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Abstract In order to determine to what extent a spatial random field can be charac-
terized by its low-order distributions, we consider four models (specifically, random
spatial tessellations) with exactly the same univariate and bivariate distributions and
we compare the statistics associated with various multiple-point configurations and
the responses to specific transfer functions. The three- and four-point statistics are
found to be the same or experimentally hardly distinguishable because of ergodic
fluctuations, whereas change of support and flow simulation produce very different
outcomes. This example indicates that low-order distributions may not discriminate
between contending random field models, that simulation algorithms based on such
distributions may not reproduce the spatial properties of a given model or training im-
age, and that the inference of high-order distribution may require very large training
images.

Keywords Multivariate distributions - Poisson hyperplane tessellation - Stable
iterated tessellation - Dead leaves tessellation - Random mosaic - Multiple-point
statistics

1 Introduction

Geostatistical simulation is widely used in the analysis of regionalized data in or-
der to quantify spatial uncertainty and to perform spatial prediction. It relies on the
definition of a random field model over a Euclidean space (R4, d > 1) and the con-
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struction of multiple realizations of this random field, conditioned to the available
data. In applications, the Gaussian random field model is very popular because it
is fully characterized by a mean value and a covariance function that measures bi-
variate dependencies. To add flexibility and to describe a wider class of regionalized
phenomena, other simulation approaches have been proposed, based on the model-
ing of multiple-point statistics, that is, statistics that depend on more than two points
and therefore measure multivariate dependencies (Guardiano and Srivastava 1993;
Strebelle 2002; Ortiz and Deutsch 2004; Daly 2005; Chugunova and Hu 2008).

Multiple-point statistics are often inferred from a training image deemed represen-
tative of the random field to be reproduced. In practice, however, such statistics only
give an insight into the low-order distributions of this random field and high-order
distributions remain unspecified. Indeed, a training image provides a realization of a
random vector of finite size n and, therefore, it cannot provide information on dis-
tributions of orders greater than n. Furthermore, it may contain little information
on low-order distributions (for instance, on the mean value, variance, and covariance
function) if the integral range or range of correlation is large with respect to the image
size (Lantuéjoul 1991, 2002; Chiles and Delfiner 1999).

The previous statements raise the following questions:

(1) How much information do low-order distributions convey, and to what extent
do they characterize a random field? In particular, does the knowledge of these
distributions imply little uncertainty in the responses to transfer functions used
in practice?

(2) Are there privileged multiple-point configurations (e.g., arrays of aligned points)
for which statistics better discriminate contending random field models?

To partially answer these questions, it is of interest to define random fields with
the same univariate and bivariate distributions and to compare their higher-order dis-
tributions. To achieve this goal, we will perform analytical calculations on conceptual
random field models, rather than numerical calculations on training images, for the
following three reasons:

(1) Image resolution: a training image is available only at a given resolution that may
not be convenient for calculating given statistics (e.g., variograms at lag distances
smaller than the image mesh). For instance, suppose that one avails assays of gold
grade every 0.5 meter along drill holes in a massive gold deposit. Practitioners
may be interested in having an image that reproduces the short-scale behavior
(metric scale) observed on the data because of its importance on change of sup-
port and assessment of mining selectivity. This can lead to an unmanageably large
image for the whole deposit, or even for the size of the local neighborhood one
is working with.

(2) Ergodicity problem: the fluctuations of the experimental statistics around the
model statistics may be considerable because the training image is never infi-
nitely large. Experimental statistics may therefore not be identifiable with model
statistics.

(3) Specification problem: the training image should be a faithful representation of
the phenomenon under study and should have (up to fluctuations) the same statis-
tics as the available data, for instance, the same histogram and variogram. If this
is not the case, compensation techniques must be introduced (Ortiz et al. 2007).
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In the following sections, we will examine examples of random fields for which
analytical calculations are tractable and exact simulation is possible, and where the
indetermination of high-order distributions can have a non-negligible impact on the
response to transfer functions. Although it is easy to identify random field models
with the same covariance function, finding models with exactly the same univariate
and bivariate distributions is a much more arduous task, as bivariate distributions
generally contain broader information than the sole covariance. Two exceptions are
the random set indicators and random spatial tessellations, on which we will focus
our analysis.

