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Stability conditions of a quiescent, horizontally infinite fluid layer with adiabatic bottom subject to
sudden cooling from above are studied. Here, at difference from Rayleigh–Bénard convection, the
temperature base state is never steady. Instability limits are studied using linear analysis while stability is
analyzed using the energy method. Critical stability curves in terms of Rayleigh numbers and convection
onset times were obtained for several kinematic boundary conditions. Stability curves resulting from
energy and linear approaches exhibit the same temporal growth rate for large values of time, suggesting
a bound for the temporal asymptotic behavior of the energy method.
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1. Introduction

The onset of Rayleigh–Bénard convection in a horizontally in-
finite Boussinesq fluid layer of height d, subject to a vertical
temperature difference, depends solely on the opposing effects
of buoyancy and viscous forces in a time scale commensurate
to that of temperature diffusion through the whole layer depth.
Such balance is commonly expressed in dimensionless form using
the Rayleigh number, R = gβ�T d3ν−1κ−1 [1,2], where g is the
magnitude of the gravity acceleration vector, β , ν and κ are the
coefficient of thermal expansion, kinematic viscosity and thermal
diffusivity of the fluid respectively, and �T > 0 is the characteris-
tic vertical temperature difference. If the temperature profile that
conforms the base state to perturbations is unsteady, time appears
through the temperature evolution as a second variable that can
play a role on the onset of convection. This sort of problem, re-
ferred to herein as URB, resembles many flows found in industry
as well as in nature, which makes research on thermal convec-
tion to remain attractive, in terms of its application to practical
problems, despite its long tradition. Examples can be found in in-
dustry [3] as well as in nature [4,5].

In the case of URB, the prediction of onset times for convec-
tion have been studied in the past by several authors using “frozen
time” approaches, which correspond to an analogy of Rayleigh’s
analysis, considering time in the base state as a parameter and an
exponential growth for disturbances. Alternatively, eigenfunction
expansions of the temporal evolution of disturbances can be used
to relax the, mathematically non-rigorous, separability assump-
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tion imposed upon the linear stability equation that is inherent
to frozen time models. Such approach is known as the “amplifica-
tion model” (see [6,7] and references therein for excellent reviews).
The overall effect of unsteady heating have been estimated both
using a frozen time model [8] and the energy method [6,9], the
latter being a non-linear approach based upon an energy criterion
for stability. This method has shown that the manner of heating
positively affects global stability conditions: in particular, fast heat-
ing rates tend to make the system less stable [10,11], while the
same conclusion have been obtained using an earlier, quasi-static
approach [12].

A different and more recent method to predict onset times for
convection is propagation theory [13], a linear analysis technique
that relies on the assumption that temperature and velocity dis-
turbances mainly develop in a length scale commensurate with
that of the advancing base state temperature front. It is applica-
ble when the temperature base state admits a similarity solution,
allowing time to be implicitly included in a system of similar-
ity linear disturbance equations, posing an eigenvalue problem in
this new framework. This approach does not impose exponential
growth rates for disturbances. A consequence of such relaxation
is that, at difference with frozen time models, results depend on
the Prandtl number ν/κ . Propagation theory have been used in a
variety of problems involving different step and time-dependent
boundary conditions for URB. A key result of such analyses is that
theoretical times for the onset of convection have been found to
be lower, by a factor of 1/4, than onset times detected exper-
imentally (e.g., [13–17]), and close to such factor when heating
binary mixtures, where the Soret effect conditionally induce con-
vection [18], except when shear-free boundaries and a temperature
step are imposed, where a factor of 1/10 is likely to fit better the
data [19]. Studying the onset of convection in porous media, Riaz
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et al. [20] considered the combination of a similarity space for dis-
turbances (e.g., [13]), combined with an ad-hoc eigenfunction ex-
pansion [21,22], to find onset time predictions largely independent
of the initial conditions, thus improving a major drawback of the
amplification model. Although the recently developed methodolo-
gies mentioned have been proved to yield good results in the pre-
diction of onset times for highly supercritical systems, for which
it is reasonable that layers behave as if they were semi-infinite
and often similarity solutions for the temperature base state can
be found, they give no information about the effect of the manner
of heating in overall stability conditions of URB, where frozen time
and energy approaches are applicable.

