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Abstract

The computation of the primordial power spectrum in multi-field inflation models requires

us to correctly account for all relevant interactions between adiabatic and non-adiabatic

modes around and after horizon crossing. One specific complication arises from derivative

interactions induced by the curvilinear trajectory of the inflaton in a multi-dimensional field

space. In this work we compute the power spectrum in general multi-field models and show

that certain inflaton trajectories may lead to observationally significant imprints of ‘heavy’

physics in the primordial power spectrum if the inflaton trajectory turns, that is, traverses a

bend, sufficiently fast (without interrupting slow roll), even in cases where the normal modes

have masses approaching the cutoff of our theory. We emphasise that turning is defined with

respect to the geodesics of the sigma model metric, irrespective of whether this is canonical

or non-trivial. The imprints generically take the form of damped superimposed oscillations

on the power spectrum. In the particular case of two-field models, if one of the fields is

sufficiently massive compared to the scale of inflation, we are able to compute an effective

low energy theory for the adiabatic mode encapsulating certain relevant operators of the

full multi-field dynamics. As expected, a particular characteristic of this effective theory is

a modified speed of sound for the adiabatic mode which is a functional of the background

inflaton trajectory and the turns traversed during inflation. Hence in addition, we expect

non-Gaussian signatures directly related to the features imprinted in the power spectrum.

1Present address: Theory Division, CERN, CH-1211 Geneva 23, Switzerland
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1 Introduction

Single field slow-roll inflation [1, 2] successfully accounts for many of the observed properties

of the cosmic microwave background (CMB), including the near scale invariance of the power

spectrum of the primordial density fluctuations that seed the observed CMB anisotropies [3].

Although one could claim that a large subset of the simplest models of single field inflation

remain perfectly compatible with current CMB precision measurements [4, 5], a direct and

accurate reconstruction of the primordial spectrum from CMB data is still limited by various

degeneracies in the priors and systematics adopted in our reconstructions [6–8]. It may certainly

be the case that the CMB data implies the presence of various features in the primordial power

spectrum other than the nearly scale invariant power law parametrization anticipated from the

simplest single field slow roll models [8–16]. Upcoming data, such as that from the Planck

satellite promises to provide new handles on the overall shape of the spectrum and, particularly

in combination with other data sets, could help us determine the precise nature of any possible

features in it. If present, such features could lead to quantitative new tests on the single field

slow-roll paradigm [17, 18] and constitute strong evidence in favour of the existence of additional

degrees of freedom present during the evolution of density perturbations as the universe inflated.

One particularly compelling possibility which we wish to discuss in this report is of features

in the spectrum generated by heavy (relative to the scale of inflation) degrees of freedom which

do not necessarily decouple from the dynamics of the inflaton. Although the effects of massive

degrees of freedom on the density perturbations are known to quickly dissipate during inflation,

there are evidently still a number of contexts where features in the primordial spectrum due to

heavy physics can survive. It is well understood, for example, that departures from a Bunch-

Davies vacuum as the initial condition for the scalar fluctuations will result in oscillatory features

in the power spectrum (see for example Refs. [19, 20]). Other contexts in which features are

generated in the power spectrum involve particle production during brief intervals –much smaller

than an e-fold– as the universe inflates. Examples of this include those situations where a massive

field coupled to the inflaton suddenly becomes massless at a specific point in field space [21–

25]. Here it is the transfer of energy out of the inflaton field and the subsequent backscatter

of its fluctuations off the condensate of created quanta that can result in features in the power

spectrum, as well as in its higher moments [26, 27]. Yet another context where such features

have been shown to arise is in chain inflation, where instead of slowly rolling down a smooth

continuous potential, the inflaton field gradually tunnels a succession of many vacua [28].

The purpose of the present report is to demonstrate the existence of, and to understand the

general conditions under which features in the power spectrum result in the context of inflation

embedded in a multi-scalar field theory (see Refs. [29–31] for other recent discussions on this).

For this we consider models of inflation where all of the scalar fields remain heavy except for one

(the inflaton) which rolls slowly in some multi-dimensional potential. An effective field theory

analysis tells us that in such scenarios, inflation should proceed in exactly the same way as in

the single field case, with subleading corrections suppressed by the masses of the heavy scalar

fields (see for example Ref. [32]). In this framework it is easy to take for granted that a simple

1



truncation of any available heavy degrees of freedom is the same as having integrated them out.

However, it can certainly be the case that the adiabatic approximation is no longer valid at

some point along the inflaton trajectory (e.g. due to a “sudden” turn that mixes heavy and

light directions), and higher derivative operators in the effective theory are no longer negligible

even as inflation continues uninterrupted.

In various models of inflation in supergravity and string theory, the inflaton is embedded in a

non-linear sigma model with typical field manifold curvatures of the string or Planck scale [33–

35]. In this type of scenario the inflaton traverses a curvilinear trajectory generating derivative

interactions between the adiabatic and non-adiabatic modes2 [36–38]. In this context, it is

straightforward to appreciate heuristically that a sudden enough turn can excite modes normal

to the trajectory and non-trivially modify the evolution of the adiabatic mode. We will see that

the net effect of this trajectory will translate into damped oscillatory features superimposed on

the power spectrum – the transients after a sudden transfer of energy between the excited heavy

modes and the much lighter inflaton mode, and the subsequent re-scattering of its perturbations

off the condensate of heavy quanta that redshift in short time 3.

A typical potential exhibiting such a curved trajectory is depicted in Figure 1. It can be

appreciated that there is always a heavy direction transverse to the loci of minima determining

the inflaton trajectory. We should emphasise however that the focus of this work is more general

and that a curved trajectory in field space is not exclusively due to the shape of the potential,

but also depends on the particular sigma model metric defining the scalar field manifold: on a

particular curve the two can be transformed into each other by suitable field redefinitions. With

this perspective, curved trajectories appear in any situation where a mismatch exists between

the span of geodesics of the scalar field manifold and the actual inflationary trajectory enforced

by the scalar potential through the equations of motion [41]. The previously described situation

is in fact generic of realisations of inflation in the context of string compactifications, where a

large number of scalar fields are expected to remain massive but with their vacuum expectation

values depending on the field value of the background inflaton [42–51].

Limits of certain cases we wish to study in this report have been explored recently in seemingly

different, but related contexts. In Refs. [52, 53] for instance, the effects on density perturbations

due to a circular turn with constant curvature in field space was explored within a two-field

model. There, it was concluded that such a turn could render non-Gaussian features in the

bispectrum but would not generate features in the power spectrum. In another recent publi-

cation [54], the effects of a sigma model with non-canonical kinetic terms motivated by string

theory was explored within inflationary models where one of the fields remained very massive.

There, an effective theory was derived describing the multi-field dynamics, characterised by hav-

2Here, by adiabatic mode we refer to the mode which fluctuates along the inflationary trajectory whereas

non-adiabatic modes correspond to those whose fluctuations remain orthogonal to the trajectory. We will also

frequently denote them as curvature and isocurvature modes in this report.
3We also note the investigations of [39, 40], where inflation in a putative string landscape is modelled using a

random potential. Here, the background inflaton effectively executes a random walk, resulting in features at all

scales in the power spectrum.
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Figure 1: A generic example of a potential where turns happens while one of the fields remain much heavier

than the other.

ing a speed of sound for the fluctuations smaller than unity (and therefore indicating the possible

departure from Gaussianity of the CMB temperature anisotropies). In the framework we are

about to discuss, both examples are just different faces of the same coin: while a non-canonical

sigma model metric can always be made locally flat along a given trajectory generally generating

contributions to the potential with a curved locus of minima, it is also possible to find a field

redefinition which makes the loci of flat directions of the potential look straight at the cost of

introducing a non-canonical metric.

As we will shortly demonstrate, the parameter determining how relevant a local turn in the

background inflaton trajectory is for the effective dynamics of the adiabatic mode is given by the

departure from unity of the quantity eβ = 1 + 4φ̇20/(κ
2M2), where φ̇0 is the speed of the inflaton

background field, κ is the radius of curvature of the curve in field space and M is the mass of the

direction normal to the trajectory. Keeping in mind that during slow-roll inflation, the inflaton

velocity is given by φ̇0 =
√

2εMPlH, with ε being the usual slow roll parameter, it follows that

eβ = 1 + 8εM2
PlH

2/(κ2M2). Thus, even with M2 � H2, if the radius of curvature describing

the turn is small enough, significant imprints of heavy physics on the dynamics of the adiabatic

mode can arise. More generally, whenever eβ > 1, some amount of particle creation takes place

that backreacts on the dynamics of the adiabatic mode. Let us not forget that in addition to the

scale invariance of the power spectrum, single field slow-roll inflation predicts that the observed

CMB temperature anisotropies seeded by the curvature perturbation satisfy Gaussian statistics

to a high degree of accuracy [56]. Interestingly, in the class of models examined in this work, if

the normal direction to the inflaton trajectory is sufficiently massive (M2 � H2), it is possible

to compute an effective action for the adiabatic mode capturing the relevant operators of the

full multi-field dynamics. This effective theory has the characteristic that the adiabatic mode
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propagates with a speed of sound given by

c2s = e−β (1.1)

and therefore becomes a functional of (the curvature of) the trajectory traversed by the in-

flaton [41]. Interestingly, this result has as a special case the particular context of Ref. [54]

and indicates the presence of non-Gaussian signatures correlated with features in the power

spectrum.4

We have organised this paper in the following way. In Section 2 we present the general setup

and the notations used throughout this work. There, we will emphasise the need for using a geo-

metric perspective to describe the evolution of the homogeneous background. Then in Section 3

we proceed to examine the perturbations of the fields around a time dependent background, and

consider their quantisation and provide general formulas for the power spectrum. Our formalism

allows us to consider situations beyond the regime of applicability of existing methods, such as

trajectories with fast, sudden turns (regardless of whether the sigma model metric is canonical

or non-canonical), and any other situations in which the masses in the orthogonal direction are

changing relatively fast along the trajectory while still remaining much heavier than H2. In Sec-

tion 4 we apply the previous results to the particular case of two-field models. We also deduce

an effective theory valid in the case where the field normal to the trajectory remains heavy and

compare the spectrum of this effective, single-field theory with those found in the full, multi-field

computation of the spectrum. Then, in Section 5 we examine in detail the evolution of adiabatic

and non-adiabatic modes along the curved inflaton trajectory and compute the power spectrum

for various cases. Finally, in Section 6 we provide our concluding remarks.