2 Basics About Random Tessellations

Following Lantuéjoul (2002), a random tessellation or random mosaic can be viewed
in three different fashions:

(1) A partition of the space R? into pairwise disjoint open random cells whose clo-
sures fill the whole space.

(2) A population of objects (random cells). This population is characterized by a
typical cell, which is obtained by considering a very large domain of R? and
selecting one cell of the partition at random, each cell within the domain having
the same probability of being selected.

(3) A random field, by assigning independent and identically distributed valuations
to the cells of the partition. The univariate distribution of the random field so
defined is the same as that of the cell valuations, while the bivariate distributions
are characterized by the correlation function, which is itself proportional to the
geometric covariogram of the typical cell (Rivoirard 1994; Lantuéjoul 2002).
Recall that the covariogram for a given lag vector h is the expected measure of
the intersection between a cell and the same cell shifted by h. Accordingly, if
two tessellations have the same distribution for the cell valuations and the same
correlation function (or, equivalently, the same covariance function), then their
univariate and bivariate distributions are the same.

Random tessellations are popular models in the fields of mathematical morphol-
ogy and stochastic geometry (Serra 1982; Stoyan et al. 1996) and have found a
wide range of applications, including agriculture (Guillot et al. 2006), landscape
and forest ecology (Hasegawa and Tanemura 1976; Matérn 1979; Garrigues et
al. 2007), geography (Furuyama 1976), telecommunication (Gloaguen et al. 2006;
Fleischer 2007), biology (Fleischer 2007), image analysis (Lee et al. 2001; Bordenave
et al. 2006), materials science and engineering (Fairclough and Davies 1990; Jeulin
1994, 2000; Coster and Chermant 2002), glaciology (Ukita and Moritz 2000), hydrol-
ogy and geology, for example, for modeling crack patterns in porous media or frac-
ture networks in rock masses (Andersson et al. 1984; Dershowiz and Einstein 1988;
Chiles 1989).

In geostatistics, tessellations have been recognized as random fields with no
destructuring of the extreme high or low values, as opposed to diffusion ran-
dom fields (Rivoirard 1994). They can also be used to create other random field
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models, such as the following examples: random set indicators, by assigning a
valuation of 0 or 1 to each cell; random fields defined by combining indepen-
dent tessellations (Emery 2005), or a tessellation and a multivariate Gaussian ran-
dom field (Garrigues et al. 2007); piecewise stationary random fields (Kim et al.
2005); object-based random fields whose components are tessellation cells, such as
Boolean and random token random fields (Serra 1982; Chiles and Delfiner 1999;
Lantuéjoul 2002).

3 Random Tessellations with an Isotropic Exponential Correlation
Function in R3

This section presents four tessellations with the same correlation function. For the
sake of simplicity, we restrict ourselves to the stationary framework and to the three-
dimensional space.

3.1 Poisson Hyperplane Tessellation

Let S3 be the unit sphere of R3 and {H, : n € N} a network of Poisson planes
Hn={X€R35(X»°5n)=Pn}7 (1)

where {(a,, p,) : n € N} is a homogeneous Poisson point process in S3 x R4 with
intensity 6 = %, and (,) is the inner product in R3. The cells of the Poisson hyperplane
tessellation (hereunder, “Poisson tessellation” for short) are defined by the polyhedra
delimited by the planes (Matheron 1975; Chiles and Delfiner 1999) (Fig. 1(A)). The
correlation function p of such a tessellation is an isotropic exponential function with
a practical range equal to 3 (Appendix 1)

VheR?, p(h) =exp(—|h]). )

In practice, the tessellation has to be simulated over a bounded domain I C R3.
Therefore, it is not necessary to simulate {p, : n € N} in R4, but only in a bounded
interval such that the Poisson planes have a non-zero probability of intersecting .

