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Abstract— Face recognition has a wide range of possible applications in surveillance, human 

computer interfaces, and marketing and advertising goods for selected customers according to age 

and gender. Because of the high classification rate and reduced computational time, one of the best 

methods for face recognition is based on Gabor jet feature extraction and Borda count classification. 

In this paper, we propose methodological improvements to increase face recognition rate by 

selection of Gabor jets using entropy and genetic algorithms. This selection of jets additionally 

allows faster processing for real-time face recognition. We also propose improvements in the Borda 

count classification through a weighted Borda count and a threshold to eliminate low score jets 

from the voting process to increase the face recognition rate. Combinations of Gabor jet selection 

and Borda count improvements are also proposed. We compare our results with those published in 

the literature to date and find significant improvements. Our best results on the FERET database are 

99.8%, 99.5%, 89.2% and 86.8% recognition rates on the subsets Fb, Fc, Dup1 and Dup2, 

respectively. Compared to the best results published in the literature, the total number of recognition 

errors decreased from 163 to 112 (31%). We also tested the proposed method under illumination 

changes, occlusions with sunglasses and scarves and for small pose variations. Results on two 

different face databases (AR and Extended Yale B) with significant illumination changes showed 

over 90% recognition rate. The combination EJS-BTH-BIP reached 98% and 99% recognition rate 

in images with sunglasses and scarves from the AR database, respectively. The proposed method 

reached 93.5% recognition on faces with small pose variation of 25° rotation and 98.5% with 15% 

rotation in the FERET database. 

 

Keywords: Face Recognition, Gabor jets, entropy feature selection, genetic feature selection, 

enhanced Borda count. 
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1. Introduction 

 

In most large cities across the world, tens of thousands of cameras have been installed for video 

surveillance. In the London (UK) subway system, there are over 13,000 cameras installed for 

surveillance [1]. In Paris (France) there are more than 9,500 [2], in Madrid (Spain) more than 6,000 

[3] and in Santiago (Chile) over 800 cameras [4]. Most metropolitan areas have thousands of 

cameras installed for surveillance on highways, in malls, department stores, airports, train stations, 

university campuses, schools, and downtown districts streets. In contrast to the massive deployment 

of cameras, there is very limited capability for monitoring in real time the captured images.  

Face recognition technology shows advantages over other biometric identification techniques in 

specific applications such as “watch list”. Face recognition does not require active participation of 

the subjects and it can be performed at a distance [5]. Additionally, face recognition is possible in 

cases where the only information available from a person is a picture. Another advantage of face 

recognition is that everybody can be enrolled in contrast to fingerprint identification in which a 

segment of the population does not have a fingerprint compatible with biometric identification [6]. 

Face recognition is also being developed for selective marketing applications as well as human 

machine interfaces [7]. 

 

Face recognition is a topic of active research and several methods have been proposed to perform 

this task. Many methods have focused on face and eye localization which are crucial steps previous 

to face recognition [8, 9, 10, 11]. An important number of papers have focused directly on face 

recognition with the assumption that the face has already been localized [12, 13]. We will focus our 

literature review on the latter methods that have yielded the highest face recognition performance. 

Eigenfaces [14], based on Principal Component Analysis (PCA), is a method that reduces face 

image dimensionality by a linear projection that maximizes the dispersion among the projected 
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samples. Fisherfaces [15], based on Linear Discriminant Analysis (LDA), is similar to Eigenfaces 

but uses a linear projection to maximize distance among different classes and minimize distance 

within each class. Other methods for face recognition are based on the discrete cosine transform 

(DCT) [16, 17] and the Walsh-Hadamard transform (WHT) [18]. The first method compares DCT-

based feature vectors from the input and gallery images and the second one is a low complexity 

algorithm that compares WHT-based feature vectors using mean square error (MSE). Locally linear 

discriminant embedding (LLDE) [19] improves the locally linear embedding (LLE) method by 

adding invariance to scale and translation using a class translation vector. The purpose of LLE [20, 

21] is to map a high dimensional vector into a low dimensional one. Another face recognition 

method is spectral feature analysis (SFA) [22] which preserves the data’s nonlinear manifold 

structure. SFA is a special case of weighted kernel principal component analysis (KPCA) [23]. 

Dynamic Training Multistage Clustering (DTMC) [24] is a face recognition method that uses a 

discriminant analysis to project the face classes and does clustering to divide the projected data. To 

create the most useful clusters, an entropy-based measure is used. In [25] a Hausdorff distance-

based measure is used to represent the gray values of pixels in face images as vectors. It was found 

that the transformation of the image is less sensitive to illumination variations and also maintains 

the appearance of the original gray image. 