2 Basic considerations

Let us start our study by recalling some of the basic aspects of multi-field inflation and by

introducing the notations and conventions that will be used throughout this work. Our starting

point is to assume the following effective four dimensional action consisting of gravity and a set

of N scalar fields φa:

S =

∫ √
−g d4x

[
M2

Pl

2
R− 1

2
γabg

µν∂µφ
a∂νφ

b − V (φ)

]
. (2.1)

Here R denotes the Ricci scalar constructed out of the spacetime metric gµν with determinant

g. Additionally, φa (a = 1, · · · N ) denotes a set of scalar fields spanning a scalar manifold M
of dimension N , equipped with a scalar metric γab. The scalar fields may be thought of as

4In the course of preparing this manuscript, we note with interest the results of [55], where their parametrization

of the non-decoupling parameter of the isocurvature directions ξ relates as a specific realisation of our analysis.

This is easiest seen through comparing expressions (23) in Ref [55] with (4.27) or (C.9) here. We emphasise that

the non-decoupling effect, ascribed in these two papers to the non-trivial sigma model metric, is simply due to

the non-geodesic nature of the trajectory obtained by putting the heavy field at its local minimum.
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coordinates on M with Christoffel symbols given by

Γabc =
1

2
γad (∂bγdc + ∂cγbd − ∂dγbc) , (2.2)

where ∂a are partial derivatives with respect to the scalar fields φa. In terms of these, the

Riemann tensor associated with M is given by

Rabcd = ∂cΓ
a
bd − ∂dΓabc + ΓaceΓ

e
db − ΓadeΓ

e
cb . (2.3)

It is also possible to define the Ricci tensor as Rab = Rcacb and the Ricci scalar R = γabRab. We

shall be careful to distinguish geometrical quantities related to the four dimensional spacetime

and the N -dimensional abstract manifoldM. We should keep in mind that, typically, there will

be an energy scale ΛM associated to the curvature of M, and hence, fixing the typical mass

scale of the Ricci scalar as R ∼ Λ−2M . In many concrete situations, such as the modular sector of

string compactifications, the scale ΛM corresponds to the Planck mass MPl. The equations of

motion for the scalar fields are given by

�φa + Γabcg
µν∂µφ

b∂νφ
c = V a , (2.4)

where V a ≡ γab∂bV . In what follows we discuss in detail the homogeneous solutions φa = φa0(t)

to these equations where the scalar fields depend only on time. The discussion in the sequel

follows closely the analysis in [37, 38].

2.1 Background solution

We look for background solutions by assuming that all the scalar fields are time dependent

φa = φa0(t), and that spacetime consists of a flat Friedmann-Robertson-Walker (FRW) geometry

of the form

ds2 = −dt2 + a2(t)δijdx
idxj . (2.5)

Later on we will also work in conformal time τ , defined through the relation dt = a dτ . In this

background, the equation of motion (2.4) describing the evolution of the scalar fields is given by

D

dt
φ̇a0 + 3Hφ̇a0 + V a = 0 , (2.6)

where H = ȧ/a is the Hubble parameter characterising the expansion rate of spatial slices, and

where we have also introduced the convenient notation DXa = dXa + ΓabcX
bdφc0. On the other

hand, the Friedmann equation describing the evolution of the scale factor in terms of the scalar

field energy density is given by

H2 =
1

3M2
Pl

(
1

2
φ̇20 + V

)
, (2.7)

where φ̇20 ≡ γabφ̇a0φ̇b0. Notice that φ̇0 corresponds to the rate of change of the scalar field vacuum

expectation value along the trajectory followed by the background fields. It is also convenient
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to recall the following equation describing the variation of H

Ḣ = − φ̇20
2M2

Pl

, (2.8)

which may be deduced by combining (2.6) and (2.7). By specifying the metric γab and the

scalar potential V , these equations can be solved to obtain the curved trajectory inM followed

by the scalar fields. To discuss several features of this trajectory without explicitly solving

the previous equations, it is useful to define unit vectors T a and Na distinguishing tangent and

normal directions to the trajectory respectively, in such a way that T aNa = 0. These are defined

as

T a ≡ φ̇
a
0

φ̇0
,

Na ≡sN (t)

(
γbc

DT b

dt

DT c

dt

)−1/2
DT a

dt
, (2.9)

where sN (t) = ±1, denoting the orientation of Na with respect to the vector DT a/dt. That is,

if sN (t) = +1 then Na is pointing in the same direction as DT a/dt, whereas if sN (t) = −1 then

Na is pointing in the opposite direction. Due to the presence of the square root, it is clear that

Na is only well defined at intervals where DT a/dt 6= 0. However, since DT a/dt may become

zero at finite values of t, we allow sN (t) to flip signs each time this happens in such a way that

both Na and DT a/dt remain a continuous function of t. This implies that the sign of sN may

be chosen conventionally at some initial time ti, but from then on it is subject to the equations

of motion respected by the background.5 In the particular case where M is two dimensional,

the presence of sN (t) in (2.9) is sufficient for Na to have a fixed orientation with respect to T a

(either left-handed or right-handed). This will become particularly useful when we examine two

dimensional models in Section 4.

Observe that the tangent vector T a offers an alternative way of defining the total time deriva-

tive D/dt along the trajectory followed by the scalar fields. This is:

D

dt
≡ φ̇0T a∇a = φ̇0∇φ . (2.10)

Now, taking a total time derivative to T a, we may use the equation of motion (2.6) to write

DT a

dt
= − φ̈0

φ̇0
T a − 1

φ̇0

(
3Hφ̇a0 + V a

)
. (2.11)

Then, by projecting this equation along the two orthogonal directions T a and Na, we obtain

the following two independent equations

φ̈0 + 3Hφ̇0 + Vφ = 0 , (2.12)

DT a

dt
= −VN

φ̇0
Na , (2.13)

5We are assuming here that the background solutions φa = φa0(t) are analytic functions of time, and therefore

we disregard any situation where this procedure cannot be performed.
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where we have defined Vφ ≡ T aVa and VN ≡ NaVa to be the projections of Va = ∂aV along

the tangent and normal directions respectively. It is not difficult to verify that Va lies entirely

along a space spanned by T a and Na. That is, we are allowed to write Va ≡ VφTa + VNNa.

To anticipate the study of inflation within the present setup, it is useful to define the following

dimensionless quantities:

ε ≡− Ḣ

H2
=

φ̇20
2M2

PlH
2
, (2.14)

ηa ≡− 1

Hφ̇0

Dφ̇a0
dt

. (2.15)

We will not assume that these parameters are small until much later, where inflation is studied

in the slow-roll regime (see Section 4.3). Similarly to the case of Va, the vector ηa may be

decomposed entirely in terms of T a and Na as

ηa =η||T
a + η⊥N

a , (2.16)

η|| ≡−
φ̈0

Hφ̇0
, (2.17)

η⊥ ≡
VN

φ̇0H
, (2.18)

where we have used (2.6) to simplify a few expressions. Observe that η⊥ is directly related to

the rate of change of the tangent unit vector T a, since (2.13) can be written as

DT a

dt
= −Hη⊥Na . (2.19)

Comparison with (2.9) shows that sign(η⊥) = −sN . This is one of our main reasons for having

introduced sN (t) in (2.9): it allows us to keep η⊥ continuous and avoid some unnecessary

difficulties encountered in the definition of isocurvature modes.6

Moving on with this discussion, we can relate η⊥ to the radius of curvature κ characterising

the bending of the trajectory followed by the scalar fields. To do so, let us recall that given a

curve γ(φ0) in field space parameterised by dφ0 = φ̇0dt, we may define the radius of curvature

κ associated to that curve through the following relation:

1

κ
=

(
γbc

DT b

dφ0

DT c

dφ0

)1/2

. (2.20)

Here κ stands for the radius of curvature in the scalar manifold M spanned by the φa fields,

and therefore it has dimension of mass. Figure 2 shows the relation between the pair of vectors

6In Ref. [30] for instance, a similar parameter η⊥ is introduced but with a fixed sign, which if the ‘slow turn’

approximation were to be violated (a regime we are mainly interested in), would produce a numerical overshoot

in the evolution of curvature and isocurvature perturbations that has to be taken into account, and is naturally

accounted for by our definition.
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Figure 2: The figure shows schematically the relation between the tangent vector T a, the normal vector Na and

the radius of curvature κ.

T a, Na and the radius of curvature κ. Using (2.10) and comparing the last two equations we

find the following relation between κ and η⊥:

κ−1 =
H|η⊥|
φ̇0

. (2.21)

By definition any geodesic curve γ(φ0) in M satisfies the relation Dφ̇a/dt ∝ φ̇a, which cor-

responds to the case κ−1 = 0, or alternatively, to the case η⊥ = 0. Thus, we see that the

dimensionless parameter η⊥ is a useful quantity that parameterises the bending of the inflation-

ary trajectory with respect to geodesics in M. It is interesting to rewrite the previous relation

by replacing φ̇0 =
√

2εHMPl coming from the definition of ε presented in (2.15). One obtains:

|η⊥| =
√

2ε
MPl

κ
. (2.22)

Then, if the radius of curvature is such that κ�MPl, one already sees that η2⊥ � 2ε. We shall

come back to this result later when we study curved trajectories in the slow-roll regime ε� 1.

To continue, we may further characterise the variation of Na as:

DNa

dt
= Hη⊥T

a +
1

Hη⊥
P ab∇φVb , (2.23)

where we have defined the projector tensor P ab ≡ γab−T aT b−NaN b along the space orthogonal

to the subspace spanned by the unit vectors T a and Na. That is, PabN
b = 0 and PabT

b = 0.

Details on how to obtain the previous relation can be found in Appendix A. Observe that in the
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particular case where M is two dimensional, one has γab = TaTb +NaNb and therefore Pab = 0

identically.