3.2 TIterated (Nested) Poisson Tessellation

Consider a Poisson tessellation with intensity % (practical range 6), and subdivide
each cell with an independent Poisson tessellation with intensity % (Fig. 1(B)). The
probability that two locations separated by vector h belong to a single cell of the
nested tessellation is the product of the corresponding probabilities for each elemen-
tary tessellation, that is, exp(— ”12'—”)2. The correlation function is therefore the same as
in the previous tessellation (2). Furthermore, the typical cell is also the same (Poisson
polyhedron), insofar as it is delimited by a network of Poisson hyperplanes.
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Fig. 1 Realizations of (A) Poisson, (B) iterated Poisson, (C) stable iterated, and (D) dead leaves tessella-
tions with isotropic exponential correlation functions (representations in a plane)

3.3 Stable Iterated Tessellation

A stable iterated tessellation of a bounded domain D C R? is constructed in the fol-
lowing fashion (Fig. 1(C)) (Nagel and Weiss 2005, 2008):

(1) Consider an initial cell equal to ID and assign to this cell a random lifetime drawn
from an exponential distribution.
(2) For every cell whose lifetime is less than a given maximum time,
(a) draw a Poisson plane intersecting ID. This plane may not intersect the cell
under consideration, or may divide it into two sub-cells
(b) increase the lifetime assigned to the cell or the two sub-cells by an exponen-
tially distributed random variable.
(3) Go back to Step 2.
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The tessellation model so obtained is invariant with respect to the operation of it-
eration (or nesting) and rescaling, hence its name. It can be shown (Nagel and Weiss
2008; Nagel et al. 2008) that the typical cell of the tessellation is a Poisson polyhe-
dron. This implies that the correlation function (proportional to the geometric covar-
iogram of the typical cell) is still an exponential function (2).

3.4 Dead Leaves Tessellation

Consider the following components:

(1) A homogeneous Poisson point process in R3 x R, (space—time) with intensity
0 = 1; this is a countable set of points, hereunder denoted as P = {(X;, ;) :
n € N}.

(2) A countable family of independent, nonempty compact random sets (called pri-
mary grains) {A, :n € N} in R3.

The components (Poisson process and primary grains) are assumed mutually in-
dependent. Let us associate the nth primary grain A, with the nth point (x,, #,) of P,
so that A, is centered at x,, and dated on 7,. In R, this grain partially covers the
grains fallen at earlier dates. After an infinite time, the visible parts of the grains form
a partition of R3 known as the dead leaves tessellation (Jeulin 1997).

As demonstrated in Appendix 2, the dead leaves tessellation has an isotropic expo-
nential correlation function (2) if the primary grains are balls with random diameters
with the following probability density function (Fig. 1(D))

8exp(r)[r + rexp(2r) — 4rexp(r) +exp(2r) — 1]
r2[1 +exp(r)]* '

VreRy, f(r)= 3)

4 Comparison of Multivariate Distributions

For each of the previous tessellations, one can define a random field by assigning each
cell with a random variable (valuation). Provided that these variables are drawn from
the same distribution, the random fields so defined have exactly the same univariate
and bivariate distributions, and can be discriminated only on the basis of their higher-
order distributions.

4.1 Trivariate Distributions

Let us consider three spatial locations X = {x1, X3, X3} and denote by a,b and c
the sides of the triangle formed by these locations. The distribution of the random
variables at X, X and x3 depends on the following:

(1) The univariate distribution (distribution of cell valuations).

(2) The probabilities that any two of these locations belong to the same cell, which
depend only on the correlation function (2).

(3) The probability that the three locations belong to the same cell: pi23 =
Prob{X C 1 cell}.
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Fig. 2 (A)-(D): Examples of ) ) l 3/
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plane X, X, X, X, X, X,
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© D)

Because the four tessellations under consideration have identical univariate distri-
bution and correlation functions, their trivariate distributions are characterized by the
probability pi23.

Now, this probability is the same in the Poisson, iterated Poisson, and stable iter-
ated tessellations, insofar as in each case the cells are Poisson polyhedra. To calculate
p123, note that Poisson polyhedra are convex, so that X belongs to a single cell of the
tessellation if the entire triangle with vertices X1, X, and X3 is contained in one cell,
which yields, according to (17) in Appendix 1 (Santalé 2004)

b
g —exp| -2, @
As for the dead leaves tessellation, as shown in (19) in Appendix 2, one has
Dead leaves __ E{Vi(a,b,c; R)} )