A similar problem to that posed in URB is the flow that results
from imposing a temperature step on one side of the horizontally
infinite fluid layer without letting heat flow through the opposite
boundary. The study of the stability of this kind of system is the
matter of the present paper. This configuration resembles that of
non-penetrative convection [23], and for convenience, the acronym
NPC will be used hereafter to refer to it. A key feature of NPC
is that the base state never reaches a non-zero steady state, and
hence there is not a straightforward steady counterpart to compare
critical Rayleigh numbers with, as in the case of URB. For this sys-
tem and high Rayleigh numbers, propagation theory has been used
to predict onset times for convection [19], where it was proved
that the outer, adiabatic boundary has no effect on convection on-
set times. On the contrary, this is not necessarily true for Rayleigh
numbers slightly larger than critical ones, which is discussed in
detail in this Letter. Critical Rayleigh numbers for the onset of
NPC have not been reported so far in the open literature. In the
present paper, theoretical estimations of such values are proposed
in the light of a frozen time model and the energy method, us-
ing several different kinematic boundary conditions. The energy
method yields rigorous bounds for the stability of unsteady evolv-
ing systems. Studying the onset of convection, it has been used
in the study of URB global stability [6,10,11,24], the effect of the
Prandtl numbers on the onset of convection relaxing stability equa-
tions [25], and to determine reliable critical motion onset times
and Marangoni numbers for evaporating droplets [26]. It is shown
here that instability onset times predicted using the frozen time
method are consistent and close to those computed using the en-
ergy method. Limits for this behavior are proposed by analyzing
results for large values of time.

2. Problem description

The system is an initially quiescent, horizontally infinite Boussi-
nesq fluid layer of height d, at a constant temperature Tmax, sub-
ject to a sudden temperature drop �TNPC = Tmax − Tmin on its
upper surface, while the bottom is kept adiabatic. This imposes a
transient evolution of the temperature field, which can be merely
conductive on the whole domain of time, or driven by the com-
bined effects of conduction and natural convection from a certain
time on, provided a minimum imbalance between viscous and
buoyant forces exists. Scales for disturbances are d, d2/κ , κ/d and
�TNPC for length, time, velocity and temperature, respectively. No-
tation for dimensionless variables is as follows: x, y denote hori-
zontal coordinates, z denotes a vertical upwards coordinate with
origin at the bottom boundary, u, v and w denote disturbance
velocity components in the x, y and z directions, respectively,
and θ̄ = (T − Tmin)/�TNPC is the base state normalized temper-
ature (from now on denoted simply temperature). In the case of
the energy method equations, v = (u, v, w)T and θ stand for the
disturbance dimensionless velocity and temperature, whilst in the
frozen time model, v̂ = (û, v̂, ŵ)T and θ̂ are their analogue defini-
tions.
A Rayleigh number depending on the temperature step �TNPC
is defined as

Ra = gβ�TNPCd3

νκ
. (1)

In NPC, in contrast with URB, since the bottom temperature is
not fixed, the top and bottom temperature difference is a func-
tion of time. Therefore, the analogue to the top-bottom Rayleigh
number definition in URB, R (as defined in Section 1), is time-
dependent. As θ̄ (z = 0, t) = (Tbottom − Tmin)/(Tmax − Tmin) =
(Tbottom − T top)/�TNPC, it follows that a Rayleigh number in
NPC based on the top and bottom temperatures can be ex-
pressed in terms of θ̄ and Ra as a modified Rayleigh number,
Rm = Ra θ̄ (z = 0, t). This parameter will be used to compare URB
and NPC stability results. For instance, defining a URB constant
top-bottom temperature difference numerically equal to �TNPC,
identifying Tbottom,URB = Tmax,NPC and T top,URB = Tmin,NPC, then
Rm = Ra θ̄ (z = 0, t) � Ra = R , for any fixed value of t , given the
same fluid properties, temperature difference and layer depth for
URB and NPC problems. Although the control parameters Ra and
R can be set to be equal, as in the previous example, this does not
mean that the instability conditions associated with URB and NPC
problems are the same. In fact, it is shown in this Letter that eigen-
values of the respective stability equations are generally different,
which in the context of the above example means that the initial
temperature step required for the onset of convection in NPC and
URB problems can be expected to be different for identical fluid
properties and layer thickness.