To finish this section, let us state some useful relations that will be used throughout the rest of

this work. First, by using the definitions for ε and η|| in (2.15), we may rewrite the background

equations (2.7) and (2.12) respectively as:

3− ε =
V

M2
PlH

2
, (2.24)

3− η|| =−
Vφ

φ̇0H
. (2.25)

With the help of (2.15) these two relations may be put together to yield:

ε =
M2

Pl

2

(
Vφ
V

)2( 3− ε
3− η||

)2

. (2.26)

Next, by deriving (2.12) with respect to time and using the definitions for ε and η||, we deduce

3(ε+ η||) =M2
Pl

∇φVφ
V

(3− ε) + ξ||η|| , (2.27)

ξ|| ≡−
1

Hφ̈0

...
φ 0. (2.28)

Both (2.26) and (2.27) are exact equations linking the evolution of background quantities with

the scalar potential V . It may be already noticed that if ε, η|| and ξ|| are all much smaller

than unity, then we obtain the usual relations for the slow roll parameters ε and η|| in terms of

derivatives of the potential:

ε ≈
M2

Pl

2

(
Vφ
V

)2

, (2.29)

ε+ η|| ≈M2
Pl

∇φVφ
V

. (2.30)

We shall come back to these relations later, when we consider the evolution of the background

in the slow roll regime.

3 Perturbation theory

The notation introduced in the previous section provides a useful tool to analyse perturbations

δφa about the background solution φa = φa0(t) by decomposing them into parallel and normal

components with respect to the inflaton trajectory. In what follows we proceed to study the

evolution and quantisation of these perturbations. First, we consider scalar field perturbations

by expanding about the background φa(t,x) = φa0(t) + δφa(t,x). It is well known that the

equations of motion for the perturbed fields can be cast entirely in terms of the gauge-invariant

Mukhanov-Sasaki variables [57, 58]

Qa ≡ δφa +
φ̇a

H
ψ , (3.1)

9



where ψ is the curvature perturbation of the spatial metric. The equations of motion for these

fields are found to be [59]

D2Qa

dt2
+ 3H

DQa

dt
− ∇

2

a2
Qa + CabQ

b = 0 , (3.2)

where ∇2 ≡ δij∂i∂j is the spatial Laplacian and where we have defined the tensor Cab as:

Cab ≡ ∇bV a − φ̇20RacdbT cT d + 2ε
H

φ̇0
(T aVb + TbV

a) + 2ε(3− ε)H2T aTb . (3.3)

We notice here that Cab = γacC
c
b is symmetric. It is convenient to rewrite the set of equations

(3.2) in terms of perturbations orthogonal to each other. With this in mind, we introduce a

complete set of vielbeins eIa = eIa(t) and work with the following quantities:

QI(t,x) ≡ eIa(t)Qa(t,x) . (3.4)

The a-index labels the abstract scalar manifoldM whereas the I-index labels a local orthogonal

frame moving along the inflationary trajectory. Recall that vielbeins are defined to satisfy the

basic relations eIae
J
b γ

ab = δIJ and eIae
J
b δIJ = γab. From these relations one deduces the identities

eIa
D

dt
eaJ =− eaJ

D

dt
eIa , (3.5)

eaI
D

dt
eIb =− eIb

D

dt
eaI , (3.6)

from which it is possible to read

Q̇I =eIa
DQa

dt
− Y I

JQ
J , (3.7)

Q̈I =eIa
D2Qa

dt2
− 2Y I

JQ̇
J −

(
Y I

KY
K
J + Ẏ I

J

)
QJ , (3.8)

where we have defined the antisymmetric matrix YIJ = −YJI as:

Y I
J = eIa

DeaJ
dt

. (3.9)

Before writing down the equations of motion respected by the fields QI , it is useful to notice

that the matrix YIJ allows us to define a new covariant derivative D/dt acting on quantities

such as QI labelled with the I-index in the following way7:

D
dt
QI ≡ Q̇I + Y I

JQ
J . (3.10)

This definition allows us to rearrange (3.7) and (3.8) and simply write

DQI

dt
=eIa

DQa

dt
, (3.11)

D2QI

dt2
=eIa

D2Qa

dt2
. (3.12)

7It may be noticed that we can write Y IJ =
(
eIa∂be

a
J + eIaΓabce

c
J

)
φ̇b0 = ωb

I
J φ̇

b
0 where ωb

I
J are the usual spin

connections for non-coordinate basis, hence justifying the definition of the new covariant derivative of (3.10).
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Thus, the equations of motion for the perturbations in the new basis become

D2QI

dt2
+ 3H

DQI

dt
− ∇

2

a2
QI + CIJQ

J = 0 , (3.13)

where CIJ ≡ eIaebJCab. To deal with the above set of equations, it is convenient to take one last

step in simplifying them and rewrite them in terms of conformal time dτ = dt/a, and a new set

of perturbations vI ≡ aQI . These redefinitions induce a re-scaling of the covariant derivative

(3.10) in the form D/dτ = aD/dt, from where we are allowed to write:

DvI

dτ
=
dvI

dτ
+ ZIJv

J , (3.14)

where ZIJ = aYIJ . With this notation at hand, the equations of motion for the vI -perturbations

are found to be
D2vI

dτ2
−∇2vI + ΩI

Jv
J = 0 , (3.15)

where ΩIJ = −a2H2(2 − ε)δIJ + a2CIJ and we have used the definition of ε to write a′′/a =

a2H2(2− ε). For completeness, we notice that the previous equations of motion may be derived

from the following action:

S =
1

2

∫
dτd3x

[∑
I

(
DvI

dτ

)2

−
∑
I

(∇vI)2 − ΩIJv
IvJ

]
, (3.16)

which can be alternatively deduced directly from the initial action (2.1) by considering all of the

field redefinitions introduced in the present discussion.

The set of equations (3.15) contains several non-trivial features. First, notice that the co-

variant derivative D/dτ implies the existence of non-trivial couplings affecting the kinetic term

of each field vI . By the same token, under general circumstances the symmetric matrix ΩIJ

does not remain diagonal at all times. In fact, as we are about to see in the next section, it is

possible to choose to write this theory either in a frame where the N scalar fields are canonical

(and therefore without non-trivial couplings in the kinetic term), or either in a frame where ΩIJ

remains diagonal, but (in general) not both at the same time.

3.1 Canonical frame

Observe that by introducing the vielbeins eIa in the previous section, we have not specified any

alignment of the moving frame. In fact, given an arbitrary frame, characterised by the set eIa, it

is always possible to find a canonical frame where the scalar field perturbations acquire canonical

kinetic terms in the action. To find it, let us introduce a new set of fields uI defined out of the

original fields vI in the following way:

vI(τ,x) = RIJ(τ, τi)u
J(τ,x) , (3.17)
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where RIJ(τ, τi) is an invertible matrix defined to satisfy the following first order differential

equation:
d

dτ
RIJ = −ZIKRKJ , (3.18)

with the boundary condition RIJ(τi, τi) = δIJ set at some given initial time τi. Let us addition-

ally define a new matrix SIJ to be the inverse of RIJ , i.e. SIKR
K
J = RIKS

K
J = δIJ . Then,

it is possible to see that SIJ satisfies the following similar equation

d

dτ
SI

J = −ZJKSIK , (3.19)

where we used the fact that ZIJ = −ZJI . Since both solutions to (3.18) and (3.19) are unique,

then the previous equation tells us that SIJ = RJI , that is, S corresponds to RT the transpose

of R. This means that for a fixed time τ , RIJ(τ, τi) is an element of the orthogonal group O(N ),

the group of matrices R satisfying RRT = 11. The solution to (3.18) is well known, and may be

symbolically written as

R(τ, τi) = 11 +
∞∑
n=1

(−1)n

n!

∫ τ

τi

T [Z(τ1) · · ·Z(τn)] dnτ = T exp

[
−
∫ τ

τi

dτ Z(τ)

]
, (3.20)

where T stands for the usual time ordering symbol, that is T [Z(τ1)Z(τ2) · · ·Z(τn)] corresponds

to the product of n matrices Z(τi) for which τ1 ≥ τ2 ≥ · · · ≥ τn. Coming back to the uI -fields,

it is possible to see now that, by virtue of (3.18) one has:

DvI

dτ
=RIJ

duJ

dτ
, (3.21)

D2vI

dτ2
=RIJ

d2uJ

dτ2
. (3.22)

Inserting these relations back into the equation of motion (3.15) we obtain the following equation

of motion for the uI -fields:

d2uI

dτ2
−∇2uI +

[
RT (τ) ΩR(τ)

]I
Ju

J = 0 . (3.23)

Additionally, it is possible to show that the action (3.16) is now given by

S =
1

2

∫
dτd3x

{∑
I

(
duI

dτ

)2

−
(
∇uI

)2 − [RT (τ)ΩR(τ)
]
IJ
uIuJ

}
. (3.24)

Thus, we see that the fields uI correspond to the canonical fields in the usual sense. This result

shows, just as we have stated, that it is always possible to find a frame where the perturbations

become canonical, but at the cost of having a mass matrix
[
RT (τ) ΩR(τ)

]
IJ

with non-diagonal

entries which are changing continuously in time. Another way to put it is that, while both

RT (τ) ΩR(τ) and Ω share the same eigenvalues, as long as R(τ) varies in time, their associ-

ated eigenvectors will not remain aligned. To finish, let us notice that by construction, at the

initial time τi, the canonical fields uI and the original fields vI coincide uI(τi) = vI(τi). How-

ever, it is always possible to redefine a new set of canonical fields by performing an orthogonal

transformation of the fields.
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3.2 Quantisation and initial conditions

Having the canonical frame at hand, we may now quantise the system in the standard way.

Starting from the action (3.24) it is possible to see that the canonical coordinate fields are given

by uI whereas the canonical momentum is given by ΠI
u = duI/dτ . To quantise the system, we

demand this pair to satisfy the commutation relation[
uI(τ,x),ΠJ

u(τ,y)
]

= iδIJδ(3)(x− y) , (3.25)

otherwise zero. With the help of the R transformation introduced in (3.17) we can rewrite this

commutation relation to be valid in an arbitrary moving frame. More precisely, we observe here

that we are allowed to define a new pair of fields vI and ΠI
v given by

vI =RIJu
J , (3.26)

ΠI
v ≡
D
dτ
vI = RIJ(τ, τi)Π

J
u . (3.27)

From (3.25), this new pair is found to satisfy similar commutation relations:[
vI(τ,x),ΠJ

v (τ,y)
]

= iδIJδ(3)(x− y) . (3.28)

Following the convention, it is now possible to obtain an explicit expression for vI(x, τ) in terms

of creation and annihilation operators.8 For this, let us write vI(x, τ) as a sum of Fourier modes:

vI(τ,x) =

∫
d3k

(2π)3/2
eik·xvI(k, τ)

=

∫
d3k

(2π)3/2
eik·x

∑
α

[
vIα(k, τ) aα(k) + vI∗α (k, τ) a†α(−k)

]
. (3.29)

In writing the previous expression we have anticipated the need of expressing the fields vI(τ,x)

as a linear combination of N time-independent creation and annihilation operators a†α(k) and

aα(k) respectively, with α = 1, · · · N . These operators are required to satisfy the usual relations[
aα(k), a†β(q)

]
= δαβδ

(3)(k − q), (3.30)

otherwise zero. This set of operators defines the vacuum |0〉 of the theory by their action

aα(k)|0〉 = 0. Since the operators a†α(k) and aα(k), for different values of α, are taken to be

linearly independent, then the time-dependent coefficients vIα(k, τ) appearing in front of them

in (3.29) must satisfy the equation of motion:9

D2

dτ2
vIα(k, τ) + k2vIα(k, τ) + ΩI

Jv
J
α(k, τ) = 0 . (3.31)

8From this point on, we continue working with the more general vI -fields instead of the canonical uI -fields.