- E{Vy(a,b,c; R)}

where Vj(a, b, c; R) and Vi (a, b, c; R) are the expected volumes of the intersection
and union of three balls centered at X1, X», and x3, with the same diameter R drawn
randomly from the distribution given in (3). By introducing the geometric covari-
ogram K of the primary grains, as shown in (21) in Appendix 2, one has

E{Vy(a,b,c,R)} =3K(0) — K(a) — K(b) — K(c) + E{V(a,b,c; R)}.  (6)
The volume Vj(a, b, c;r) of the intersection of three balls with equal diameter r

can be expressed analytically (Helte 1994; Powell 1964). The expected volume is
obtained by a numerical integration over R

+o00
E{Vi(a,b,c,R)} =/ Vi(a,b,c;r)f(r)dr. (7
0

Four configurations are examined: aligned points (Fig. 2(A) and (B)), isosceles right
triangle (Fig. 2(C)) and equilateral triangle (Fig. 2(D)). In each case, the probability
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Fig. 3 (A)—(D): Probability that three points Xq, X and x3 belong to a single cell as a function of the
distance between x| and x3 (Poisson and dead leaves tessellations). The images correspond to the config-
urations shown in Fig. 2

p123 that the three points X1, X», and x3 of the configuration belong to the same cell
of the tessellation is calculated and plotted as a function of the distance between x;
and x3 (Fig. 3). Note that the contrast between the Poisson and dead leaves tessel-
lations is quite small, especially when the distance between consecutive locations is
small or large (in which cases pi23 tends to 1 or 0). However, this contrast is greater
for the first configuration (aligned and regularly spaced points) than for the triangle
configurations, which is because aligned point configurations give an insight into the
Markov property (screening effect) of the random field model: this property holds in
the Poisson, iterated Poisson, and stable iterated models, but not in the dead leaves
model because the cells in this model are not necessarily convex or connected sets.
It is also of interest to determine the size of the realization required for the es-
timate of pj23 (empirical proportion of three-point configurations that belong to a
single cell) to be accurate enough in order to discriminate between the Poisson and
dead leaves models. As an illustration, Fig. 4 presents the estimates obtained for the
configuration in Fig. 2(A) by considering five realizations of a Poisson tessellation on
a cubic domain with an edge length of L = 15 and a discretization mesh of one tenth
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(that is, the realizations contain ten pixels per unit along each axis). One sees that the
fluctuations of the experimental curves are much greater than the difference between
the theoretical curves associated with the Poisson and dead leaves models (Fig. 3(A)).
Numerical tests indicate that L should be greater than 3000 for the fluctuations to be
less than half this difference in at least 95% of the realizations. In other words, using
the trivariate distributions to discriminate between the two tessellations requires the
availability of data in a domain with an edge length 1000 times larger than the range
of correlation, or of a training image with this size. In practice, such a requirement
is extremely difficult (if not impossible) to fulfill and makes evident the ergodicity
problem mentioned in the introductory section.

4.2 Quadrivariate Distributions: Square Configuration

In this subsection, we restrict ourselves to the three tessellations (Poisson, iterated
Poisson, and stable iterated) that are undistinguishable on the basis of their trivariate
distributions, and we consider four locations X = {x1, X3, X3, X4} in the same plane,
at the vertices of a square with edge length ¢ (Fig. 5(A)). To simplify the presenta-
tion, we will denote the four-point probabilities by the lowercase p followed by the
location indices in subscript, separating by a comma the indices of the locations that
do not belong to the same cell. For instance, p1423 is the probability that x; and x4
are in the same cell, while x, and x3 are in two separate cells.

For each model, the distribution of the tessellation at X is characterized by a set
of 15 probabilities (Table 1). Furthermore, the cells are Poisson polyhedra, therefore
p1234 = exp{—2¢} ((17) and (18)); the cells are convex sets, therefore p13,24 = 0; the
tessellation is isotropic, therefore p12 34 = p14.23; and the 15 probabilities add to 1.