Recently, local matching methods and face representations have become popular in face recognition 

research. The Local binary pattern (LBP) method was proposed in [26], in which the face image is 

divided into square windows where a binary code is generated whenever a pixel exceeds the value 

of the average within the window. The distance measure with best results was χ2, with 97% success 

rate in Fb FERET set [27]. Gabor wavelets [28-31] have been used to extract local features 

achieving outstanding results in face recognition. In [32, 33] a Sparse representation method is used 

for face recognition. This method is robust to occlusions, noise, illumination changes and varying 

pose. Another important aspect of this method is that no information is lost as in methods based on 

feature extraction. 
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One of the first methods based on Gabor wavelets for face recognition was the Elastic Bunch Graph 

Matching (EBGM) method [34]. The EBGM method uses a set of Gabor jets associated to nodes 

that extract a local feature from the face. EBGM reaches 95% accuracy on the FERET Fb set [27]. 

Gabor Fisher Classifier (GFC) [35] is a face recognition method that uses the Enhanced Fisher 

linear discriminant Model (EFM) [36] on a vector obtained from Gabor representations of images. 

Local Gabor Binary Pattern (LGBP) operator is a combination between Gabor Wavelets and the 

LBP operator. Local Gabor Binary Pattern Histogram Sequence (LGBPHS) [37] uses the LGBP 

operator. LGBP maps are obtained for 40 Gabor filters (five scales and eight orientations) on the 

face image by dividing the image in non-overlapping rectangular windows.  A sequence of 

histograms is computed in each rectangular window and this sequence is compared to the one in the 

gallery using histogram intersection and weighted histogram intersection [37]. The best results are 

98% and 97% for Fb and Fc sets of FERET [37].  

 

A method based on the Histogram of Gabor Phase Patterns (HGPP) [38] uses the phase from the 

Gabor filter feature to compute the global Gabor phase patterns (GGPP) and local Gabor phase 

patterns (LGPP) with global and local information about the pixel and vicinity. Similarly to 

LGBPHS, the image is divided into non-overlapping rectangles and the features are compared using 

the method of histogram intersection and weighted histogram intersection trained with Fisher 

separation criterion. The results obtained were 97.5%, 99.5%, 79.5% and 77.8% in Fb, Fc, Dup1 

and Dup2 sets of the FERET database [38]. Gabor filters are also employed in a method called 

Local Gabor Textons (LGT) [39] where the image is divided into regions generating a cluster for 

each region based on the Gabor features forming a vocabulary of textons. The vocabulary histogram 

is compared to those of the gallery using χ2 with the Fisher criterion weights. The best result of LGT 

is 97% for the Fb set of FERET database [39].  
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The face recognition method called Learned Local Gabor Pattern (LLGP) [40] has a learning stage 

where each training image is filtered by C Gabor filters at different scales and orientations. With the 

C Gabor features a clustering is performed to generate C codebooks. In the recognition stage the 

LLGP codebooks are applied to the C Gabor features obtaining C LLGP maps. These maps are 

divided into non-overlapping regions obtaining a histogram for each region generating a sequence 

of histograms. This sequence is compared to the histogram intersection and the final classification is 

performed using the nearest neighbor method. The LLGP method reached 99% in Fa, 99% in Fb, 

80% in Dup1 and 78% in Dup2 of the FERET database [40].  

 

The Local Gabor Binary Pattern Whitening PCA (LGBPWP) [41] method is based on LGBPHS and 

doing the Whitening Process with PCA. This is an improvement over PCA because component 

discrimination is not lost at high frequencies. Furthermore, this method selects features based on the 

variance and obtains some of the best published results on the FERET face database in the subsets 

Dup1, 83.8% and in Dup2, 81.8%, respectively.  

 

An interesting algorithm using 3D and 2D models with Gabor features was proposed in [42]. The 

enrollment is performed with a 3D model, and then the recognition is done with 2D feature 

extraction, in which Gabor Filters are used with 3 scales and 8 orientations. 

 

The best results for face recognition published to date in the literature with the FERET face 

database use the local matching Gabor method (LMG) [43]. The recognition rates were 99.5%, 

99.5%, 85.0% and 79.5% for the subsets Fb, Fc, Dup1 and Dup2, respectively. With this method, a 

total of 4,172 Gabor jets are employed to extract features at five different spatial resolutions (λ). A 

Borda count method is used to compare the inner product among the Gabor jets [43, 44] between 

the input face image and the Gabor jets from faces in the gallery. 
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In [45], Gabor feature selection is performed with different methods including Genetic Algorithms 

(GA) [46, 47]. Using this GA method, the 15 most relevant coordinates for Gabor features are 

selected and the fitness function is the recognition performance. 

 

In a recently published review of Gabor wavelet methods for face recognition [48], research based 

on Gabor Wavelets is presented, compared and ranked. The method with highest overall 

performance is LMG [43]. 