3. Non-linear stability analysis

Limiting conditions for the global stability of NPC are analyzed
using the energy method. Details about the derivation of equations
for this method are given elsewhere [9,27], so only some aspects
concerning the interest of the present analysis are mentioned here.
This approach relies on the definition of an energy functional,
based upon a linear combination of kinematic and thermal com-
ponents: E = 〈|v|2/Pr +λRa θ2〉, where 〈·〉 denotes integration over
the fluid volume, with λ > 0 a coupling parameter.

According to energy theory, NPC convective motion can exist for
a certain t � t∗ [28] if Ra � Ra∗ (where Ra∗ = Ra(t∗) is the anal-
ogy of the critical Rayleigh number found in the Rayleigh–Bénard
stability problem with steady base state), provided disturbances
exist from the beginning of the base state evolution. Following
Homsy [6], defining φ = (λRa)1/2θ , a set of Euler–Lagrange equa-
tions can be deduced:

1

2
ρλ

(
1√
λ

− √
λ

∂θ̄

∂z

)
∇2

h φ + ∇4 w = 0, (2a)

∇2φ + 1

2
ρλ

(
1√
λ

− √
λ

∂θ̄

∂z

)
w = 0. (2b)

Here, ∇2n is the Laplacian operator applied n times and ∇2
h its

horizontal version.
Initially, the system remains quiescent and θ̄ (t � 0, z) = 1.

For t > 0, ∂θ̄/∂z = ∂φ/∂z = w = 0 at z = 0, θ̄ = φ = w = 0 at
z = 1; besides, ∂ w/∂z = 0 is imposed on a rigid boundary and
∂2 w/∂z2 = 0 on a free one (both types or kinematic boundary con-
ditions are applied alternatively to top and bottom surfaces). ρλ is
a Lagrange multiplier which is a solution of the problem:

1

ρλ

= max
h

{ 〈wφ〉√
λ

− √
λ

〈
wφ

∂θ̄

∂z

〉}
, (3a)

〈∇v : ∇v + |∇φ|2〉 = 1, (3b)
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Table 1
Critical overall stability bounds (t∗,Ra∗ = Ra(t∗)) and their corresponding optimal wavenumbers α∗ for NPC, obtained with the energy method (labeled as EM, in columns 2
to 5), and frozen time model (labeled as FTM, in columns 6 to 9), for different kinematic boundary conditions. R∗

m = Ra(t∗) θ̄ (z = 0, t∗). In the first column, the first kinematic
condition corresponds to the upper boundary, which is cooled in every case, while the second one corresponds to the bottom boundary.

Condition EM FTM

t∗ α∗ Ra∗ R∗
m t∗ α∗ Ra∗ R∗

m

Rigid–rigid 0.101 2.65 1 438.6 1 363.6 0.105 2.64 1 463.1 1 378
Free–rigid 0.087 2.28 825.4 798.1 0.092 2.27 840 806.8
Rigid–free 0.114 2.16 865.8 803.1 0.117 2.15 882.1 813.8
Free–free 0.103 1.8 452.4 427.4 0.106 1.79 460.6 433.1
where h is a function space that allows solutions for non-linear
disturbance velocity v and temperature θ (and hence φ) such that
they satisfy prescribed kinematic and thermal boundary condi-
tions, as well as ∇ ·v = 0 (see [6] and references therein for a more
complete discussion). Noting that (2) can be decomposed into hor-
izontal Fourier modes, if α is the dimensionless wavenumber of a
horizontal wavevector and ρλ is the lowest eigenvalue of (2) with
appropriate boundary conditions, the goal is to find an optimal so-
lution:

ρ̃ = max
λ

min
α

ρλ. (4)

The term ∂θ̄/∂z is time-dependent, and so then is ρ̃ . If the flow
is strongly stable, i.e., if the energy decreases exponentially with
time for arbitrary amplitude disturbances, then ρλ >

√
Ra [27].

This corresponds to the decreasing portion of the ρ̃(t) curve that
results from the solution of the problem (4) for different values of
time [6]. The fluid layer will be globally stable for

√
Ra < mint ρ̃ .

Since λ is chosen to yield the largest eigenvalue of (2), it can
also be a function of time, but system (2) is obtained under the
assumption that λ is a constant. Generally, this is not a major ob-
stacle for the analysis, as Homsy [6] showed that the derivation
just outlined still holds if dλ/dt < 0, and that, when ρ2

λ varies
monotonically with time, the optimal lower bound for stability
does not change if dλ/dt � 0. In the present case, for each of the
kinematic boundary conditions imposed, corresponding minimum
is achieved from monotonic curves ρ(t), and consequently, com-
puted optimal lower bounds are considered to be sound.

The shooting method and an optimization routine based on the
Newton–Raphson iteration, whose validation has been previously
reported [19], were used to solve the minimax problem (4). Time-
dependent ρλ(t) curves obtained for different boundary conditions
are shown in Fig. 1. Stability results for NPC are summarized in
Table 1.

To validate the present application of the energy method, the
analysis of unsteady URB was chosen, since results of a previ-
ous application of such method to that system are available [11].
Critical stability parameters, i.e., minimum Rayleigh number, corre-
sponding time and wavenumber, obtained with the energy method
for the unsteady URB problem, are reported in Table 2, together
with those obtained by Neitzel [11], with the exception of crit-
ical wavenumbers, which were not reported by him. Good gen-
eral agreement between both sets of results was found. How-
ever, at difference with Neitzel’s results, present computations
show the existence of a subcritical minimum for the free–free
condition. In the rest of the cases, correspondence among Ra∗
values was found within the zero-decimal precision reported by
Neitzel [11]. On the other hand, in every case, present results were
observed to converge to the well-known steady-state Ra∗ values as
t → ∞ [2].

4. Linear stability analysis

Limiting conditions for the instability of the NPC system are
analyzed using the frozen time model. To derive the equations
Fig. 1. Critical NPC stability curves for fixed values of time, obtained from the op-
timization problem using the energy method, corresponding to system (4) (solid
lines), and frozen time model, corresponding to Eqs. (6) (dashed lines), respectively.
Left panel: from top to bottom, curves corresponding to rigid–rigid, free–rigid and
free–free kinematic boundary conditions, respectively. Right panel: curves corre-
sponding to the rigid–free boundary condition. The dash-dotted line corresponds
to the free–rigid critical curve computed using the energy method. The first kine-
matic condition applies to the top boundary.

Table 2
Critical overall stability bounds (t∗,Ra∗ = Ra(t∗)) and their corresponding optimal
wavenumbers α∗ for URB using the energy method. Columns 5 and 6 show cor-
responding results by Neitzel [11]. The first kinematic condition corresponds to the
upper boundary, which is cooled in every case, while the second one corresponds to
the bottom boundary. When no critical time is given, curves decrease monotonically
toward asymptotes in the (t,Ra) space.

