
Correspondence Papers__

Some Remarks on the Paper “semQA:
SPARQL with Idempotent Disjunction”

Marcelo Arenas, Claudio Gutierrez, and
Jorge Pérez

Abstract—In the paper, “semQA: SPARQL with Idempotent Disjunction” [4], the

authors study the RDF query language SPARQL. In particular, they claim that

some of the results presented in [1] are not correct. In this note, we refute the

claims made in [4], and actually show that some of the formal results of [4] are

incorrect.

Index Terms—RDF, query language, SPARQL, evaluation problem, combined

complexity.

Ç

1 PROPOSITION 4 OF [4]

IN [4], the authors correctly point out that Proposition 1 in [1] is
incorrect, as the operator OPT does not distribute over the operator
UNION in SPARQL, that is, the following equivalence does not hold
in general:

ðP1 OPT ðP2 UNION P3ÞÞ � ððP1 OPT P2Þ UNION ðP1 OPT P3ÞÞ:
ð1Þ

In fact, this error was kindly brought to our attention by Michael
Schmidt [3], and it is mentioned in the journal version of [1] that
was recently published [2]. In [4], the authors present this error in
Proposition 4. However, this proposition as stated is not correct. In
[4], the authors start by saying “Let P1, P2, and P3 be graph
patterns.” In standard mathematical notation, this statement
means that the proposition should hold for every choice of P1,
P2, and P3. Thus, as claimed in [4], (1) should not hold for any
patterns P1; P2, and P3. But this is not the case as, for example, (1)
holds for P1 ¼ P2 ¼ P3 ¼ ð?X; ?Y ; ?ZÞ.

2 COROLLARY 2 OF [4]

A graph pattern P is in UNION normal form if P ¼ ðP1 UNION

P2 UNION � � �UNION PnÞ, where each pattern Pið1 � i � n) does

not mention the UNION operator.
The main motivation for including equivalence (1) in [1] was to

prove that every SPARQL pattern is equivalent to a pattern in
UNION normal form. It is important to notice that from the fact that
(1) does not hold, one can conclude that the proof in [1] is incorrect,
but one cannot conclude what is stated in Corollary 2 in [4]:

Corollary 2 ([4]). It is not always possible to transform a graph pattern

into an equivalent one of the form ðP1 UNION P2 UNION . . .

UNION PnÞ, where each Pi is a graph pattern that does not contain
UNION operators.

To prove this corollary, one has to exhibit a SPARQL pattern
that is not equivalent to any pattern in UNION normal form, but
this is not done in [4] (no proof of this corollary is provided in [4]).
Moreover, for the formalization of SPARQL introduced in [1], it is
possible to prove that every SPARQL pattern is equivalent to a
pattern in UNION normal form. The new proof of this fact does
not use equivalence (1) and can be found in [2].

3 COROLLARY 4 OF [4]

It is claimed in Corollary 4 of [4] that the combined complexity of
the evaluation problem for SPARQL is NP-complete. Furthermore,
it is claimed in [4] that this result does not contradict the PSPACE-
completeness result for SPARQL proved in [1], since the authors
claim that [1] studied the expression complexity of the evaluation
problem for SPARQL. Below, we show that the proof of Corollary 4
as well as the claim about contradicting the complexity results of
[1] are both incorrect.

In [4], the authors study the following decision problem, which
is called SPARQL-C problem. Given a SPARQL pattern P and an
RDF graph G, check whether there exists a solution in the
evaluation of P over G. In Corollary 4, the authors claim that the
SPARQL-C problem is NP-complete. Next, we show that from the
arguments given in [4], one cannot conclude that the SPARQL-C
problem is NP-complete.

In Definition 1 in [4], the authors introduce the OR operator for
SPARQL. Later, in Proposition 7, they show the following
equivalence:

ðP1 OPT P2Þ � ðP1 OR ðP1 AND P2ÞÞ: ð2Þ

This equation is used in [4] to define the i-d pattern corresponding
to a SPARQL pattern. More precisely, a pattern P 0 is the i-d pattern
corresponding to a SPARQL pattern P , if P 0 is obtained from P by
replacing every UNION operator by an OR operator, and every
OPT operator by the right-hand side of (2).

To prove Corollary 4, the authors first show in Theorem 2 that
the SPARQL-C problem for patterns that use only AND, FILTER,
and OR is NP-complete, and then they use the following
observation (mentioned in the proof of Corollary 3):

Claim A ([4]). Let G be an RDF graph, P a pattern, and P 0 the i-d
pattern corresponding to P . If there exists a solution for P 0 over G,
then there exists a solution for P over G.

In fact, the authors mention that the NP-completeness of the
SPARQL-C problem follows directly from Theorem 2 and Claim A.
The rationale behind this conclusion is the following: One knows
that the SPARQL-C problem for patterns that use only AND,
FILTER, and OR is NP-complete (Theorem 2). Thus, the SPARQL-
C problem is NP-complete as one can translate an arbitrary pattern
P into the i-d pattern corresponding to it, and then use Claim A.
But this conclusion is incorrect, since the i-d pattern correspond-
ing to a pattern P can be of exponential size in the size of P . For
example, consider a pattern P :

ððð� � � ððP1 OPT P2Þ OPT P3Þ � � �Þ OPT Pn�1Þ OPT PnÞ:

Then the i-d pattern corresponding to P , that is obtained by
successively applying equivalence (2), has 2n�i copies of Pi for
every i 2 f1; . . . ; ng, and thus, it is of exponential size in the size of
P . This shows that the argument in [4] only proves that the
SPARQL-C problem is in NEXPTIME.