 

In this paper, we propose several improvements to the LMG method [43] based on Gabor jets 

selection and Borda count enhancement. The LMG Borda count method was previously compared 

to another method that combines characteristics using vector/histogram concatenation on the face 

recognition problem [43]. The best results were obtained with Borda count tested on the FERET 

database [27]. Additionally, in the Borda count method, each Gabor jet is considered as a feature 

vector that is compared to the corresponding Gabor jet from the gallery using the cosine distance as 

a similitude measurement. As in the case of Adaboost [49, 50], each Gabor jet constitutes a weak 

classifier and a large quantity of them are combined in the Borda count method to become a strong 

classifier [51, 43]. We also consider a modification in the Borda count computation by using 

weights in the input scores. 

We propose modifications in the Borda count classifier [43], Gabor jets selection using entropy and 

GAs, and weighted combination of jets into the Borda count. Besides improving face recognition 

results, Gabor jet selection allows faster processing for real-time face recognition. We also propose 

improvements in the Borda count through a weighted Borda count and a threshold for voting to 

increase the face recognition rate. Combinations of Gabor jet selection and Borda count 

improvements are also studied. The proposed new method achieves significantly better results than 
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those published in the literature to date. Our results are compared to those of nine recently 

published papers. 

2. Methodology 

 

2.1 Local Matching Gabor for face recognition 

 

Face recognition based on local matching Gabor consists of three main modules [43]: image 

normalization, feature extraction through Gabor jets computation, and classification using Borda 

count matching, as shown in Fig. 1. The first module performs face normalization through image 

rotation, displacement, and resizing to locate the eyes at a fixed position. The normalized image has 

the eyes fixed at positions (67, 125) and (135, 125) within a 203x251 pixels image [43]. The second 

module performs the Gabor jet computation to extract features from the face using the eyes as 

reference points. Gabor jets are computed on selected points using five grids placed over the face as 

shown in Fig. 2 (a)-(e). The five grids indicate the positions where features are extracted by the 

Gabor jets at five different spatial resolutions. In correspondence to the grid size, the Gabor wavelet 

has five spatial scales 0≤ν≤4 in (1),  

, exp | | exp · ,        ,
,

∑ ,
        1 ,  

where vectors  and cos /8
sin /8 , and constants  √2 and 2  [31]. The 

spatial scale is equivalent to 4,4√2, 8,8√2, 16  in pixels [43]. 

 

At each point on the grid, the Gabor wavelet has eight different orientations 0≤µ≤7 in (1). Fig. 2 (a-

e) shows with a + sign the position where the Gabor jets are computed and also shows a white 

square depicting the Gabor jet size for each of the 5 spatial frequencies. One jet is a set of Gabor 
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features, for the eight orientations, extracted at one point on the grid. Therefore, a jet can be 

represented by a vector of length 8 for the coordinate (ν, x, y). The method assumes that a gallery is 

available with the faces of the persons to be identified. For each face in the gallery, the Gabor jets 

are computed off-line and stored in a database for later on-line recognition. The third module, the 

Borda count matching, performs a comparison between the set of Gabor jets computed on the input 

face image and each set of Gabor jets stored in the gallery. This comparison is performed using an 

inner product between each Gabor jet, which is a vector of length eight at each point of the five 

grids. The result of the inner product between Gabor jets of the input face image and the Gabor jets 

of the gallery is a matrix of NxM dimensions, where N is the number of face images in the gallery 

and M is the number of jets. The final classification is performed using the Borda count method 

[44] which selects according to a vote among all jets, the identified face from the gallery. In the 

Borda count method, all jets are sorted based on inner product results with the gallery elements. The 

top ranked jet gets the score N-1 and the last jet gets score 0. Fig. 3(a) illustrates the Borda count 

process for a matrix S with dimensions NxM, where Sij is the score of the j-th Gabor jet comparison 

with the i-th image of the gallery. Each column C of matrix S is sorted out thus obtaining the matrix 

with sorted columns O with dimension NxM as shown in Fig. 3(b). Each component Oij in one 

column of O is the score from N-1 to 0. Finally the complete score for the i-th gallery element is the 

sum of all rows in the i-th column of O, and the final score ∑ , as shown in Fig.3(c). 

Table 1 shows an example of the Borda count computation score for the case of 6 jets and a gallery 

with 4 images. The gallery image i3 obtains the highest score for most of the jets and the highest 

final score. Face identification is performed choosing the rank-1 image score, i.e., the largest score 

value is selected as the recognized face, in the P vector. 

 

[Fig. 1] 

[Fig. 2] 
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[Fig. 3] 

[Table 1] 

2.2 Databases 

 

2.2.1 The FERET Database 

 

The FERET database is the most widely used benchmark for face recognition algorithms [43]. In 

order to compare our results to other methods, we followed the FERET face recognition protocol 

that is described in detail in [27]. In the following, we briefly describe the FERET database and the 

FERET tests. The FERET database has a large number of images with different gesticulations, 

illumination and a significant amount of time between pictures taken. The FERET database is 

organized in 5 sets of images: the gallery is Fa, and the test sets are Fb, Fc, Dup1, Dup2. In the Fa 

set there are 1,196 face images of different people. In the Fb set there are 1,195 images of people 

with different gesticulations. Fc has 194 images with different illumination. In Dup1 there are 722 

images of pictures taken between 0 and 34 months of difference with those taken for Fa. The Dup2 

set has 234 images taken at least 18 months after the Fa set. Fa set contains one image per person 

and is the Gallery set, while Fb, Fc, Dup1 and Dup2 are called test sets. 

