US slices, caused by move-

ents during the 2.5D US image acquisition, can be corrected. The
inimization used to find the optimal vector of parameters p∗

r (c)
or the rigid transformation Tr( · ;pr) of each contour c is:

r(c)∗ = argmin
pr

Np(c)∑
i=1

d2(Tr(Pc,i; pr), S). (22)

The Levenberg–Marquardt algorithm is used again in the mini-
ization, but in this case the vector of residuals is:

r(pr(c)) = [Ec,1(pr(c)), · · · , Ec,Np(c)(pr(c))] (23)

After the positions of all slices have been corrected, another
lobal registration (Eq. (18)) is performed to improve the registra-
ion. This loop between a global registration and a local registration
f each slice (Fig. 1) is repeated until the mean displacement of
he points, in the registration for movement correction, is under a
hreshold defined as 0.5. Fig. 10 shows the 3D kidneys model and
he points found in the 2.5D US image after registration. Fig. 10(a)
hows the result obtained using only the global registration, and
ig. 10(b) shows the result obtained also using local registrations.
n example of the final registration ca bee seen in Fig. 11.

. Results
.1. SPECT segmentation

The SPECT images were obtained injecting 99mTc-DMSA into the
loodstream, and using a dual-head gamma camera (manufacturer:
MV; model: DST-Xli). 3D images were reconstructed by applying

Fig. 14. Scores obtained by the registrations of images of seven patients. The
Our method with GS 4.08
Our method with IS 4.13

Comparison between the OL method and our method using GS and IS.

the OSEM [55] (Ordered Subsets Expectation Maximization) itera-
tive method, using 64 posterior projections over 180 ◦. Image size
was 128 × 128 × 128 voxels, each of 4 mm × 4 mm × 4 mm.

Gradient and intensity SPECT segmentations were assessed on
27 exams, which were part of routine examinations ordered by
physicians. Parameters used for the model dynamics were empiri-
cally calibrated over a set of training images. The parameters with
better performance according to a simple visual inspection were
chosen in Eqs. (6), (7) and (9): � = 0.65, � = 0.2 and 
 = 0.8.
The segmentations were evaluated qualitatively by a team of
three medical experts using a graphic interface for visualization. As
suggested in [13], the evaluation range was from 1 to 5 (1: very bad,
2: bad, 3: good, 4: very good, and 5: excellent).

scores of the OL method and our method using GS and IS are shown.
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ig. 15. Left: Slices registered with the OL method. Right: Slices registered with ou
–5; (c) 4–5; (d) 4–5.
For all images, the assigned score was 5. Thus, according to
xperts, both methods based on voxel intensity and gradient, exhib-
ted equivalent results and are acceptable. Fig. 12 shows an example
f the SPECT segmentation.
hod. The scores obtained in the qualitative evaluation of the slices are: (a) 1–5; (b)
3.2. 2.5D US segmentation

A six degrees-of-freedom optical localizer (Praxim Surgetics®

station) was used during acquisition to determine the relative posi-
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ion of the 2D US slices that conform the 2.5D US image. To calibrate
he system (spatial relation between the 2D images and the rigid
odies, Fig. 4) a membrane phantom method was used [56]. The
S images were acquired using an echo camera Aloka 55D-630 con-
ected to a frame grabber. The image resolution was 480 × 640 with
0.25 mm × 0.19 mm pixel size.

In order to evaluate the segmentation, seven 2.5D US exams
ere acquired from two patients and five healthy volunteers

hrough posterior and lateral access. Parameters for the segmen-
ation were chosen empirically in Eqs. (6), (9) and (16) as: � = 0.65,
= 10, and ˛ = 0.6, ˇ = 0. The selection criterion was the perfor-
ance according to a simple visual inspection over a set of training

mages. The weight of the external force 
 is higher than in the
PECT segmentation because in this case the normalization was
ade over the energies EF� , and then these energies were aver-

ged to obtain the input of the GVF algorithm. To evaluate the
egmentation, the distance between our semi-automatic segmen-
ation and a manual segmentation of the US images was measured.

edical experts participated in the manual marking of the kidneys’
dges using a graphic interface specially designed for this purpose.
hey were asked to restrict to edges that could be clearly identified
n the images. Fig. 9 shows a manual segmentation of the kidney
lighter/yellow line). Every 2.5D US image is composed of approxi-

ately 400 2D US slices. Since this number of images was large for
anual evaluation, 20 images, where the kidney was visible, were

andomly selected from each exam.
Table 1 shows the percentage of rejected images due to incor-

ect initial ellipse position, as well as the average distance and
ercentage of borders detected in comparison to the manual seg-
entation. Results show that our method detect the kidney edges
ith a precision of approximately 3.3 mm.