638 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 23, NO. 4, APRIL 2011

. M. Arenas and J. Pérez are with the Department of Computer Science,
Pontificia Universidad Católica de Chile, Vicuna Mackenna 4860, Edificio
San Agustin - 4to piso, Santiago 7820436, Chile.
E-mail: {marenas, jperez}@ing.puc.cl.

. C. Gutierrez is with the Department of Computer Science, Universidad de
Chile, Blanco Encalada 2120, Santiago 8370459, Chile.
E-mail: cgutierr@dcc.uchile.cl.

Manuscript received 8 Mar. 2009; revised 30 Dec. 2009; accepted 18 June
2010; published online 16 Aug. 2010.
Recommended for acceptance by M. Garofalakis.
For information on obtaining reprints of this article, please send e-mail to:
tkde@computer.org, and reference IEEECS Log Number
TKDE-2009-03-0123.
Digital Object Identifier no. 10.1109/TKDE.2010.139.

1041-4347/11/$26.00 � 2011 IEEE Published by the IEEE Computer Society

We now consider the comment in [4] about contradicting the
complexity results of [1]. In [1], a variation of the SPARQL-C
problem is considered: given a SPARQL pattern P , an RDF graph
G, and a mapping �, check whether � is a solution in the
evaluation of P over G. Let us call this problem the SPARQL-D
problem. In [1], it is shown that the SPARQL-D problem is
PSPACE-complete.

In [1], the lower bound for the SPARQL-D problem is proved by
considering a fixed database, and the upper bound is proved
without imposing any restrictions. Thus, contrary to what is
claimed in [4], it is actually shown in [1] that both, the expression
and the combined complexity of the SPARQL-D problem, are
PSPACE-complete. But not only that, the claim in [4] that the
combined complexity is lower than the expression complexity for
the case of SPARQL is incorrect, as the expression complexity of a
query language is lower than or equal to the combined complexity
of the language [5]. It is straightforward to prove this general fact,
as in the case of the expression complexity one assumes the
database to be fixed, while in the combined complexity the
database is part of the input. In particular, any reduction showing
a lower bound for the expression complexity of a query language
can be used to prove the same lower bound for the combined
complexity of this language.

4 COROLLARY 5 OF [4]

In Corollary 5 of [4], the authors claim that neither OPT nor
UNION adds complexity to the SPARQL language. From the
above discussion about Corollary 4 of [4], it follows that Corollary
5 cannot be obtained from any of the results in the paper.
Moreover, as we show in [1], [2], and other authors have also
shown [3], the use of the OPT and UNION operators indeed adds
complexity to the evaluation problem for SPARQL.

5 AN ADDITIONAL REMARK

We conclude this note by pointing out a misleading comment in
[4]. In [1], it is shown that the combined complexity of the
SPARQL-D problem for the fragment composed by the AND and
FILTER operators is polynomial, while it is NP-complete if one also
includes UNION and PSPACE-complete, if all four operators are
included. However, it is claimed in Section 4 of [4] that:

“The analysis in [1] states that these three subsets have an increasing
complexity. However, a close verification of the proofs offered by the authors
in the long version of their paper led us to reexamine these conclusions; in
particular, we show here that the combined complexity of conjunctive
queries is NP-complete and, thus, intractable.”

From this comment, one infers that the polynomial result in [1]
is incorrect. But this is not proved in [4]. Indeed, the authors of [4]
study the SPARQL-C problem, which is a variation of the
evaluation problem considered in [1]. Unfortunately, this is not
clearly stated in [4].

ACKNOWLEDGMENTS

The authors are grateful to the anonymous referees for their
helpful comments. Arenas and Gutierrez were supported by
FONDECYT grant 1090565.

REFERENCES

[1] J. Pérez, M. Arenas, and C. Gutierrez, “Semantics and Complexity of
SPARQL,” Proc. Fifth Int’l Semantic Web Conf., pp. 30-43, 2006.

[2] J. Pérez, M. Arenas, and C. Gutierrez, “Semantics and Complexity of
SPARQL,” ACM Trans. Database Systems, vol. 34, no. 3, pp. 16:1-16:45, 2009.

[3] M. Schmidt, M. Meier, and G. Lausen, “Foundations of SPARQL Query
Optimization,” Proc. 13th Int’l Conf. Database Theory, pp. 4-33, 2010.

[4] E.P. Shironoshita, Y.R. Jean-Mary, R.M. Bradley, and M.R. Kabuka,
“semQA: SPARQL with Idempotent Disjunction,” IEEE Trans. Knowledge
and Data Eng. vol. 21, no. 3, pp. 401-414, Mar. 2009.

[5] M.Y. Vardi, “The Complexity of Relational Query Languages (Extended
Abstract),” Proc. 14th Ann. ACM Symp. Theory of Computing, pp. 137-146,
1982.

. For more information on this or any other computing topic, please visit our
Digital Library at www.computer.org/publications/dlib.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 23, NO. 4, APRIL 2011 639