 

2.2.2 The AR Database 

 

The AR dabase [52] contains frontal faces from 60 females and 76 males. Pictures were taken in 

two different sessions, with 13 pictures per session. Seven of the thirteen images contain 

illumination changes and gesticulation. In three images the person is wearing sunglasses and in 

another three images, the person is wearing a scarf.   
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2.2.3 The Extended Yale B Database 

 

The Extended Yale B face database [53, 54] contains images from 37 different subjects with 

varying illumination. Each subject has 65 images illuminated from different angles. 

 

2.2.4 The ORL Database 

 

We used the ORL (Olivetti Research Laboratory) faces database [55] for verification. This database 

contains 400 images of 40 individuals (10 images per individual) with different expressions, limited 

side movement and limited tilt. The images were captured at different times and with different 

lighting conditions. The images were manually cropped and rescaled to a resolution of 92x112, 8-

bit grey levels. 

 

2.3 Local Gabor Enhancements 

 

In the original paper on LMG [43] it was suggested that further improvements could be obtained by 

jet selection. In fact, it was shown in [43] that a random selection of nearly 50% of the Gabor jets 

yielded similar results to using all of them. In this paper, we propose two alternative ways of 

selecting Gabor jets using GAs and entropy information [56]. We also propose enhancements in the 

Borda count method by weighting the contribution of each voter by the score of the Borda count 

and by using thresholds to eliminate noisy jet voters. A combination of jet selection and enhanced 

Borda count is also proposed.  
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To train, test and compare different methods we use a database for frontal faces with illumination 

changes, gesticulations and different time difference between the pictures taken for the gallery and 

the test set. Two sets were used from FERET database: the FERET training set which we call 

Train1 used in [43, 57] that it is a standard partition of FERET with 724 training images. From the 

total 3880 images in FERET database, we selected 556 images that do not belong to the subsets Fa, 

Fb, Fc, Dup1 and Dup2 and call it Train2. 

 

2.3.1 Genetic selection of jets (GSJ) 

 

We propose to select jets using a GA where each individual in the population corresponds to a set of 

selected jets that are coded onto a string with binary elements or chromosome. The jet selection is 

performed according to the values of the binary elements on the chromosome: if the bit is 1, the jet 

is selected; if the bit is 0, the jet is not selected. Since in [43] the total number of possible jets 

applied in the five grids is 4,172, the chromosome has a length of 4,172 bits. A multi-objective GA 

was used to maximize the face recognition rate and minimize the number of jets. The GA uses a 

two-point crossover with a rate of 0.8, uniform mutation with 0.05 probability, and 100 individuals 

per population. An example of jet selection resulting from using GSJ is shown in Fig. 4. Two 

training sets were used for the GA, Fa-Train1 and Fa-Train2. 

 

2.3.2 Entropy based jet selection (EJS) 

 

Entropy [56] is proposed as a tool to select jets that provide maximum information about the face. 

The goal is to find those jets with the highest entropy because they provide information about what 

differs from one face to another. Conversely, those jets with low entropy among different face 

images do not provide information to differentiate faces, and they therefore act as noisy inputs to 
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the classification module. Before the entropy computation, the scores for each jet comparison are 

normalized to keep the sum of scores Pijk equal to 1, using (2) and (3) 

  ∑ ′′
 ,       2  

· log  ,       3  

1
 ,       4  

Indexes i, j and k represent the j-th Gabor jet comparison, from the i-th gallery image and the k-th 

input image from the test set. Sijk is the score of the j-th Gabor jet comparison with the i-th image of 

the gallery and Ejk is the entropy of the j-th jet of a given k-th input image from the test set. The 

total entropy  is the average of the entropies of all images computed on the test set (4), where the 

number of images in the test set is L.  is a real number and therefore to select those jets with the 

highest entropy, a threshold Thν is used; then, if , the jet is selected. The optimum threshold 

 was chosen for each of the five spatial frequencies using a GA with the same training sets as 

those in the previous case.  

Because the entropy score is not uniformly distributed, the histogram was equalized. For calculation 

of entropy Train1 was divided in two subsets, the first one with 364 images used as a gallery which 

we named Train1g and 360 images for test called Train1t. Another entropy score was computed 

with the gallery Fa and the test Train2. 