.3. Registration

The SPECT images used to validate the registration were
cquired in the same set of patients and volunteers who partici-
ated in the evaluation of the 2.5D US segmentation. Two types
f assessments were carried out: qualitative and quantitative. The
erformance of our method was compared in both assessments
ith a reference registration method, which uses an OL (Opti-

al Localizer), “rigid bodies” and a spatial calibration between the
PECT and 2.5D US acquisition systems. This registration based
n an optical localizer yields good results, in [15] a RMS error of
.03 mm was obtained using a phantom and comparing the regis-
ration with direct measures of the optical localizer. However, this
egistration does not correct the movements caused by breathing.

.3.1. Quantitative evaluation
Since the SPECT segmentation was assessed with the highest

core by the medical experts, we assumed that these edges and
he manual marked ones in the 2.5D US images can be used as
natomical features to evaluate the registration. Therefore, the dis-
ance between the 3D model extracted from the SPECT image and
he manual US segmentation, was measured after registration. The
istance was computed sampling each manual segmentation uni-
ormly and then measuring the minimum distance between each
ampled point and the surface defined by the mesh resulting from
he SPECT image segmentation. Then, the average value of these
istances was computed in each exam. To compare our method,
he same distance was measured in a registration performed with
he reference method.
Fig. 13 shows an example of the 3D SPECT segmentation over-
apped with the curves of the manual US segmentation after
egistration. Table 2 shows the average distances obtained using
he OL method, and using our method with both SPECT segmen-
ations: gradient related segmentation (GS) and intensity related
aging and Graphics 35 (2011) 302–314

segmentation (IS). The results are of good quality, and show sim-
ilar performance with both SPECT segmentations. An analysis of
variance (ANOVA) was used to verify the statistical significance
(p < 0.0001) of the difference between the results of our registration
method and the OL reference one.

3.3.2. Qualitative evaluation
The registration was assessed in the same sets of US slices used

in the evaluation of the 2.5D US segmentation. A group of three
physicians was asked to evaluate the registration in every one of
the selected US slices. The scale for the evaluation was from 1 to
5. In this scale, the score 1 was a very bad registration — images
are completely out of registration and the results are not suitable
for medical decisions—, and score 5 was an excellent registration
— the registration is almost perfect—. Registrations with value 3 or
above were considered useful for medical purposes.

The graph in Fig. 14 shows the scores obtained by the registra-
tion of the images of each patient. Table 3 shows the mean score
of the OL method and our method using both, gradient and inten-
sity related, SPECT segmentations. A “t-test” was used to check that
the evaluation of our registration was over the clinical cut-off of 3
with p < 0.001, proving useful for clinical applications. Moreover,
an ANOVA was performed, verifying the statistical significance
(p < 0.05) of the difference between the results of our registration
method and the OL reference one.

3.3.3. Overall evaluation
Our method achieved better results in quantitative and qualita-

tive evaluations, in comparison with the method based on optical
localization. This improvement is because our method carries out
an individual correction in the position of each US slice. The move-
ment caused by breathing is also present during SPECT image
acquisition, causing blur in the resulting image. In contrast, the
2.5D US images are not blurred because each slice is acquired
independently and instantaneously. Therefore, kidney position
inconsistencies may appear in the 2.5D US image if the patient
moves during image acquisition, and each slice should be adjusted
to match the SPECT image. Excellent results can be obtained using
the method based on optical localization in slices where the posi-
tion of the kidney matches the average position in the SPECT image.
Nevertheless, the performance will be lower in the remaining slices.
Fig. 15 shows comparisons between slices registered with our
method and using an optical localizer. While in some slices the
registration is very similar, in others a displacement due to patient
motion can be observed.

4. Conclusion

A method has been developed in order to register renal SPECT
and 2.5D US images. Usually there is not enough anatomical infor-
mation in the SPECT image, which may limit its usefulness. The
proposed registration makes it possible to combine functional
information from the SPECT images with anatomical information
from the US images. There are few studies on this type of regis-
tration in the literature, and usually they use an optical localizer
and a calibration between frames of reference associated to both
acquisition systems. Our method only uses information contained
in the image and corrects the movement caused by patient breath-
ing. The method is based on a previous segmentation of the images
in both modalities. The SPECT segmentation, 2.5D US segmentation

and the registration, were evaluated separately. The SPECT seg-
mentation received a very good qualitative evaluation. The 2.5D
US segmentation was evaluated quantitatively with a good per-
formance and enough edges were found to guide the registration.
Additionally, a method to detect the renal medulla was developed
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n order to improve the US segmentation. Results show that the reg-
stration was successfully performed, however, its quality could be
mproved. Our method take into account movements due to breath-
ng, registering each 2D US image, but we think that important
nhancement can be achieved through a better acquisition pro-
ocol to reduce kidney movements during the acquisition phase.
n alternative may be to use blocked breathing during the image
cquisition or to monitor the breathing to discard images that do
ot correspond to the same part on the respiratory cycle. From the
edical point of view, it may also be useful to have an objective

utomatic correlation between lesions seen in the SPECT and the
natomical US image, for example, the ratio between functional
esions and volume of the kidney.
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