Nevertheless, we emphasise that the uI -fields allowed us to find the correct quantisation prescription for the

vI -fields, which otherwise would not have been properly justified.
9It is crucial to appreciate that the Greek indices α label scalar quantum modes and not directions in field

space, as capital Latin indices do. Different α-modes may contribute to the same fluctuation along a given

direction I. The quantities linking these two different abstract spaces are the mode functions vIα(k, τ) whose time

evolution is dictated by (3.31). A similar scheme to quantise a coupled multi-scalar field system may be found in

Ref. [60].
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Observe that there must exist N independent solutions vIα(k, τ) to this equation (see Appendix B

for a detailed discussion on the vIα(k, τ)-functions).

Of course, a critical issue here is to set the correct initial conditions for the mode amplitudes

vIα(k, τ) in such a way that the commutation relations (3.28) are respected at all times. As a first

step towards determining these initial conditions we notice that at a given initial time τ = τi
we may choose each mode vIα(k, τ) to satisfy the following general initial conditions:

vIα(k, τi) =eIαvα(k) , (3.32)

DvIα
dt

(k, τi) =eIαπα(k) , (3.33)

where eIα is a complete set of unit vectors satisfying δIJe
I
αe
J
β = δαβ and δαβeIαe

J
β = δIJ , which

should not be confused with the vielbeins defined in (3.4), and vα(k) and πα(k) are factors

defining the amplitude of the initial conditions. In order for the commutation relations to be

fulfilled, these initial conditions must satisfy:

vα(k)π∗α(k)− v∗α(k)πα(k) = i , (3.34)

which are the analogous relations to the Wronskian condition in single field slow-roll inflation.

Since the operator D/dτ = d/dτ + Z mixes different directions in the vI -field space and since

in general the time-dependent matrix ΩIJ is non-diagonal, then the mode solutions vIα(k, τ)

satisfying the initial conditions (3.34) will not remain pointing in the same direction (nor will they

remain orthogonal) at an arbitrary time τ 6= τi. In Appendix B we show that the commutation

relations of (3.28) are consistent with the evolution of the vIα(τ, k) dictated by the set of equations

of motion (3.31).

In the previous expressions the set of unit vectors eIα are arbitrary. Moreover, the amplitudes

vα(k) and πα(k) entering (3.34) are in general not uniquely determined, as there is a family

of solutions parameterised by the relative phase between vα(k) and πα(k). Indeed, notice that

without loss of generality we may write

πα(k) =
e−iθα(k)

2v∗α(k) sin θα(k)
, (3.35)

where θα(k) is a set of real phases relating both amplitudes. Any value for θα(k) will satisfy the

commutation relations (3.28), and therefore they specify different choices for the vacuum state

|0〉. Although in general it is not possible to decide among all the possible values for θα(k),

fortunately, in the context of inflationary backgrounds a → 0 as τ → −∞ and a particular

choice for these phases becomes handy. Indeed, observe that in the formal limit a→ 0 one has

ZIJ → 0 and ΩIJ → 0, which is made explicit by (3.14) and (3.15), and the equations of motion

(3.31) become: (
d2

dτ2
+ k2

)
vIα(k, τ) = 0 . (3.36)
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In this limit there is no mixing between different α-modes and perturbations evolve as if they

were in Minkowski background.10 In this case, we are free to choose eIα = δIα and the solutions

to (3.36) satisfying the commutation relations (3.28) may be chosen as:

vIα(k, τ) = δIα
1√
2k
e−ikτ . (3.37)

Thus we see that in the limit a → 0 (τ → −∞) we may choose modes in the Bunch-Davies

vacuum θα = π/2. We will come back to these conditions in Section 5 where we set initial

conditions on a finite initial time surface where (3.37) cannot be exactly imposed.

3.3 Two-point correlation function

To finish this general discussion on multi-field perturbations, we proceed to define the spectrum

for the perturbations vI(τ,x). The power spectrum, the Fourier transform of the two-point

correlation function, is defined in terms of the Fourier modes as

〈
0
∣∣vI(k, τ)vJ∗(q, τ)

∣∣ 0〉 ≡ δ(3)(k − q)
2π2

k3
PIJv (k, τ) . (3.38)

In terms of the mode amplitudes vIα(τ, k), this is found to be

PIJv (k, τ) =
k3

2π2

∑
α

vIα(τ, k)vJ∗α (k, τ) . (3.39)

Since the commutation relations require
∑

α

[
vIα(k, τ)vJ∗α (k, τ)− vJα(k, τ)vI∗α (k, τ)

]
= 0 (see Ap-

pendix B) we see that the spectrum PIJv is real, as it should be. Additionally, the two point

correlation functions in coordinate space may be computed out of PIJv as:

〈
0
∣∣vI(τ,x)vJ(τ,y)

∣∣ 0〉 =
1

4π

∫
d3k

k3
PIJv (k, τ)e−ik·(x−y) . (3.40)

We may also define the power spectrum associated to the QI fields instead of the vI fields.

Recalling that QI = vI/a, the power spectrum for these fields at a given time τ is then given

by:

PIJQ (k, τ) =
k3

2π2a2

∑
α

vIα(k, τ)vI∗α (k, τ) . (3.41)

This expression will be used to compute the power spectrum of the curvature perturbation

produced during inflation. Although, in this section we have chosen to exploit a notation whereby

Greek indices α label quantum modes, notice that this formalism is equivalent to the use of

stochastic Gaussian variables, as in Ref. [61] (see also Ref. [49]).

10To be more rigorous, in inflationary backgrounds this limit is obtained for k-modes such that their wavelength

is much smaller than the de Sitter scale k2 � a2H2.
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4 Models with two scalar fields

We now study the evolution of perturbations in systems containing only two relevant scalar

fields. In this case, it is always possible to take the set of vielbeins {eaI} to consist entirely in

eaT = T a and eaN = Na defined in Section 2.1. Then, the projection tensor Pab introduced in

(2.23) vanishes identically and one is left with the following relations:

DT a

dt
=−Hη⊥Na , (4.1)

DNa

dt
=Hη⊥T

a . (4.2)

At this point we notice that the normal vector Na has always the same orientation with respect

to the curved trajectory, which is due to the presence of the signature function sN in (2.9). For

definiteness, let us convene that the normal direction Na has a right-handed orientation with

respect to T a as shown in Figure 3. With this convention η⊥ changes signs smoothly in such a

way that if the turn is towards the left then η⊥ is negative, whereas if the turn is towards the

right then η⊥ is positive. A concrete choice for T a and Na with these properties are:

T a =
1

φ̇0

(
φ̇1, φ̇2

)
, (4.3)

Na =
1

φ̇0
√
γ

(
−γ22φ̇2 − γ12φ̇1, γ11φ̇1 + γ21φ̇

2
)
, (4.4)

φ1

φ2

Na

T a

T a

Na

η⊥ < 0

η⊥ > 0

Figure 3: The figure shows a fixed right-handed orientation of Na with respect to T a. If the turn is towards

the left then η⊥ is negative, whereas if the turn is towards the right then η⊥ is positive.
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where γ = γ11γ22 − γ12γ21 is the determinant of γab. To continue, parallel and normal pertur-

bations with respect to the inflationary trajectory are then given by

vT = aQT = a TaQ
a , (4.5)

vN = aQN = aNaQ
a . (4.6)

By choosing this frame, one finds that ZTN = −ZNT = aHη⊥. The coupled equations of motion

describing the evolution of both modes vTα (k, τ) and vNα (k, τ) become:

d2vTα
dτ2

+ 2ζ
dvNα
dτ
− ζ2vTα +

dζ

dτ
vNα + ΩTNv

N
α + (ΩTT + k2)vTα = 0 , (4.7)

d2vNα
dτ2

− 2ζ
dvTα
dτ
− ζ2vNα −

dζ

dτ
vTα + ΩNT v

T
α + (ΩNN + k2)vNα = 0 , (4.8)

where we have defined:

ζ ≡ ZTN = aHη⊥ . (4.9)

In the previous equations, the symmetric matrix ΩIJ is defined in (3.3) and (3.15) and consists

of the following elements:

ΩTT =− a2H2
(
2 + 2ε− 3η|| + η||ξ|| − 4εη|| + 2ε2 − η2⊥

)
, (4.10)

ΩNN =− a2H2(2− ε) + a2M2 , (4.11)

ΩTN =a2H2η⊥(3 + ε− 2η|| − ξ⊥) , (4.12)

where M2 ≡ VNN +H2M2
Pl εR is the effective squared mass of the vN -mode and R = 2RTNTN =

T aN bT cNdRabcd is the Ricci scalar parametrsing the geometry of M. Additionally, we have

defined

ξ⊥ ≡ −
η̇⊥
Hη⊥

. (4.13)

Details on how to arrive at this specific form of ΩIJ for the case of two-field models are given in

Appendix A.