We constructed histograms to show the jets entropy distribution. Fig. 4a shows the jets entropy and 

Fig. 4b shows the equalized jets entropy for all of the five wavelengths together. 
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[Figure 4] 

 

The GA used in EJS is similar to the one used in GSJ, with the same training sets (Fa-Train1 and 

Fa-Train2). A multi objective GA was used with the same objectives and fitness function, two-point 

crossover with probability 0.8, uniform mutation of rate of 0.05, and 60 individuals per population. 

The difference is the length of the chromosome, where each individual has 30 bits (6 bits for each 

spatial frequency), with thresholds between 0.1 and 0.73. 

 

2.3.3 Borda count enhancement by inclusion of jets inner product value (BIP) 

 

In the standard Borda count method, only jet order determines the final score. In the present paper 

we propose incorporating the value of the jet inner product (Matrix S) in the computation of the 

final score (Matrix P). The final score P for the i-th gallery element is ∑ . Table 2 

shows an example of BIP computation that can be compared to the standard Borda count shown in 

Table 1. 

 

[Table 2] 

 

2.3.4 Borda count enhancement by threshold (BTH) 

 

In the standard Borda count, all jets contribute to the final score even if the inner product value is 

very small. By using a threshold, Th, over the scalar product, it is possible to eliminate very small 

value scores, which act as noise, for the Borda count computation. The jet scores under the 

threshold are set to zero. If Sij<Th, then Qij=0, otherwise Qij=Oij, and ∑ . Table 3 shows 

an example of the Borda count computation with Th=0.55 that can be compared to the standard 
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Borda count shown in Table 1. The FERET training database was used to obtain the optimum Th. 

Using the FERET training set, the rank-1 identification rate was computed varying the Th threshold 

between 0.6 and 0.95 as shown in Fig. 8. The area for Th between 0.80 and 0.89 has significantly 

better scores than the rest; therefore, the Th selected from this region was 0.81which was the 

maximum for the training database. 

 

[Table 3] 

 

2.4 Combination of Gabor jets selection and enhanced Borda count 

The proposed individual enhancements, EJS, GJS, BIP and BTH, were combined and optimized in 

cascade using a GA to improve face recognition results. We tested several combinations of 

individual enhancements as follows: EJS-BTH, EJS-BIP, and EJS-BTH-BIP. 

 

2.5 Face Recognition under illumination changes, occlusion and pose variation 

 

We tested the LMG method under illumination changes, occlusion and pose variation using 

available face databases and compare the results with those published in international studies [38], 

[32]. For this purpose we used the Extended Yale B and AR databases for illumination changes, the 

AR database for occlusion and the FERET database (subsets: bd, be, bf and bg) for pose variation. 

 

2.5.1 Face Recognition with illumination changes 
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We tested the LMG method under significant illumination changes using face database AR and 

Extended Yale B. In order to compare our results to those previously published, we followed the 

methods according to [32]: 

For the Extended Yale B database, we employed a gallery of 32 images per person and a testing set 

of 33 images per person for a total of 37 people. A second partition was performed on Extended 

Yale B with only 2 images per person in the gallery. The test set was composed of 63 images per 

subject. For the AR face database, 50 men and 50 women from the database were selected and the 

gallery contained 7 images per person. The test set contained a different set of 7 images per person. 

2.5.2 Face Recognition with occlusions 

As in [32] we tested the LMG method with faces occluded by sunglasses and scarves on the AR 

face database. As in section 2.5.1, we used images from 50 men and 50 women from the AR 

database. 

(i) Scarf occlusion: The testing set contains 6 images per person, i.e., a total of 600 images, with 

faces occluded by scarves. The gallery is the same as in 2.5.1.  

(ii) Sunglasses occlusion: Testing was performed using 3 images with sunglasses per person from 

session 2, i.e., a total of 300 images. The gallery is the same as in 2.5.1. 

2.5.3 Face Recognition with pose variation 

We tested the LMG method on face recognition with pose variation as in [33, 58, 59]. We used the 

subsets bd, be, bf and bg of the FERET database [27] and use the frontal image from Fa in the 

gallery. Therefore, images with frontal faces in the gallery are compared to pose variations in bd, 

be, bf and bg. The subsets bd, be, bf and bg include pose variations for angles 25°, 15°, -15° and -

25°, respectively. Although these are small pose variations cover several possible applications for 

face recognition in access control and watch list. 
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2.6 Face Verification 

Face verification is a very important tool for person authentication and it is of significant value in 

security. Following the same method as in [18] and using the ORL (Olivetti Research Laboratory) 

face database [55], face verification was performed with our LMG method and compared to results 

published with other methods. The ORL database contains 400 images of 40 individuals (10 images 

per individual). As in [18], we used 5 images per individual for gallery (faces 1–5) and 5 faces for 

testing (faces 6–10), with a total of 200 images for gallery and 200 for testing. We also used the 

Detection Cost Function (DCF) [60] to compare with other methods.  