Accordingly, in order to compare the quadrivariate distributions of the tessellations
under consideration, it suffices to examine only one probability (say, pi2,34). After
some simple but long calculations based on the Poisson planes parameterization given
in (1), one finds
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Fig. 5 (A) Square configuration in the plane and (B), probability pi3 34 as a function of the edge length
(Poisson, iterated Poisson, and stable iterated tessellations)

Table 1 Probability system

characterizing the distribution of Probability Relation with other probabilities
arandom tessellation at
X ={x1.%2,X3,X4} p1234
P1234 P123—P1234
P1243 P124—P1234
P134.2 P134—P1234
P234,1 P234—P1234
P12,34
P13,24
P14,23
P1234 P12—P1234—P123,4—P1243—P12,34
P1324 P13—P1234—P123,4—P1342—P13,24
P1423 P14—P1234—P1342—P1243—P14,23
P23,1.4 P23—P1234—P123,4—P234,1 —P14,23
P24,13 P24—P1234—P124,3—P234,1—P13,24
P34,1,2 P34—P1234—P1342—P234,1—P12,34
P1234
e Poisson tessellation
PYSY" = exp(—(3 — V2)t) — exp(—20); ®)

e iterated Poisson tessellation
. 3—42
Pisae TN = 2exp(=0) {exp(— _ng) —exp(—0) }; ©)
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e stable iterated tessellation
prle Terated — exp(—2£)€(v/2 - 1). (10)

Although all the three-point statistics are identical, the four-point statistics based
on a square configuration allow a distinction between the models (Fig. 5(B)). By
repeating the same exercise as in Sect. 4.1, it is found that a training image with size
120 x 120 x 120 (that is, an edge length 40 times larger than the range of correlation,
which is still quite large in practice) would be required to experimentally differentiate
the three tessellation models on the basis of their quadrivariate distributions.

4.3 Multivariate Distributions: Aligned Points

Suppose now that X consists of a set of points distributed along a line A. In such a
case, the distributions of the Poisson, iterated Poisson, and stable iterated tessellations
at X are exactly the same. Indeed, for each tessellation, the typical cells are Poisson
polyhedra and the intersection of A with the cell boundaries form a Poisson point
process: the tessellation restricted to A is a partition of the line into exponentially dis-
tributed intervals. In summary, along a line crossing the space, the above-mentioned
tessellations cannot be discriminated.

4.4 Multivariate Distributions: Line Segment and Ball

To complete the analysis, two spatial configurations containing an infinite non-
countable number of points are examined: a line segment and a ball. In both cases,
we are interested in the probability that the configuration is contained in a single cell
of the tessellation. This probability is the same in the Poisson, iterated Poisson, and
stable iterated tessellations because the typical cells are the same; as such, only the
Poisson and dead leaves tessellations will be compared.

First, let us consider the case of a line segment X with length £. The probability
that X is contained in a single cell of the Poisson tessellation, as shown in (17) in
Appendix 1, is

Prob{X C 1 cell}ppisson = exp{—~}. (11D
Concerning the dead leaves tessellation, as shown in (19) in Appendix 2, one has

E{V;(¢; R)}

Prob{X C 1 cell = v
TO { Clce }Dead leaves E{Vu(g; R)}

(12)

where R is a random diameter drawn from the distribution given in (3), V7 (¢; R) is
the volume of the intersection of two balls centered at the endpoints of X and with
diameter R, and Vi (£; R) is the volume of the union of these two balls and the joining
cylinder. This leads to the following expression

K(0)
K(0)+ Zt f0+oo r2f(rydr’

Prob{X C 1 cell}pead 1eaves = (13)

The difference between the Poisson and dead leaves tessellations (Fig. 6(A)) is
slightly greater than in the case of three aligned points (Fig. 3(A)). In practice, the line
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Fig. 6 Probability that (A) a line segment, and (B) a ball contained in a single cell, as a function of the
segment length or ball diameter (Poisson and dead leaves tessellations)

segment configuration can be investigated when working with data collected along
drill holes, but it is not well suited when working with training images because of
the discretization inherent to the image, which contrasts with the continuous nature
of the segment.

We now turn to the case when X is a ball with diameter §. From (17) and (19) one
has

Prob{X C 1 cell}ppisson = exp{—25}
[0 =83 f(ryar (14)
JF e+ 83 frydr

As shown in Fig. 6(B), the differences between the Poisson and dead leaves tes-
sellations are hardly perceptible. The use of statistics from line segments or arrays of
aligned points therefore appears as the best option for experimentally distinguishing

both tessellation models, although it requires a very large domain to attenuate ergodic
fluctuations (Sect. 4.1).