4.1 Power spectrum

Expressions (4.7) and (4.8) consist of the equations of motion necessary to deduce the generation

of the curvature perturbation in the case of two-field inflation. Once the solutions of the fields

vT = aQT and vN = aQN are known, it is possible to define the curvature and isocurvature

perturbations as

R ≡H
φ̇0
QT , (4.14)

S ≡H
φ̇0
QN , (4.15)
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respectively. Using equation (3.41) with I = J = T , the resulting power spectrum for adiabatic

modes are found to be

PR(k, τ) =
H2

φ̇20
PTTQ (k, τ) =

k3

4π2a2M2
Plε

∑
α=1,2

vTα (k, τ)vT∗α (k, τ) , (4.16)

where a and ε = φ̇2/(2M2
PlH

2) are functions of τ . We can also compute the power spectrum for

isocurvature modes and cross correlation as [36, 62, 63]

PS(k, τ) =
H2

φ̇20
PNNQ (k, τ) , (4.17)

PRS(k, τ) =
H2

φ̇20
PTNQ (k, τ) , (4.18)

respectively. They can give rise to observable signatures in the CMB power spectrum [62], but

it depends on post-inflationary processes thus we do not consider them here. In this work we are

primarily concerned with the computation of the power spectrum of the curvature perturbation

R at the end of inflation. This corresponds to the quantity

PR(k) ≡ PR(k, τend) , (4.19)

where τend is the time at which inflation effectively ends11. But the computations of PS and

PRS can be done in an identical way.

4.2 Effective Theory

If a hierarchy of scales is present in the matrix ΩIJ , then we can compute a fairly reliable effective

theory out of the system (4.7) and (4.8). Indeed, by assuming that ΩNN remains positive at all

times and that

ΩNN �|ΩTT | , (4.20)

ΩNN �|ΩTN | , (4.21)

then we may integrate the heavy mode vN out of the system of equations. By examining the

specific shape of the entries ΩTT , ΩNN and ΩTN we see that a generic requisite for this hierarchy

to exist is

M2 � H2 , (4.22)

where M2 is the effective mass of the heavy mode vN given by:

M2 ≡ VNN +H2M2
Pl εR . (4.23)

11Since in multi-field inflation the adiabatic mode R (as well as other background quantities) may continue

evolving on super horizon scales, here we do not follow the standard practice of evaluating the power spectrum

at horizon crossing time k = aH [64]. See Ref. [65] for a discussion of this point.
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To compute the effective theory we proceed in the same way as in Ref. [41]. We focus on the

mode α associated to slower oscillations due to the hierarchy. Omitting the α label, this mode

is necessarily such that ∣∣∣∣d2vNdτ2

∣∣∣∣� a2M2vN . (4.24)

This allows us to disregard the second derivative of vN in (4.8), and write vN in terms of vT :

vN =
1

ΩNN − ζ2 + k2

(
2ζ
dvT

dτ
+
dζ

dτ
vT − ΩNT v

T

)
. (4.25)

This expression for vN can be inserted back into the remaining equation of motion (4.7) to

obtain an effective equation of motion for the light adiabatic mode vT . Then, by defining a new

field ϕ as

ϕ ≡eβ/2vT , (4.26)

eβ(τ,k
2) ≡1 + 4η2⊥

(
M2

H2
− 2 + ε− η2⊥ +

k2

a2H2

)−1
. (4.27)

we finally arrive at the following effective equation of motion12

ϕ′′ + e−β(τ,k
2)k2ϕ+ Ω(τ, k2)ϕ = 0 , (4.28)

where the time dependent function Ω(τ, k2) is found to be:

Ω(τ, k2) =Ω0(τ)− β′′

2
−
(
β′

2

)2

− aHβ′(1 + ε− η||) , (4.29)

Ω0(τ) =− a2H2(2 + 2ε− 3η|| − 4εη|| + ξ||η|| + 2ε2) . (4.30)

Notice that Ω0 is precisely the mass term appearing in the conventional equation of motion

for adiabatic fluctuations in single field slow-roll inflation. Furthermore, we note that in the

case where the mass M approaches the cutoff of our theory, our results can be derived from an

effective action for the adiabatic mode given by the action

S =
1

2

∫
dτd3x

[(
dϕ

dτ

)2

−∇ϕ e−β(τ,−∇
2)∇ϕ− ϕ Ω(τ,−∇2)ϕ

]
, (4.31)

where β(τ,−∇2) and Ω(τ,−∇2) are the functions defined in (4.26) and (4.29) but with k2

replaced by −∇2. This result corresponds to the generalisation of our previous work [41] to the

case of a slowly rolling background in the presence of gravity. A slightly more formal deduction

of this effective theory may be found in appendix C, where we see that it can be viewed as a

leading order effect at the loop level, and as such contains the higher dimensional corrections

implied by the general arguments made in Refs. [32, 66]. In Section 5 we shall compare the power

spectrum obtained using this effective theory with the one obtained from the full set of equations

for the perturbations. We anticipate that this effective theory is very reliable regardless of how

large the values of β are.

12Please notice that eqs. (4.28) and (4.30) are corrected versions of those appearing in the published version of

this article.
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4.3 Slow-roll inflation in two-field models

So far we have not assumed the slow evolution of background quantities. We now proceed to

discuss the case of inflation realised in the slow-roll regime, where the scale of inflation H varies

slowly. Our main interest is to study the effects appearing from curved inflationary trajectories,

where η⊥ is non-vanishing. We will assume that the radius of curvature κ may take values

smaller than MPl, corresponding to turns of the trajectory taking place at field scales smaller

than the Planck scale. This situation is certainly allowed and depending on the value of ε, it

may render large values of η⊥ (recall (2.22) relating η⊥ and κ). By the same token, we will

consider models where the normal mode vN has a large effective mass M2 � H2.

4.3.1 Slow-roll parameters

In general, given the background equations of motion (2.6), (2.7) and (2.8), we say that a given

background quantity A is slowly rolling if its variation satisfies

|δA| ≡
∣∣∣∣− 1

HA

dA

dt

∣∣∣∣� 1 . (4.32)

Observe that we can write ε = δH and η|| = δφ̇0 , and therefore both H and φ̇0 evolve slowly

if ε � 1 and |η||| � 1 respectively. Since ε = φ̇2/(2M2
PlH

2) then the condition |η||| � 1 also

guaranties that ε will remain varying slowly during inflation. It is useful to introduce a single

small dimensionless number δ � 1 parametrising the slow-roll expansion13, and demand that

any quantity A to which slow-roll is imposed, generically satisfies

1

HA

dA

dt
= O(δ) , (4.33)

which means ε = O(δ) and η|| = O(δ). In the absence of clear evidence of it, for simplicity we

shall not consider here hierarchies between different slow-roll parameters. Recall that (2.26) and

(2.27) are exact equations relating the parameters ε, η|| and ξ|| to the shape of the potential V

along the inflationary trajectory. Now, provided that all of these parameters are small, we may

re-express these equations to leading order in δ:

η|| + ε =M2
Pl

∇φVφ
V

, (4.34)

ε =
M2

Pl

2

(
Vφ
V

)2

. (4.35)

These are the usual equations defining the slow-roll parameters in terms of the shape of the

first and second derivatives of V .14 As long as ε � 1 and |η||| � 1, the background geometry

13Current observations indicate that the order of such a reference parameter is given by the departure of the

spectral index from unity δ ∼ |nR − 1|. We remark here for completeness that the ε and η parameters above

correspond to the Hamilton-Jacobi slow roll parameters.
14Let us recall that the parameter η was originally introduced in the study of single field slow-roll inflation [67]

as η = M2
PlV

′′/V . Therefore, in order to compare the present results with those following the original convention,

we must write η = η|| + ε.
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evolves slowly and the scalar field velocity is determined by the attractor equation of motion

3Hφ̇0 + Vφ = 0. For completeness, notice from the definition of η⊥ in (2.18) that it is possible

to write η⊥ = VN/(
√

2εMPlH
2). Then, using (4.35) we deduce

η2⊥ = 9

(
VN
Vφ

)2

, (4.36)

which is valid to leading order in δ. This equation nicely relates the slope of the potential Vφ
along the tangential direction T a with its counterpart VN along the normal direction Na.

4.3.2 Perpendicular dynamics

Let us now turn our attention to parameter η⊥ defined in (2.18). Notice that this parameter is

not related to the slow-roll variation of any given background quantity A in the sense of (4.32),

and therefore it is not constrained to be of O(δ). Moreover, (2.22) tells us that η⊥ may be

large compared to δ provided that the radius of curvature κ is small compared to
√

2εMPl. It

is important to recognise that the curved inflationary trajectory (κ−1 6= 0) has its origin in

both the shape of the scalar potential V and the geometry of the scalar manifold where the

theory lives. In particular, since H and φ̇0 are assumed to evolve slowly, then we expect the flat

inflationary trajectory to remain close to the locus of points minimising the heaviest direction

Na of the potential. In other words, to ensure a bending of the trajectory we consider models

where the potential is such that

VNN � |∇φVφ| . (4.37)

It is entirely clear that in the event that the inflationary trajectory is suffering a turn, it will

not coincide exactly with curve minimising the heaviest direction, which is made explicit by the

result VN = η⊥φ̇0H found in (2.18). It is in fact easy to show that the departure ∆ from the

real minima VN |min = 0 is roughly given by the condition VN + M2∆ ' 0, with M2 given by

(4.23). Then, with the help of (2.18) one finds that the ratio between the deviation ∆ and the

radius of curvature κ is given by
∆

κ
' η2⊥

H2

M2
. (4.38)

Observe that ∆/κ is essentially the combination eβ−1 defined in (4.26) in the regime k2 � a2H2.

Thus the parameter β appearing in the effective theory deduced in Section 4.2 is giving us

information regarding the dynamics perpendicular to the inflaton trajectory.

It is important to check out whether the bending interferes with the flatness of the potential

as felt by the adiabatic mode vT . Observe from (4.7) and (4.10) that the effective mass m2(τ)

of vT is given by

m2(τ) ≡ ΩTT − ζ2 ≈ −a2H2(2 + 2ε− 3η||) , (4.39)

where we have neglected terms of O(δ2). Note that m2(τ) = Ω0(τ), where Ω0(τ) is the effective

mass encountered in the effective theory deduced in Section 4.2. Thus, we see that η⊥ does not

directly spoil the flatness of the potential V . Of course, one should explicitly verify in which
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way a bending affects the value of ε and η|| by examining the evolution of the background. We

however point out that there is no reason a priori for which fast and sudden turns with large

values of η⊥ are not possible while staying in the slow-roll regime.