           (5) 

where Cmiss is the cost of a wrong rejection, Cfa is the cost of a wrong acceptance, Ptrue is the 

a priori probability of each individual (1/40 in the ORL case), and Pfalse =1 – Ptrue. We use 

Cmiss = Cfa =1. For verification with the LMG, it is necessary to compare the inner product 

result between one individual of the testing set and only one individual of the gallery. To 

determine whether an individual of the testing set matches the selected one in the gallery, 

we compute: 

 ∑  (6) 

If an image i exists such as Vi > T, where T is a threshold between 0 and 1, then the individual of 

the testing set is verified as the one selected. 
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3. Results 

 

With the objective of comparing our results to previous work, we summarized the results of our 

literature review on Local Matching Gabor methods in the following section. One of the papers in 

print [48] provides an up to date summary highlighting the best results reached in face recognition 

with Local Gabor methodology. 

 

3.1 Previously published results on Local Gabor 

 

Our literature review on face recognition is summarized in Table 4. This table shows the best results 

on face recognition published in nine recent papers. The first four columns of the table show the 

face recognition rate for different subsets of the FERET database. The next four columns show the 

approximate number of errors on the same subsets of the FERET database. The last column shows 

the total number of errors on all subsets of the FERET database. It can be observed that the best 

result with the smallest number of total errors in all subsets is the LMG method [43]. 

 

[Table 4] 

 

3.2 Results of proposed enhancements 

 

Table 5 summarizes the most important results obtained with the different methodological 

enhancements proposed in this paper. The best result published in the literature [43] is shown on the 

first line. The first four columns of Table 5 show the results in % and the next four columns show 

the number of errors for each subset of the FERET database. The last column shows the total 
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number of errors in all subsets of the FERET database. In the case of LMG [43], the total number of 

errors in all subsets is 163. 

 

3.2.1 Results for GSJ 

 

Table 5 shows the best result published for LMG [43] on the first row. Table 5 also shows the best 

results obtained for the jet selection using GSJ, LMG-GSJ1 was trained with Train1 and GSJ2 with 

Train2. Results show a small improvement in Fb subset (recognized 2 additional faces). Results 

were the same for the Fc subset compared to the original results in LMG [43]. Nevertheless, on 

subsets Dup1 and Dup2, results improved 1.3% (9 fewer errors) and 2.1% (6 fewer errors, for 

LMG-GSJ2). In summary, for GSJ it is possible to recognize 18 additional faces compared to LMG 

[43] using half the number of jets. The reduction in the number of jets is significant because it 

allows faster processing for real time computation. Fig. 5 shows a selection of jets resulting from 

the GA. 

 

[Fig. 5] 

 

3.2.2 Results for EJS 

 

Table 5 shows on lines LMG-EJS1a, LMG-EJS1b trained with Train1 and LMG-EJS2 trained with 

Train2, the best results obtained for the jet selection using Entropy information. The best result for 

LMG-EJS1b shows an improvement of 0.1% (1 case) for Fb subset, no improvement for Fc subset, 

3% (21 fewer errors) for Dup1 and 7.7% (18 fewer errors) for Dup2, compared with LMG [43]. 

EJS2 was trained with Train2 and showed significant improvements in recognition rate in the 

subsets Dup1 and Dup2, reaching an increment between 2% and 6.4%. The total number of errors 
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was reduced from 163 to 125 using EJS. This represents a total improvement of 38 faces compared 

to LMG. Fig. 6 shows the equalized entropy for each spatial frequency. Fig.7 shows an example of 

the jets selected by entropy with solution LMG-EJS2.  

The total number of jets in the LMG method is 4,172, but there is a different number of jets due to 

the filter size at each spatial frequency, i.e., 2,420 jets for ν =0, 1,015 jets for ν =1, 500 jets for ν=2, 

165 jets for ν =3 and 72 jets for ν=4. The percentage of selected jets using EJS1a was 86% for ν=0, 

33% for ν =1, 32% for ν=2, 96% for ν =3 and 81% for ν=4. In the case of EJS2 the percentage of 

selected jets for each spatial frequency was 24% for ν=0, 76% for ν =1, 32% for ν=2, 56% for ν =3 

and 82% for ν=4. Also, it can be observed that LMG-EJS2 improved more in subsets Dup1 and 

Dup2 rather than in subsets Fb and Fc. On the contrary, the other solution, LMG-EJS1, improved 

more in the Fb and Fc subsets than in Dup1 and Dup2, although the total improvement was less 

than LMG-EJS2.  