Condition
Present algorithm Neitzel [11]

t∗ α∗ Ra∗ t∗ Ra∗

Rigid–rigid 0.138 3.12 1699.4 0.14 1699
Free–rigid – 2.68 1100.6 – 1101
Rigid–free 0.085 2.69 1012.9 0.08 1013
Free–free 0.135 2.23 654.6 – 657.5

for this method, it is argued that NPC onset corresponds with
the transition between the purely conductive and the conductive-
convective states of the system. As the former state is independent
of the Prandtl number, it is expected that the instability condition
should also be independent of this parameter. The z-component of
the linearized momentum and energy disturbance equations in the
present system are, respectively:(

1

Pr

∂

∂t
+ ∂2

∂z2
− α2

)(
∂2

∂z2
− α2

)
ŵ − α2θ̂ = 0, (5a)

∂θ̂

∂t
+ Ra ŵ

∂θ̄

∂z
−

(
∂2

∂z2
− α2

)
θ̂ = 0, (5b)

where θ̂ (z, t) and ŵ(z, t) are first order disturbances of tempera-
ture and vertical velocity, respectively. Here, α and boundary con-
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ditions for disturbances have the same definition as in the energy
approach.

In the frozen time model, time is treated as a parameter and
hence solutions of the form (θ̂ , ŵ) = [θ1(z), w1(z)]expσ t are con-
sidered. This assumption turns the PDE system (5) into an ODE
system that corresponds to an eigenvalue problem, where the lat-
ter can be found in spite of the fact that system (5) is not sepa-
rable. The validity of this quasi-static approach requires that dis-
turbances evolve much faster than the base state conductive heat
flow, represented by the term ∂θ̄/∂z. This is generally the case
in the present analysis as is discussed next. Indeed, in the case
of impulsively-driven URB, it has been shown [8] that for super-
critical systems (i.e., those with values of the Rayleigh number
greater than the critical one for the onset of instabilities), growth
rates of disturbances of frozen time model variations converge to
those computed using transient analysis [21], where disturbances
are written in terms of Fourier series with time-dependent coef-
ficients, turning system (5) into an eigenvalue problem subject to
certain initial conditions. In their problem, the temporal thresh-
old of validity suggested by Gresho and Sani [8] is t ∼ 0.01, such
that for larger times the frozen time model would yield similar re-
sults as the transient analysis. Following the trend of this result, in
the NPC system the quasi-static hypothesis is likely to be reason-
able, as in the present analysis estimated values of the onset time
of instabilities are on the order of 0.1. These values are computed
from marginal stability curves, obtained by solving the optimiza-
tion problem minα,t Ra, where

(
σ

Pr
+ α2 − D2

)(
D2 − α2)w1 + α2θ1 = 0, (6a)

σθ1 + Ra w1
∂θ̄

∂z
− (

D2 − α2)θ1 = 0, (6b)

σ = 0, (6c)

with D(·) ≡ d(·)/dz. The marginal stability curves obtained are
shown in Fig. 1. Onset times, corresponding to the minima of
these curves, are indeed of about 0.1. The marginal stability curves
appear to be physically meaningful compared with global stabil-
ity curves obtained with the energy method, as critical Rayleigh
numbers and corresponding times are greater and lower, respec-
tively, than those predicted by the energy theory. Nonetheless,
although present results are thought to describe well the physics
underlying the present problem, further verification with Foster’s
approach [21], which is beyond the scope of the present Letter,
would give additional information about this point.

The present numerical algorithm, used for both the linear and
non-linear analyses reported in this Letter, was also checked in
the context of the frozen time model, using results of Gresho and
Sani [8] in the case of unsteady URB. In the rigid–rigid case, the
present analysis yields a minimum of Ra = 1 706.41 at t = 0.185,
whereas for the same case, Gresho and Sani [8] computed Ra =
1 706.36 and t = 0.186, respectively.