Prob{X C 1 cell}pead leaves =

5 Responses to Transfer Functions

Although the high-order statistics of the random field models under consideration
may be hard to differentiate (as shown in the previous section), the responses to spe-
cific transfer functions can differ significantly. To support this assertion, two exam-
ples are presented next.

5.1 Change of Support
Consider a Poisson and a stable iterated tessellation in R with cell valuations equal
to 1 or O (with probabilities p and 1 — p, respectively) and an isotropic correlation

function with practical range 3 (2).
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Fig. 7 Probability that the
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Assume that one is interested in determining the maximum value of the tessellation
over a cubic domain X with edge length £. In order to differentiate the two tessellation
models, the maximum has been considered rather than the average over X, insofar as
the latter has the same expected value and variance in both models. The distribution
of this maximum value is given by

p1 = Prob{maximum value over X =1} = E{l —(1- p)N}, (15)

where N is the number of tessellation cells intersecting X. In each case (Poisson and
stable iterated tessellations), the distribution of N can be assessed by constructing a
large number of realizations of the tessellation on X, which yields an estimate of pj.

The estimates of p; as a function of p, obtained by assuming a unit edge length
(i.e., £ = 1) and by using 10,000 realizations of both tessellations, are displayed in
Fig. 7. The differences between the plotted curves are far from being negligible: for
instance, for p = 0.1 one obtains p; = 0.444 for the Poisson tessellation and p; =
0.403 for the stable iterated tessellation.

5.2 Effective Permeability

Let us now consider four random set models, represented by indicator variables tak-
ing on the values 0 and 1 with equal probability. The first three models correspond
to Poisson, stable iterated and dead leaves tessellations whose cells are valued inde-
pendently (Fig. 8(A), (C), and (D)), while the fourth model is a Poisson tessellation
in which the cells are valued alternatively (Fig. 8(B)). The random set indicators so
defined possess the same univariate distribution (0/1), same bivariate distributions
(characterized by an exponential correlation function), and also same trivariate dis-
tributions because of the autoduality property, that is, the distributions are unchanged
when permuting the Os and the 1s (Lantuéjoul 2002).
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r

Fig. 8 Realizations of random set indicators with same univariate, bivariate and trivariate distributions:
(A) Poisson tessellation, (B) alternating Poisson tessellation, (C) stable iterated tessellation, and (D) dead
leaves tessellation

Suppose now that the indicators represent two rock types in a reservoir, for in-
stance the Os may stand for poor-quality shale with a permeability of 0.01 mD and
the 1s for good-quality sandstone with a permeability of 100 mD. It is of interest to
compare the four rock type models with respect to flow transport by calculating an
equivalent permeability at a block support.

We constructed 500 realizations of each indicator variable over a two-dimensional
regular grid with 200 x 200 nodes (the practical range of the correlation function has
been set to 20 units). In each realization, single-phase flows have then been simulated
by using the FLOWSIM program (Deutsch 1989) and the effective permeability along
the abscissa direction has been calculated.
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Table 2 Basic statistics on equivalent permeability along the abscissa direction, calculated from five hun-
dred realizations over a square domain

Random set model Average of simulated Median of simulated
equivalent permeability equivalent permeability
(mD) (mD)

Poisson tessellation 1.83 0.78

Alternating Poisson tessellation 1.06 0.66

Stable iterated tessellation 2.85 1.04

Dead leaves tessellation 3.36 1.38

It is seen (Table 2) that the resulting permeability values greatly depend on the
model under consideration. In the alternating Poisson tessellation (Fig. 8(B)), due
to the sandstone/shale alternations, most of the flow paths go through shale, which
provokes a considerable decrease in the effective permeability with respect to the
other three models.

The cells of the Poisson (Fig. 8(A)) and stable iterated (Fig. 8(C)) tessellations are
Poisson polygons, but their spatial arrangements are not the same: on average, the
typical cell of the stable iterated tessellation is surrounded by more cells than that of
the Poisson tessellation (the cells of the stable iterated tessellation are not face-to-
face). This implies a smaller probability that sandstone be surrounded by shale in the
stable iterated model, therefore having a higher effective permeability.