[Fig. 6] 

[Fig. 7] 

 

3.2.3 Results for BIP 

 

Table 5, line LMG-BIP1 shows the results obtained by including the inner product score value into 

the Borda count computation. The recognition rate improvement compared with the original LMG 

method, was 0.1% for Fb (1 less error), same result for Fc, 1% (7 fewer errors) for Dup1 and 2.6% 

(8 fewer errors) in Dup2. The total number of errors was reduced from 163 to 147 using BIP. The 

total improvement was of 16 faces compared to LMG. 
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3.2.4 Results for Borda count enhancement by threshold (BTH) 

The rank-1 face recognition rate is shown in Table 5 as LMG-BTH1. The average result obtained for 

Th in the interval 0.80-0.89 was Fb 99.7, Fc 99.5, Dup1 86.7 and Dup2 82.6%, with only 142 errors 

in total versus 163 cases in the original LMG method. Fig. 9 shows the face recognition accuracy 

for FERET database using different thresholds in the interval 0.80-0.89. Using BTH, the total 

number of errors was reduced from 163 to 142. 

[Fig. 8] 

[Fig. 9] 

[Table 5] 

 

3.3 Combined Methods 

 

A selection of the best results obtained for combined enhancements is presented in Table 6. The 

results of the best paper published in the literature for the LMG method are on the first line of Table 

6. It can be observed that there are several combinations of the proposed methods that yield better 

results than those obtained for each improvement alone. For example the best case trained with 

Train1 consists of LMG-EJS-BTH-BIP1b with a total number of 112 errors compared to 163 using 

LMG, while the best case with Train2 LMG-EJS-BTH-BIP2 had 122 errors. This represents a 31% 

and a 25% improvement relative to the LMG method. Other combinations such as LMG-GSJ-BTH-

BIP1, LMG-EJS-BTH1 and LMG-EJS-BIP1 yield a total number of errors of 140, 116 and 126 

respectively which represent a 14%, 29% and 23% improvement relative to the LMG method. This 

proves that there are several alternatives with fewer numbers of jets that achieve significant 

improvements in classification rate with a decrease in computational time. 

 

[Table 6] 
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3.4 Results in Face Recognition under illumination changes, occlusion and pose variation 

 

3.4.1 Face Recognition with illumination changes results 

We use Extended Yale B to test the LMG method with images under significant illumination 

changes. Four different random partitions of the gallery and test were performed (p1, p2, p3 and 

p4), as shown in Table 7. Results are in the range between 99.1 and 99.8%. In Table 7 p0 

corresponds to the partition used in [32]. As shown in Table 7, similar results were obtained with 

LMG-EJS-BIP-BTH. With the partition formed by 2 images in the gallery and 63 images per 

subject in the test, results were 99.9% for LMG and 99.8% for LMG-EJS-BIP-BTH. 

 

[Table 7] 

 

Table 8 shows the test results over the AR database for the LMG method and methods in [32]. It 

can be observed that highest scores are reached by the LMG-EJS-BIP-BTH method.  

 

[Table 8] 

 

In the original LMG paper [43], the authors explain that Gabor filters are robust to illumination 

changes because the filters can detect spatial frequencies independently from amplitude, i.e., Gabor 

filters tend to extract higher frequency components. This argument is strengthened by the finding 

that most illumination changes in images are contained in the low spatial frequency domain [61]. In 

the case of the Discrete Cosine Transform (DCT) method for illumination compensation, low 
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frequencies are filtered out to improve face recognition under illumination changes [61, 62]. 

Furthermore, each Gabor feature in the test image is compared locally with the corresponding 

Gabor feature in the gallery which provides additional robustness to illumination changes, 

gesticulations and partial occlusions [40]. The high accuracy obtained in face recognition results 

with our proposed method is not an isolated finding. Several previous publications have reached 

good results employing Gabor filters with illumination changes and gesticulations [38, 39, 40, 41, 

63], and therefore our results are an improvement in accordance with those previously reported 

results. 

 

3.4.2 Face Recognition with occlusions results 

Table 8 shows the test results on the AR face database for occlusions with sunglasses and scarves. 

In both types of occlusions, the LMG-EJS-BIP-BTH method reached slightly higher results than 

other previously published for the AR database.  

 

3.4.3 Recognition with pose variation results 

We tested the LMG and LMG-EJS-BIP-BTH methods with the subsets bd, be, bf and bg of the 

FERET database. Table 9 shows the results of face recognition for small pose variations. Results 

range from 91.5% to 98.5% for the different FERET subsets.  

[Table 9] 

In the Methods section 2.1, we explained that in the LMG method [43], the first step toward face 

recognition is face localization, normalization and alignment. As in [43], we use the eyes for face 

alignment both in the gallery and in the test set. The normalized image has the eyes fixed at 

positions (67, 125) and (135, 125) within a 203x251 pixels image [43]. We use the ground truth 



23 
 

marks in the eyes for alignment. In the past few years, several methods for accurate eye localization 

have been developed with accuracy over 99% for faces with small pose variations [8, 11]. 

Therefore, face alignment is not a major issue for small pose variations. In cases of larger pose 

variation, other fiducial points, e.g., nose, mouth corners, eye corners, etc., may be used for 

alignment. 