5. Discussion

For small enough values of dimensionless time, when the ther-
mal penetration depth is small compared with the thickness of the
fluid layer, the effect of temperature and velocity disturbances is
slight in contrast with the rapid evolution of the temperature base
state. As a matter of fact, in the light of both of the approaches
considered, in this time range the system exhibits critical Rayleigh
numbers that are increasingly high as time decreases. On the other
hand, in this time range, URB and NPC have the same instability
behavior as they are independent of the boundary opposite to the
step change in temperature [19]. Writing a force balance taking
into account the effects of viscosity, thermal diffusivity and buoy-
ancy, it can be shown that Rac ∼ t−3/2 (see also [29]). The validity
of this relation relies on the assumption that the thermal bound-
ary layer thickness scales with

√
t , which is true if t � 0.01. If the

dimensionless time is not so small, then the latter scaling is not
valid, and the temporal behavior of the stability (as well as insta-
bility) of the system saturates to a minimum value of the Rayleigh
number, which depends on kinematic boundary conditions on both
sides, as shown in Table 1. In the present system, for larger values
of time, the available heat from which an instability can give rise
to thermal convection decays exponentially to zero with time. As
it will be shown later, a consequence of this is that corresponding
critical Rayleigh numbers must necessarily increase exponentially
as time increases, at difference with URB where convergence to
the steady-state stability limit is obtained.

Data on Table 1 indicate that the NPC system becomes unstable
before and at lower Rayleigh numbers than URB given the same
kinematic boundary conditions. Previously, Joseph and Shir [30]
commented on the destabilizing effect of the Robin boundary con-
dition (i.e., a generalization of that applied in the NPC problem,
consisting of an isothermal boundary condition at one boundary
and a heat flux boundary condition at the other), showing via ma-
nipulations of the set of energy Euler–Lagrange equations that the
corresponding stability limit is a monotonically increasing function
of the Nusselt number (Nu) on the boundaries. In particular, given
kinematic boundary conditions, fixing the upper thermal boundary
condition as isothermal and allowing the prescribed heat flux on
the bottom to be set through Nu, according to Joseph and Shir [30],
the lowest stability boundary will be found for Nu = 0, that is, for
the NPC setup. The lack of heat flow on the bottom precludes com-
pensation of the buoyant force exerted downwards to fluid parcels
due to the cooling on top by other volume forces from the bottom,
such as the upwelling force that exists in the URB case, caused
by the heating at z = 0. Therefore, the numerical results found in
the light of the energy method are consistent with present and
previous predictions for URB and also thought to be physically ap-
pealing.

Experimental data for the minimum Rayleigh number necessary
for NPC are available only for the rigid–rigid case [31], for which
a critical time-dependent condition of Rm = 1 700 was found. This
is consistent with the theoretical Rm lower bound reported here,
equal to 1 363.6 (Table 1).

The relationship between critical or onset times predicted by
the energy method (i.e., times that minimize the energy func-
tional) in NPC and URB depends on upper and lower boundary
conditions. According to results shown in Tables 1 and 2, dimen-
sionless onset times in NPC (0.101 and 0.103) are lower than those
in URB (0.138 and 0.135) for rigid–rigid and free–free cases, re-
spectively. The opposite is true in the rigid–free case, with onset
times of 0.114 and 0.085 for NPC and URB, respectively. No com-
parison of critical times can be done in the free–rigid case, since in
URB, monotonic convergence to the steady-state critical value was
achieved, both in the present Letter and in Neitzel [11]. Regard-
ing computed results for NPC using both approaches, it is readily
apparent from Fig. 1 that, given fixed boundary conditions and val-
ues of time, linear and non-linear results are similar, being critical
Rayleigh numbers yielded by the frozen time model always greater
to those produced by the energy method, with relative differences
on the order of 0.02.