4.3.3 Equations of motion in the slow-roll regime

Putting all of the previous results together back into the set of equations (4.7) and (4.8),

and neglecting terms of O(δ2), we finally arrive at the following equations of motion for the

perturbations vTα and vNα :

d2vTα
dτ2

+ 2aHη⊥
dvNα
dτ

+ a2H2

(
k2

a2H2
− 2− 2ε+ 3η||

)
vTα + 2a2H2η⊥ (2− ξ⊥) vNα =0 , (4.40)

d2vNα
dτ2

− 2aHη⊥
dvTα
dτ

+ a2H2

(
k2

a2H2
+
M2

H2
− 2 + ε− η2⊥

)
vNα + 2a2H2η⊥v

T
α =0 , (4.41)

where ξ⊥ was defined in (4.13). In the next section we deal with these equations numerically

for suitable choices of the background parameters, and compare the obtained power spectrum

with that of the effective theory obtained in Section 4.2. We shall see how features in the power

spectrum appear as a consequence of curved inflationary trajectory.

5 Features in the power spectrum

We now study the evolution of perturbations and analyse how features in the primordial spec-

trum are generated along curved trajectories. To this extent, we solve (4.40) and (4.41) numer-

ically for different background solutions representing curved trajectories and obtain the mode

solutions vIα which, with the help of (4.19), provide us the desired power spectrum at the end

of inflation. For definiteness, we consider models of inflation with an inflationary period of at

least 60 e-folds and set the initial conditions a few e-folds before this period starts. To avoid

unnecessary complications with initial conditions, we considered models where turns in the tra-

jectory only happen within the last 60 e-folds. Before this period, η⊥ = 0 and the equations of

motion determining the evolution of perturbations reduce to

d2vTα
dτ2

+ a2H2

(
k2

a2H2
− 2− 2ε+ 3η||

)
vTα =0 , (5.1)

d2vNα
dτ2

+ a2H2

(
k2

a2H2
+
M2

H2
− 2 + ε

)
vNα =0 . (5.2)

Then, as long as ε and η|| are small, we are allowed to make use of initial conditions (3.32), (3.33)

and (3.34) with eIα = δIα, and v1(k) and v2(k) given by

v1(k) =

√
π

4
√

(1− ε)aiHi

ei
π
2 (ν1+ 1

2)H(1)
ν1

(
k

(1− ε)aiHi

)
, (5.3)

v2(k) =

√
π

4
√

(1− ε)aiHi

ei
π
2 (ν2+ 1

2)H(1)
ν2

(
k

(1− ε)aiHi

)
, (5.4)
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where H
(1)
ν (x) denotes the first kind Hankel function, whereas ai and Hi are the values for the

scale factor and Hubble parameter at the initial time τi. Similarly, the quantities π1(k) and

π2(k) entering the initial conditions (3.34) are given by the time derivatives of the previous

expressions. On the other hand, the parameters ν1 and ν2 are respectively given by:

ν1 =

√
(3− ε)2
4(1− ε)2

− 3(η − ε)
(1− ε)2

, (5.5)

ν2 =

√
(3− ε)2
4(1− ε)2

− M2

(1− ε)2H2
i

. (5.6)

Note that in the short wavelength limit k � aiHi, the previous conditions match the mode

fluctuations about a Bunch-Davies vacuum (3.37) discussed in Section 3.2. In all of the cases

examined, we consider inflationary trajectories where ε, η|| and ξ|| remain small during the

interval of interest, while allowing different types of time variation of η⊥, which is the quantity

that parameterises the bending.

5.1 Constant radius of curvature

Let us start by considering the simple case in which η⊥ is constant during the whole period

of inflation where currently accessible modes were generated. As we have already emphasised,

if ε remains nearly constant, then a constant η⊥ corresponds to a trajectory with a constant

radius of curvature κ. We find that the overall effect of having a constant turn is simply to

normalise the amplitude of the spectrum, without modifying the usual single field dependence

of the spectral index nR in terms of the slow-roll parameters ε and η|| (see also [52, 53]):

nR − 1 = 2η|| − 4ε . (5.7)

In the case M2/H2 � 1, the predicted power spectrum obtained by the effective theory is

indistinguishable from the one obtained by solving the full set of equations. Moreover, with the

help of this effective theory, it is in fact possible to infer a simple relation between the power

spectrum PR(k) with η⊥ 6= 0 and the analytical power spectrum P(0)
R (k) computed with η⊥ = 0.

To this extent, notice that although β(k, τ) is a function of k, we see that after the physical

wavelength of the mode becomes larger than the scale M−1 (i.e. k2/a2 ≤ M2), the parameter

β(τ, k) becomes effectively k independent, and we can write

eβ = 1 + 4η2⊥
H2

M2
. (5.8)

Since M2 � H2, this happens before horizon crossing, and the relevant dynamics is well de-

scribed by this k-independent form of β. Then the relation between PR(k) and P(0)
R (k), as

predicted by the effective theory, becomes:

PR(k) =

(
1 + 4η2⊥

H2

M2

)
P(0)
R (k) . (5.9)
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φ1

φ2

η⊥ > 0

η⊥ = 0 η⊥ = 0

Figure 4: The figure shows a prototype example of a trajectory which suffers a localised bend towards the right.

This result modifies the usual normalisation condition of the spectrum coming from the COBE

data, leading to the following relation among the various parameters:(
1 + 4η2⊥

H2

M2

)
P(0)
R (kCOBE) ≈ 2.46× 10−9 . (5.10)

Physically, this result may be interpreted as coming from the fact that heavy and light modes

are interchanging energy at a constant rate, therefore rendering only a change in the overall

amplitude of the spectrum. However, as manifest from the effective theory (4.28) the speed of

sound is modified as:

c2s = e−β =

(
1 + 4η2⊥

H2

M2

)−1
. (5.11)

This implies the generation of non-Gaussianity noticeable in the bispectrum, as studied in

Ref. [52, 53].

5.2 Single turn in the trajectory

As a next step, we consider the presence of a single turn in the inflationary trajectory. To

simplify our analysis, we consider the specific case in which the trajectory is initially geodesic (a

straight path), then goes through a short period in which it suffers a turn, and finally goes back

to a geodesic state. Figure 4 shows a prototype example of such a situation. We also assume

that throughout this process all the slow-roll parameters except for η⊥ remain nearly constant.

To model this situation, we take η⊥ to be an analytical function of the e-fold number N :

η⊥(N) =
η⊥max

cosh2 [2(N −N0)/∆N ]
, (5.12)

where ∆N is the number of e-folds during which the bending happens, and N0 is the e-fold value

at which the bending is at its peak, in which case η⊥(N0) = η⊥max. We recall that N may be
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suitably defined from conformal time τ through the relation dN = aHdτ . For the other slow-roll

parameters, we choose the reference values ε = 0.022 and η|| = 0.034. These values correspond

to a spectral index nR = 0.98, and to a tensor to scalar ratio r = 0.35, which are marginally

compatible with current CMB tests [5]. Additionally, these values imply H = 10−5MPl. Figure 5

shows the power spectra for eight cases with different choices of the parameters ∆N , η⊥max and

M2. The plots15 contain both the spectrum obtained by solving the full coupled system of

equations (solid line) and the spectrum obtained by solving the effective single field equation

of motion (dashed line). For simplicity, we normalise our results in units of 2.46 × 10−9 and

give the scale k in units of Mpc−1. As a reference, we have included the case η⊥ = 0, which

corresponds to the power spectrum that would be obtained in the single field case.

The main characteristic shown by the plots are oscillatory features appearing in the spectrum.

It may be noticed that the e-fold width ∆N during which the turn takes place actually set

the scale k of the oscillatory features. On the other hand, the amplitude of the oscillations

is roughly dictated by the ratio 4η⊥maxH
2/M2. More precisely, the amplitude of the largest

oscillatory feature is of order δPR/PR ∼ 4η⊥maxH
2/M2, which agrees with the result of (5.9).

Additionally, the match between the curve predicted by the effective theory and the full set of

equations becomes better as M2/H2 acquires larger values, irrespective of how large is β. In

fact, in all of the examples shown we have β ∼ 1.

The appearance of oscillatory features, not just a single bump, in the spectrum reflects the

fact that both modes vN and vT backreact at sub-horizon scales as the turn happens. Once

both modes cross the horizon, the amplitude of the adiabatic mode becomes frozen (therefore

capturing the moment in which the mode was receiving or releasing energy) while the amplitude

of the heavy mode quickly decays due to the accelerated expansion. In fact, we have checked

that the levels of isocurvature perturbations at the end of inflation are negligible.

5.3 A specific example

As a last step towards understanding the effects of curved trajectories, we discuss our results

applied to a specific toy model, where turns are produced due to the non-trivial evolution of the

sigma model metric. Let us consider a two-field model with fields φ1 = χ and φ2 = ψ with a

kinetic term containing the following sigma model metric:

γab =

(
1 Γ(χ)

Γ(χ) 1

)
, (5.13)

where Γ(χ) is only a function of the χ field and restricted to satisfy Γ2(χ) < 1. The non-

vanishing connections are Γχχχ = −ΓΓχ/(1 − Γ2) and Γψχχ = Γχ/(1 − Γ2) with Γχ = ∂χΓ, and

15Please note that the value of ∆N in these plots corrects a factor of 2 error appearing in the published version.
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Figure 5: The primordial power spectrum PR(k) normalised in units of 2.46 × 10−9, obtained for six different

choices of ∆N , η⊥max and M2. The plots show a comparison between the power spectrum obtained using the full

system of equations (solid line) and the one obtained using the effective theory (dashed line). We have chosen as

a pivot scale the value k∗ = 0.002Mpc−1.
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the equations of motion for the background fields are found to be

χ̈− ΓΓχ
1− Γ2

χ̇2 + 3Hχ̇+
1

1− Γ2
Vχ −

Γ

1− Γ2
Vψ =0 , (5.14)

ψ̈ +
Γχ

1− Γ2
χ̇2 + 3Hψ̇ +

1

1− Γ2
Vψ −

Γ

1− Γ2
Vχ =0 , (5.15)

where Vχ = ∂χV and Vψ = ∂ψV . For concreteness, let us consider the following separable scalar

field potential:

V (χ, ψ) = V0(χ) +
1

2
M2ψ2 . (5.16)

In the particular case of Γ = 0, the dynamics of the two fields decouple and inflation may be

achieved with χ by a suitable choice of the potential V0(χ). If, however, Γ(χ) is allowed to be

non-vanishing for certain values of χ, then a mixing between the two modes is inevitable, and

the inflationary trajectory will be curved. Following the discussion at the beginning of Section 4,

we choose the tangential and normal vectors T a and Na as in (4.3) and (4.4):

T a =
1

φ̇0

(
χ̇, ψ̇

)
, (5.17)

Na =
1

φ̇0
√

1− Γ2

(
−ψ̇ − Γχ̇, χ̇+ Γψ̇

)
, (5.18)

where φ̇0 = χ̇2 + ψ̇2 + 2Γχ̇ψ̇. Recall that with this convention η⊥ is allowed to change its sign.