Concerning the dead leaves tessellation (Fig. 8(D)), the effective permeability is
the highest one (on average, more than three times that of the alternating Poisson
tessellation), as the curved shape of the tessellation cell boundaries yields a greater
spatial connectivity of sandstone.

In summary, although they have the same univariate, bivariate, and trivariate dis-
tributions, the random set models under study are easily discernible on the basis of
flow transport properties. Such aggregated statistics therefore appear as an interest-
ing alternative to multiple-point statistics (in practice, limited to a few points) for
discriminating between contending models.

6 Conclusions

One question that motivated this work was to know whether low-order distributions
could characterize a random field or leave little uncertainty in higher-order distribu-
tions and in the responses to transfer functions. The answer to this question greatly
depends on the type of random field under consideration. For instance, for diffusion-
type random fields, bivariate distributions probably contain much information, if not
all. In particular, it can be shown (Appendix 3) that if a random field has bivariate
Gaussian distributions and a stationary cosine covariance function, then it is neces-
sarily a multivariate Gaussian random field. This leaves open the question of whether
or not there exist stationary random fields with bivariate Gaussian distributions other
than multivariate Gaussian random fields.
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In contrast, for random tessellations and random sets, low-order distributions con-
vey relatively little information, since we have presented several such models that
cannot be distinguished on the basis of their bivariate or trivariate distributions and
that produce very different outcomes concerning change of support or flow simu-
lation. In other words, having specified the distributions up to a finite order, there
may still be a large indetermination about the underlying random field and about its
response to specific transfer functions.

These statements and the results of the previous sections call for the following
comments:

(1) The inference of high-order distributions may require the availability of very
large training images or data sets, which is generally out of reach. As seen with
the Poisson and dead leaves tessellations, ergodic fluctuations are too important
to identify the experimental high-order statistics with the model statistics and to
discriminate between contending models, unless the size of the training image
is greater than one thousand times the range of correlation (a condition that is
generally not met in practice).

(2) Simulation algorithms based only on low-order distributions (e.g., sequential in-
dicator simulation) or on slightly misspecified high-order distributions may fail
at reproducing the desired random field and accurately predicting its response
to a transfer function. This situation has been highlighted with the tessellation
models presented in this paper and may therefore arise in other practical cases.

(3) Because the inference from data or from training images is restricted to low-
order distributions, the choice of a particular random field model remains a de-
cision of the practitioner to a great extent. Following the examples presented in
this study, in order to reduce the indetermination on the model as much as possi-
ble, our advice is to avoid examining only directional statistics (that is, statistics
on aligned points) and restricting multiple-point spatial configurations to small
distances (that is, points close to each other, compared with the range of corre-
lation), insofar as contending models may not be distinguishable on the basis of
such configurations (Figs. 3, 5, and 6).

(4) It is necessary to investigate whether other kinds of statistics (not only multi-
point) could improve the statistical differentiation between models, in particular
aggregated statistics such as change-of-support statistics or flow properties. Also,
instead of considering the distribution on a limited number of points, one may ex-
amine the distribution over a volume containing an infinite non-countable number
of points (this requires the availability of observations over non-point supports).
For example, the tessellations under consideration can be simply discriminated
within any compact volume by examining the boundary edges: in the Poisson
tessellation, each edge is the crossing of two planes and therefore always meets
four faces (Fig. 1(A)); in the stable iterated tessellation, each edge only meets
three faces (Fig. 1(C)); in the iterated Poisson tessellation, the edges can meet
either three or four faces (Fig. 1(B)); as for the dead leaves tessellation, it is the
only one with curved boundaries (Fig. 1(D)).

(5) The alternative to training images is the recourse to process oriented models, so
that the realizations have the generic properties of the desired process without
depending on finite-order statistics that are insufficient to specify these proper-
ties.
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Appendix 1: Poisson Tessellation

Let X be a convex polyhedron in R and consider a Poisson tessellation with intensity
0= % By using the parameterization of the Poisson planes given in (1), one can
establish that the number Ny of planes crossing X is a Poisson random variable with
mean value (Lantuéjoul 2002)

E(Nx) =2b3(X), (16)

where b3(X) is the mean breadth of X. Accordingly, the probability that X is con-
tained in a single cell of the tessellation, that is, the probability that Nx is equal to
Z€ero, 1s

Prob{X C 1 cell}poisson = exp{—2b3(X)}. (17)

If X is a convex polygon, then
1
b3(X)=ZI3X|, (18)

where |0 X | stands for the length of the boundary of X; this expression can be derived
from that of the mean breadth of X in the plane (Lantuéjoul 2002). Equations (4) and
(11) are particular cases of (18) for a triangle and for a line segment.