Stability (and instability) curves corresponding to the free–rigid
and rigid–free cases cross each other for times equal to 0.161
and 0.175 according with energy and frozen time computations,
respectively (Fig. 1). In the free–rigid case, the system can exper-
iment convective motion before and with a lower Rayleigh num-
ber than in the rigid–free system, due to the lack of restrictions
for the generation of a horizontal flow on the top lid. As time
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Fig. 2. Vertical gradient of the base heat flux at z = 0, ∂q/∂z(z = 0, t) = −∂θ̄2/

∂z2(z = 0, t). The maximum occurs at t = 0.167.

goes on, the vertical heat flux space derivative near the bottom,
∂q/∂z(z = 0, t) = −∂θ̄2/∂z2(z = 0, t), departs from zero (Fig. 2),
and an interplay between this evolution and the kinematic bound-
ary condition sets in. It is interesting that the mentioned curve
crossing occurs, according to both methods, very close to the max-
imum of ∂q/∂z(z = 0, t), found at t = 0.167. After this time, rigid–
free curves dip slightly below free–rigid ones toward an asymptotic
difference, to be analyzed below.

It can be argued whether the increasing portions of the set of
marginal stability curves corresponding to Fig. 1 can be possibly
reached experimentally. Although it is quite difficult to suppress
experimentally every natural source of disturbance, which would
be one way to retain the stability of the system after the critical
onset time at a higher Rayleigh number than that corresponding
with the global minimum, it may be possible to suppress con-
vection through the use of active control systems (see, e.g., [32]),
shifting critical Rayleigh numbers significantly [33]. Thus, the dis-
cussion of conditions for stability at large values of time is consid-
ered meaningful in physical terms.

It is noted that for large values of time, the base state vertical
base heat flux can be approximated as:

∂θ̄

∂z
(z, t � 0) ≈ −2 sin

(
π z

2

)
exp

(
−π2

4
t

)
. (7)

In particular, this is a very good approximation of ∂θ̄/∂z for
t � 0.4.

Using the energy method, Joseph and Shir [30] have shown that
the value of the coupling parameter, λ∗ , that maximizes prob-
lem (4), thus making ∂ρλ/∂λ = 0, satisfies λ∗ = −〈wφ〉/
〈wφ(∂θ̄/∂z)〉, where in the present case,

λ∗ ≈ 〈wφ〉
2〈wφ sin(π z/2)〉 exp

(
π2

4
t

)
� 1

2
exp

(
π2

4
t

)
, (8)

showing that the critical coupling parameter has an exponential
factor (with a dimensionless time constant equal to 4/π2) for large
values of time. Although wφ is also a function of time, from nu-
merical computations it is evident that the latter dependence van-
ishes for large enough dimensionless times (in the present case,
on the order of 0.5). Computed prefactors 〈wφ〉/〈2wφ sin(π z/2)〉,
extrapolated for large values of time, are 0.76, 0.72, 0.85 and 0.8
for the rigid–rigid, free–rigid, rigid–free and free–free cases respec-
tively. Critical Rayleigh numbers, ρ2

λ∗ , exhibit the same growth rate,
as can be readily checked using (3a) for λ∗ and (8). Corresponding
Table 3
Wavenumbers and prefactors for Rayleigh numbers, given by Ra∞ = Ra(t)×
exp[−π2t/4], valid for large values of time (t � 0.5), obtained with the energy
method (labeled as EM, in columns 2 and 3), and frozen time model (labeled as
FTM, in columns 4 and 5), for different kinematic boundary conditions.

Condition EM FTM

α∞ Ra∞ α∞ Ra∞
Rigid–rigid 2.61 995.9 2.61 1 004.4
Free–rigid 2.25 592 2.25 596.2
Rigid–free 2.14 580.8 2.13 587.5
Free–free 1.78 311.9 1.78 314.9

Fig. 3. Temporal evolution of the quotient r f /re , where r f = Ra/Ra∞ using the
frozen time model and re = Ra/Ra∞ using the energy method (see Table 3 for
corresponding values and definitions). Upper and lowermost curves represent the
rigid–free and free–rigid cases, respectively. The dashed, central curve corresponds
to the free–free case and the remaining one, the rigid–rigid condition. The first con-
dition applies to the top boundary.

prefactors for such growth rate, Ra∞ , along with their correspond-
ing wavenumbers, α∞ , are shown in Table 3.