The relevant background parameters describing this situation are then:

ε =
χ̇2 + ψ̇2 + 2Γχ̇ψ̇

2M2
PlH

2
, (5.19)

η|| = 3 +
χ̇Vχ + ψ̇Vψ

H
(
χ̇2 + ψ̇2 + 2Γχ̇ψ̇

) , (5.20)

η⊥ = −

(
ψ̇ + Γχ̇

)
Vχ −

(
χ̇+ Γψ̇

)
Vψ

H
√

1− Γ2
(
χ̇2 + ψ̇2 + 2Γχ̇ψ̇

) , (5.21)

where H is given by 6M2
PlH

2 = χ̇2 + ψ̇2 + 2Γχ̇ψ̇ + 2V . For concreteness, let us consider a

parameter Γ(χ) having the following χ-dependence

Γ(χ) =
Γ0

cosh2 [2(χ− χ0)/∆χ]
, (5.22)

where Γ0 is the maximum value attained by Γ(χ). On the other hand, we take a generic potential

V0(χ) rendering values ε = 0.022 and η|| = 0.034 for the slow-roll parameters in the absence

of curves. For this specific configuration, we found that the background value of ε(τ) remains

nearly constant at the attractor value ε = 0.022 whereas the background value of η||(τ) is more

sensitive to the turns suffered by the trajectory, having small deviations from the attractor
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value η|| = 0.034. Additionally, we found two relevant time scales determining the behaviour of

background quantities η|| and η⊥:

Tψ ≡M−1 , (5.23)

Tχ ≡
∆χ

φ̇0
=

∆χ√
2εMPlH

. (5.24)

The appearance of these time scales are actually easy to understand. First, notice that Tχ is the

time during which the turn takes place whereas Tψ is the oscillation period of the massive field ψ.

We find that if Tχ � Tψ, then the background dynamics is such that φa0 = (χ, ψ) oscillates about

ψ = 0, meaning that both η|| and η⊥ presented oscillatory features with frequency O
(
T−1ψ

)
. On

the other hand, if Tχ � Tψ, the background field departs adiabatically from the minima of the

potential ψ = 0, and the time evolution of η|| and η⊥ is dictated by the time scale Tχ. This latter

case may be interpreted as a situation where the trajectory is momentarily pushed towards one

of the walls of the potential, as the curve takes place. Figure 6 shows the background values

of η⊥ and η|| (as functions of the e-fold number N) for the case Γ0 = 0.9, M2 = 300H2 and

two values of ∆χ, namely ∆χ = 0.12MPl and ∆χ = 0.084MPl.
16 In the latter case, it may be

appreciated how the time scale Tψ appears in the shape of η⊥.

Figure 6 also shows the power spectrum obtained for the two described cases (right panels).

In the present examples, the features appearing in the spectrum are not as regular as those of

Figure 5. This is mainly because in the present situation the curvilinear trajectory contains

several turns, in order to go back to the attractor solution. Although in this specific model the

slow-roll parameter η|| appears to be sensitive to the mass scale M and the curves taking place,

it is important to notice that this is a model dependent characteristic, and that in general η||
may show various types of behaviour depending on the sigma model metric and the potential.

In general, however, the momentary time variation of η|| due to curved trajectories does not

spoil the slow-roll regime, and background fields tend to quickly evolve back to the attractor

behaviour characteristic of the single field case as soon as the bending of the trajectory stops.

In this regard, we find that the time variation of η|| is not relevant for the appearance of features

in the power spectrum, and that the main contribution is that coming from the derivative

interactions due to η⊥ in the equations of motion.

5.4 Enhancement of non-Gaussianity

We briefly elaborate here on another potentially observable feature not already discussed. The

previous section computed the power spectrum of the curvature perturbation for a few examples

where the inflaton traverses sufficiently curved regions in field space. From the results, it is

clear that features in the spectrum will result each time the trajectory traverses a bend. These

features are produced via the kinetic interaction between the heavy isocurvature modes and

the light curvature mode as the turns are traversed by the background field. Crucially in these

16Notice that these plots are corrected versions of those appearing in the published version of this article.
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Figure 6: Left panels: the evolution of η⊥ (solid line) and 5× η|| (dashed line) as functions of e-fold number N

for two set of values of parameters ∆χ, Γ0 and M2/H2. In the first case, ∆χ = 0.12MPl and the maximum value

of η⊥ is about |η⊥| ≈ 4, whereas in the second case, ∆χ = 0.084MPl and the maximum value becomes |η⊥| ≈ 6.5.

Right panels: the resulting primordial power spectrum PR(k), normalised in units of 2.46 × 10−9, obtained for

the set of parameters used in the plots of η⊥. The scale k appears in units of Mpc−1.

examples the heavy mode remained very massive throughout (M2 � H2), highlighting the fact

that heavy fields may not always be disregarded (truncated) when computing the spectrum for

adiabatic modes.

What is important to note is that the interaction between curvature and isocurvature modes

implies a change in the speed of sound for the curvature perturbations– as long as M2 � H2,

then β(τ, k) is effectively k-independent before horizon crossing and the speed of sound may be

written as

c2s = e−β =

(
1 + 4η2⊥

H2

M2

)−1
. (5.25)
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As is well known, a model with a speed of sound significantly smaller than unity gives rise

to a noticeable level of non-Gaussianity of equilateral type, characterised by the non-linear

parameter [68]:

f
(eq)
NL ∼

1

c2s
. (5.26)

Thus, we are led to reason that for generic models of inflation with curvilinear trajectories in a

multi-dimensional field space, glitches in the power spectrum are accompanied by a correlated

enhancement of non-Gaussianity of the equilateral type, provided that the turns in the inflaton

trajectory violate the adiabatic approximation vigorously enough– a phenomenon which we have

argued occurs at various points in field space in many realistic realisations of inflation. Thus

although there appear to be many models where either non-trivial modulations in the power

spectrum (e.g. features in the single field inflaton potential [8–16]) or large equilateral non-

Gaussianity (e.g. DBI inflation [69, 70]) result, it appears that in generic multi-field models

with curved inflationary trajectories, both are present and correlated. Evidently, the effective

quadratic action (4.31) contains the leading higher order corrections which can also result in

non-Gaussian signatures and implies the non-linear parameter (5.26) [66]. However to fully

describe the bispectrum associated with the curvature perturbation, we need to properly take

into account the cubic order action including gravity. We will discuss this issue in a separate

publication.

6 Conclusions

Multi-field models of inflation contain a range of physics which goes beyond that encountered

within the single-field paradigm. In this work we have focused on the particular case where

all of the scalar fields remain massive during inflation except for one, which slowly rolls down

the multi-field potential. We have found that curved inflationary trajectories can generate

significant features in the primordial spectrum of density perturbations arising from normal

modes becoming excited and backreacting on the dynamics of the adiabatic mode.

To achieve these results we analysed the evolution of the quantum perturbations of a general

multi-field setup, including the presence of a non-canonical kinetic term. Our methods are

completely general and naturally incorporate those implemented in previous works [49, 61],

where stochastic Gaussian variables are used. Moreover, although the main focus of this work

was the study of systems where there exists a hierarchy, our results may be used to study a wide

range of situations, including where no such hierarchies are present.

Our formalism allows us to consider time-dependent situations beyond the regime of appli-

cability of existing methods, such as inflaton trajectories with fast, sudden turns (regardless of

whether the sigma model metric is canonical or non-canonical) as well as more general situ-

ations in which the masses of the heavy fields in the orthogonal direction are changing along

the trajectory (even if they still remain much heavier than H2 and all other scales of interest).

Additionally, we wish to emphasise that these non-decoupling effects have their origin in the
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non-geodesic nature of the trajectories in field space 17.

Our results highlight the limitations of simply truncating heavy physics when modelling single-

field realisations of inflation and show under which circumstances high energy effects can leave an

imprint on the power spectrum. The main reason behind these effects is the existence of kinetic

couplings between adiabatic and non-adiabatic modes, emerging as the inflationary trajectory

suffers a turn. As we have seen in Section 3.1, it is always possible to change basis to a canonical

frame where such interactions are absent. In that case, the eigenvectors of the perturbation mass

matrix quickly vary as the inflationary trajectory turns, and we are left with the alternative point

of view by which these high energy effects appear due to a violation of the adiabatic condition

for truncating heavy fields. In fact, if the heavy fields are sufficiently massive, we find that we

can construct an effective field theory for the adiabatic modes encapsulating the relevant effects

of the full multi-field dynamics. As we have seen, such effects are not mere corrections to the

standard single field theory, but represent entirely new contributions to the quadratic action for

perturbations.

We find particularly noteworthy, the presence of potentially observable signatures that result

from a reduced speed of sound for the adiabatic perturbations during sudden turns. As a

corollary, correlated non-Gaussianity will also manifest as a result of these sudden turns although

a full analysis studying the details of their appearance in multi-field inflation is beyond the scope

of this work and will be addressed in a future report [71]. Nevertheless, it would appear that

in generic multi-field models with curved inflationary trajectories, both effects are present and

correlated, and can potentially give information about other, much heavier, fields that would

otherwise be inaccessible to experiment.
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A Additional details on some background quantities

To obtain (2.23) we proceed as follows: first, by taking a total time derivative to (2.6) we obtain

1

φ̇0

D2φ̇a0
dt2

= 3H2(εT a + ηa)−∇φV a , (A.1)

where ∇φ ≡ T a∇a. Recalling that T a = φ̇a0/φ̇0, the previous equation can be re-expressed as

D2T a

dt2
= T a∇φVφ −∇φV a −

(
Vφ − φ̈0

)
VN

φ̇20
Na . (A.2)

On the other hand, taking a total time derivative to (2.13) we may obtain yet another expression

for the second variation D2T a/dt2, given by

D2T a

dt2
=

(
VN φ̈0

φ̇20
− V̇N

φ̇0

)
Na − VN

φ̇0

DNa

dt
. (A.3)

Equating the last two expressions and performing some straightforward algebraic manipulations,

we finally obtain
DNa

dt
= Hη⊥T

a +
1

Hη⊥
P ab∇φVb , (A.4)

where we have defined the projector tensor P ab ≡ γab−T aT b−NaN b along the space orthogonal

to the subspace spanned by the unit vectors T a and Na. That is, PabN
b = 0 and PabT

b = 0.