The correlation function at lag vector h is the probability that two locations sep-
arated by h belong to a single cell of the tessellation (Rivoirard 1994). Because the
cells are convex and isotropic, this is the same as the probability that a segment of
length ||h]| is contained in a single cell, which yields (2).

Appendix 2: Dead Leaves Tessellation

Let X be a compact set in R? and A be a primary grain of the dead leaves tessellation.
The probability that X is contained in a single cell of the tessellation is (Jeulin 1997)

E{measure(A eroded by X)}

Prob{X C 1 cell} = : )
E{measure(A dilated by X)}

19)

where (A eroded by X) = {x € R¥:x—yeAyeX}(A dilated by X) ={x+y:
xe X,ye A}

In particular, if X = {x, x+ h} consists of two locations separated by vector h, one
finds the correlation function of the tessellation random field at lag h,

K (h)

3 —
VheR’, p(h)_2K(0)—K(h)’

(20)
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where K (h) is the geometric covariogram of the primary grain at lag h. Hereunder,
as only the isotropic case is examined, the geometric covariogram will be denoted as
a function of the vector length r = ||h|| instead of h.

According to (20), the dead leaves tessellation has an isotropic exponential corre-
lation function if the geometric covariogram of the primary grains is of the form

2K (0
vh e R3, K(r):¥ with r = ||h]. (21)
1 +exp(r)

Let us assume that the primary grain is a ball with a random diameter in R3. In this
case, its geometric covariogram is a mixture of isotropic spherical covariograms

+00 7y 3r 173
K(@r)= —|l-——+=-= du, 22
r) / . ( 2u+2u3>f(u) u (22)
where f is a probability density function to be determined. Let us denote by F the

associated cumulative density function. By differentiating twice with respect to » and
by identifying with (21), one has

_2K"(r) _ 4K (0) 1 —exp(r)
1-F(r)= . o exp(r)4[1 Fexp( ] (23)
Because F(0) =0, one finally obtains
8 1 —exp(r) 2 sinh(r/2)
Fry=1+- =1- . 24
(=14 exp() [1 4 exp(r)]? rcosh’(r/2) %)

The probability density function f is given in (3). To simulate a random variable
with such a density, an acceptance—rejection algorithm can be used (Lantuéjoul 2002)
by noting the following inequality

Vr>0, f(r)<3exp(—r). (25)

Appendix 3: Random Fields with Bi-Gaussian Distributions and Cosine
Covariance

In this appendix, we establish that a stationary random field {Y (x) : x € R} with bi-
variate Gaussian distributions and cosine covariance function p(h) = cos(h) is nec-
essarily a multivariate Gaussian random field. Let us consider three locations, x, x+h
and x + h’. The regression of Y (x + h) upon Y (x) gives

Y(x+h) =cos(th)Y (x) 4+ sinth) V (x,x + h), (26)
with V (x, x+h) a standard Gaussian random variable independent of Y (x). Similarly,

Y(x+h) =costh)Y(x)+sin(h)V(x,x+h). 27
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Now the covariance between Y (x +h) and Y (x +h’) is equal to cos(h —h’). From
(26) and (27) it ensues

cov{V(x,x+h), V(x,x+h)} =1. (28)

Hence V(x,x 4+ h) = V(x,x + h') for any h and h’ in R. Denoting this random
variable by V (x), and using (26) with x = 0, one has

VheR, Y(h)=costh)Y(0)+sinth)V(0), (29)

with Y (0) and V (0) being two independent standard Gaussian random variables. Un-
der this condition, it is seen that any weighted average of variables of {Y (x) : x € R}
is normally distributed, indicating that this random field has multivariate Gaussian
distributions. In this particular example, the bivariate distributions convey all the in-
formation about the random field.
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