In the case of the linearized equations, for large values of time,
a temporal dependence of eigenvalues can be set to compensate
the exponential decrease of the base state gradient. This can be
achieved in the present case if Ra(t) ∼ exp(π2t/4). Thus, sys-
tem (5) is separable, and the assumption of an exponential growth
of disturbances is mathematically consistent. Marginal condition
for this case corresponds to σ = 0 [34], and equations turn to the
following eigenvalue problem:

(
D2 − α2∞

)2
w1 − α2∞θ1 = 0, (9a)

Ra∞w1 f (z) − (
D2 − α2∞

)
θ1 = 0, (9b)

with f (z) = −2 sin(π z/2). Results for the different boundary con-
ditions considered are shown in Table 3, where it is observed
that minimum differences between stability and instability are
not asymptotically zero, though very small. As the frozen time
model becomes progressively better with time, lack of convergence
among energy and frozen time approaches, must be due to the
bound limitation given by construction of the energy method. For
values of dimensionless time greater than about 0.2, the difference
between energy and frozen time critical Rayleigh values is nearly
constant. Fig. 3 shows this trend, where the ratio r f /re is plot-
ted as a function of time, with r f = Ra/Ra∞ using the frozen time
model and re = Ra/Ra∞ using the energy method (see also Ta-
ble 3). This result supports the validity of computations obtained
with the frozen time model, as their difference with asymptotic
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ones (which are more accurate for larger values of dimensionless
time) are slight.

6. Conclusions

The onset of Rayleigh–Bénard convection depends on two as-
pects, namely, the relative importance of the overall temperature
difference, fluid properties and layer depth and, on the other hand,
the influence of the manner of heating both in time and in the ex-
istence of subcritical stability thresholds. The first topic has been
covered early in the 20th century, while the latter more recently,
motivated by the large number of applications in industry and
environment. Related to this family of problems is that of the
stability of an infinite Boussinesq fluid layer with one side kept
adiabatic while the other is subject to a temperature step, labeled
herein as NPC. Onset times for such system were recently studied
with both theoretical and experimental approaches [19,35]. How-
ever, the basic question regarding the minimal control parameter
values and maximal expected times to observe convective patterns
remained unanswered. This Letter fills such gap.

Non-linear and linear stability analyses of NPC, obtained from
the application of energy theory and the frozen time model, re-
spectively, were presented and discussed in this Letter. Given the
thermal boundary conditions imposed, the base state of the system
is unsteady on the whole domain of time. Overall stability and in-
stability thresholds, expressed in terms of critical onset times and
Rayleigh numbers, were presented for different kinematic bound-
ary conditions, including rigid or free top and bottom surfaces.
The marginal stability curves obtained from both linear and non-
linear approaches are very close to each other and considered to
be physically meaningful, as critical Rayleigh numbers and corre-
sponding times obtained with the frozen time model (representing
the instability limit) are greater and lower, respectively, than those
predicted by the energy theory (representing the stability limit).
Results show that the present system becomes unstable before
and with lower Rayleigh numbers than Rayleigh–Bénard convec-
tion, in agreement with previous theoretical findings for the type
of thermal boundary conditions associated with both systems. Crit-
ical stability curves (i.e., critical Rayleigh number versus time) for
free–rigid and rigid–free cases exhibit a crossing point, according
to both linear and non-linear approaches. It is suggested that such
crossing represents a transitional stage at which the influence of
the bottom boundary becomes stronger than that of the top one,
on the balance between stabilizing and destabilizing effects. Us-
ing both the energy method and the frozen time model, the latter
was found to occur near the maximum value of the gradient of
the base state vertical heat flux at the bottom of the fluid layer. At
difference with unsteady Rayleigh–Bénard convection, an exponen-
tial growth of eigenvalues was found at large values of time, using
both the energy method and the frozen time model. In both cases,
the time constant for such growth is the same. However, prefactors
do not converge, but slightly and consistently differ. Since as time
increases the frozen time approach becomes increasingly more ac-
curate, this result suggests a bound for the temporal asymptotic
accuracy of the non-linear energy method.
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