To arrive at the form of the mass matrix ΩIJ shown in (4.10), (4.11) and (4.12), we may start

from the explicit form deduced out of (3.3) and (3.15) for the case of two-field models:

ΩTT =− a2H2(2− ε) + a2Vφφ − 2a2H2ε
(
3− 2η|| + ε

)
, (A.5)

ΩNN =− a2H2(2− ε) + a2VNN + a2H2M2
Pl εR , (A.6)

ΩTN =a2VφN + 2a2H2η⊥ε , (A.7)

where we have defined

Vφφ ≡T aT b∇aVb , (A.8)

VNN ≡NaN b∇aVb , (A.9)

VφN ≡T aN b∇aVb . (A.10)

Additionally R = 2RTNTN = T aN bT cNdRabcd is the Ricci scalar parametrising the geometry of

M. Notice that Vφφ can be rewritten in the following way:

Vφφ =T a∇a(T bVb)− T a(∇aT b)Vb

=∇φVφ −
1

φ̇0

DT b

dt
Vb

=∇φVφ +H2η2⊥ , (A.11)
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where, to go from the second to the third line we made use of (4.1) and relation VN = φ̇0Hη⊥
coming from the definition of η⊥ in (2.18). Similarly, the quantity VφN may be manipulated in

the following way:

VφN =T a∇a(N bVb)− T a(∇aN b)Vb

=∇φVN −
1

φ̇0

DN b

dt
Vb

=∇φVN −
Hη⊥

φ̇0
Vφ , (A.12)

where again, to go from the second to the third line, we made use of (4.1). As a final step, we

may use VN = φ̇Hη⊥ to deduce:

∇φVN =
1

φ̇0

d

dt

(
φ̇0Hη⊥

)
= −H2η⊥(η|| + ε+ ξ⊥). (A.13)

Collecting all of these terms back into (A.5), (A.6) and (A.7) we finally arrive at (4.10), (4.11)

and (4.12). Observe that we are not able to rewrite VNN = NaN b∇aVb in a similar way, since

it involves second variations away from the inflationary trajectory. This simply means that the

quantity VNN must be regarded as an additional parameter of the model related to the mass of

the transverse mode with respect to the inflaton trajectory.

B Commutation relations for quantum multi-fields

In this appendix we show that the commutation relations in (3.28) are fully consistent with

the evolution of the vIα(k, τ) dictated by the set of equations of motion (3.31). To begin with,

observe that in order to satisfy the commutation relation (3.28) the N mode solutions vIα(k, τ)

must satisfy the following conditions:∑
α

[
vIα
DvJ∗α
dτ
− Dv

J
α

dτ
vI∗α

]
= iδIJ , (B.1)∑

α

[
vIαv

J∗
α − vJαvI∗α

]
= 0 , (B.2)

∑
α

[
DvIα
dτ

DvJ∗α
dτ
− Dv

J
α

dτ

DvI∗α
dτ

]
= 0 . (B.3)

To show that these relations are satisfied at any given time t we proceed as follows: first, let us

define the following matrices:

AIJ = i
∑
α

[
vIαv

J∗
α − vJαvI∗α

]
, (B.4)

BIJ = i
∑
α

[
DvIα
dτ

DvJ∗α
dτ
− Dv

J
α

dτ

DvI∗α
dτ

]
, (B.5)

EIJ = i
∑
α

[
vIα
DvJ∗α
dτ
− Dv

J
α

dτ
vI∗α

]
. (B.6)
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These tensors satisfy the following properties

AIJ =AIJ∗ = −AJI , (B.7)

BIJ =BIJ∗ = −BJI , (B.8)

EIJ =EIJ∗ . (B.9)

In other words, they are real, with AIJ and BIJ antisymmetric (EIJ has no specific symmetries).

Because of these properties AIJ and BIJ consist of N (N − 1)/2 independent real components

each, whereas EIJ consists of N 2 independent real components. Thus, in order to fix the values

of all of these tensors we need to specify 2N 2 − N independent quantities. These tensors also

satisfy the following equations of motion:

D
dτ
AIJ =EIJ − EJI , (B.10)

D
dτ
BIJ =ΩI

KE
KJ − ΩJ

KE
KI , (B.11)

D
dτ
EIJ =BIJ +AIK

(
k2δJK + ΩK

J
)
. (B.12)

Taking the trace to the last equation, we obtain that the trace E ≡ EI I satisfies

dE

dτ
= 0 , (B.13)

and therefore E is a constant of motion of the system. Furthermore, observe that the config-

uration EIJ = EδIJ/N and AIJ = BIJ = 0 for which conditions (B.1) to (B.3) are satisfied

corresponds to a fixed point of the set of equations (B.10) to (B.12). That is, they automatically

satisfy:
D
dτ
AIJ =

D
dτ
BIJ =

D
dτ
EIJ = 0 . (B.14)

Therefore, it only remains to verify whether there exist sufficient independent degrees of freedom

in order to satisfy the initial conditions EIJ = EδIJ/N and AIJ = BIJ = 0 at a given initial

time τi. As a matter of fact, we have exactly the right number of degrees of freedom. As we have

already noticed there exists N independent solutions vIα(k, τ) to the equations of motion. To fix

each solution vIα(k, τ) we therefore need to specify 2N 2 independent quantities, corresponding

to the addition of N 2 components vIα(τi) and N 2 momenta DvIα/dτ(τi). However we must notice

that the overall phase of each solution vIα(k, τ) plays no roll in setting the initial values for AIJ ,

BIJ and EIJ . We therefore have precisely 2N 2 −N free parameters to set EIJ = EδIJ/N and

AIJ = BIJ = 0. Of course, the value of the trace E is part of this freedom, and we are free to

fix it in such a way that E/N = 1.

To summarise, it is always possible to choose the initial conditions for vIα(k, τ) andDvIα/dτ(k, τ)

in such a way that conditions (B.1) to (B.3) are satisfied. These conditions ensure the com-

mutation relation (3.28). To finish this discussion, recall that one possible choice for the initial

conditions for the perturbations allowing (B.1) to (B.2) to be satisfied, are precisely those ex-

pressed in (3.34) with suitable choices for the coefficients vα(k) and πα(k):

vα(k)π∗α(k)− v∗α(k)πα(k) = i , (B.15)
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for α = 1, · · · N . We should emphasise however that this is not the unique choice for initial

conditions, and in general, any choice for which EIJ = EδIJ/N and AIJ = BIJ = 0 will do just

fine.

C Effective theory for the adiabatic mode

In this appendix we offer another deduction of the effective theory shown in Section 4.2. We

begin by writing the action (3.16) for the particular case of two fields:

S =

∫
dτd3x

1

2

[(
dvT

dτ

)2

−
(
∇vT

)2 − (ΩTT − ζ2
) (
vT
)2]

+

∫
dτd3x

1

2

[(
dvN

dτ

)2

−
(
∇vN

)2 − (ΩNN − ζ2
) (
vN
)2]

−
∫

dτd3x vN
(

ΩTN −
dζ

dτ
− 2ζ

d

dτ

)
vT . (C.1)

Given that ΩNN � |ΩTT | and ΩNN � |ΩTN | the field vN is the heavier of the two. Taking this

scale as the scale of the heavy physics that we wish to integrate out, we can formally evaluate

the functional integral for vN to obtain the one loop effective action for vT as

S =

∫
dτd3x

1

2

[(
dvT

dτ

)2

−
(
∇vT

)2 − (ΩTT − ζ2)
(
vT
)2]

+
1

2

∫
dτd3x

∫
dτ ′d3x′O(τ)vT (x, τ)G(x, τ ;x′, τ ′)O(τ ′)vT (x′, τ ′) + SCT , (C.2)

with O given by

O(τ) ≡ −
(

ΩTN −
dζ

dτ
− 2ζ

d

dτ

)
, (C.3)

and

G
(
x, τ ;x′, τ ′

)
=

1

� + ΩNN − ζ2
. (C.4)

The term SCT renormalises the effective action for the background inflaton field, and we have to

demand that the parameters of this effective action that satisfy the slow roll conditions rather

than those of the bare action [72], which we presume to be the case here. In general, evaluating

the full effective action is a highly non-trivial task. However in Fourier space, one can formally

make the expansion:

G
(
τ, τ ′, k

)
=

1

−∂2τ + k2 + ΩNN − ζ2
=

1

ω2

(
1− ∂2τ

ω2
+ · · ·

)
, (C.5)

where

ω2 ≡ k2 + ΩNN − ζ2. (C.6)
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Where implicit in the above is that if the scale M tends to the cutoff of the theory (so that

VNN ∼ M2) we can neglect the temporal derivatives in the expansion above relative to the

mass term and the spatial derivatives (which always become significant at horizon crossing),

thus reducing the Green’s function to leading order to only the contact term 18. Integrating the

second term in (C.2) by parts results in:

S =

∫
dτd3k

1

2

{(
dvT

dτ

)2

eβ(k,τ) −
[
k2 + Ω̄(τ, k)

] (
vT
)2}

, (C.7)

with

eβ(τ,k
2) ≡ 1 + 4η2⊥

(
M2

H2
− 2 + ε− η2⊥ +

k2

a2H2

)−1
, (C.8)

Ω̄(τ, k) ≡Ω0 −
4a4H4η2⊥(1 + ε− η||)2

ω2
− 4

d

dτ

[
a3H3η2⊥(1 + ε− η||)

ω2

]
, (C.9)

Ω0 is given by (4.30). Making the field redefinition ϕ ≡ eβ/2vT (and upon integrating by parts

the resulting friction term), after some manipulations one then obtains the effective action

S =

∫
dτd3k

1

2

[(
dϕ

dτ

)2

− ϕ e−β(τ,k)k2ϕ− ϕ Ω(τ, k)ϕ

]
, (C.10)

where Ω(τ, k2) is defined as in (4.29). Thus we see that expression (4.31) follows.
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