 

Our results have been compared with other six papers based on Gabor features that reach results 

over 95% on Fb and over 90% on Fc of the FERET database [37, 38, 39, 40, 41, 43] which shows 

that our results correspond to an improvement respect to previous publications. As LMG [43], most 

face recognition methods show good performance to small pose variations (~15°) [5, 64]. 

Recognition rate falls to 80% for the LMG method applied to faces with poses around 25°. 

Nevertheless, by incorporating our paper proposed EJS jet selection, recognition rate are around 

91%-93%. The EJS selection is shown in Figure 7 and by comparison to the original LMG jet 

location shown in Fig. 2, it can be observed that the EJS selection is confined to the central part of 

the face where matching among jets is better for slight pose rotations. As explained in section 2, 

face images are aligned with the eye position and normalized in size. Therefore, jets from similar 

regions are compared for the test and gallery images. Fig. 10(a) shows on the first column, the 

frontal gallery image and from the second up to the fifth column, face poses for -25°, -15°, 15° and 

25°, for the same subject. Fig. 10(a) shows for the frontal gallery image two rows with test images 

for spatial frequencies λ2 and λ4 (2 of the 5 λs). Over the test images the EJS jet positions are shown 

as a bright dot. Fig. 10(a) also shows the jets scores above a threshold of 0.85 as a bright square 

over each jet position for the test images and the gallery image. In case that most jets yield high 

scores, the face will be covered with bright squares. It can be observed that most jet scores are very 

high for face poses at -15° and 15° and that high scores decrease slightly for face poses at -25° and 

25°. Fig. 10(a) may help to explain our results of 98% matching for poses between -15° and 15°, 
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and the fall to 91% for poses at -25° and 25°. Fig. 10(b) shows the results of comparing the test 

images to a different subject in the gallery. It can be observed that a significant number of jet scores 

are below the threshold 0.85 and therefore, the voting process will yield the correct face recognition 

for this subject. It has to be emphasized that we use this arbitrary score of 0.85 only to illustrate the 

jets matching process. 

 

3.5 Face Verification Results 

Table 10 shows the DCF value for different face recognition methods: Eigenfaces [14], KLT [65], 

DCT [16] and WHT [18], including the result for our method. Our results, LMG-verif, are better 

than those published in [18]. In Table 10 our result is compared to Eigenfaces, KLT, DCT and 

WHT for the same database [18]. 

[Table 10] 

 

3.6 Computational time for jet selection 

 

Jet selection has two important results, the first one, is to improve recognition rate and the second, 

to reduce computational time. Improving jet selection produces two important results: an increased 

recognition rate and reduced computational time. If fewer jets are computed, the computational time 

decreases. Table 11 shows, on the first column, the total number of jets used (4,172) and the 

number of jets of four different jet selections. On the second column is the ration between the 

number of jets using the jet selection and the total number of jets. The third column shows the ratio 

between the computational time employed in each selection over the time employed with all the 

jets. It can be observed that a 45% reduction of computational time was obtained for the first two 

selections. The computational time required for the total number of 4,172 jets is 48ms on a PC with 
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an Intel Quad Core-2.66 GHz CPU, 2GB RAM using C++ under Windows XP SP2 with 

multithreading. For a jet selection of 1,909 jets the computational time is 27 ms and for a jet 

selection of 2,577 jets 30ms. The measured computational time allows real time processing which is 

necessary for many applications. 

[Table 11] 

 

4. Conclusions 

Face recognition is an important topic for surveillance, man-machine interfaces and selective 

marketing. Several recent studies have shown the predominance of local matching approaches in 

face recognition results. Real-time implementation of local matching methods is possible but it is 

important to reduce the number of computations by reducing the number of points used for 

computation. We propose several methodological enhancements to the local matching Gabor 

method and show results that improve face recognition rate to achieve the highest scores for facial 

recognition published to date in the literature. 

 

Results of the methodological improvements proposed in this paper show that it is possible to 

improve face recognition rate by selecting jets with genetic, GSJ, or entropy, EJS, based methods. 

Both methods, GSJ and EJS, produce more significant improvements in the subset Dup1 (up to 34 

month difference) and Dup2 (at least 18 month difference) where images from the same person 

were taken further apart in time. The largest improvement by a single proposed method was with 

entropy jet selection (LMG-EJS2) that reduced the total number of errors in face recognition from 

163 to 112, a 31% improvement. The use of fewer jets has also important impact in real-time 

implementation of these methods.  
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Both proposed methods BIP and BTH produced more significant improvements in the subsets Dup1 

and Dup2 where images from the same person were taken further apart in time. By using the BTH 

method, the total number of errors decreased from 163 to 142 (a 12.9% error reduction) and for BIP 

the total number of errors decreased from 163 to 147 (a 9.8% error reduction). 

 

It was shown that it is possible to obtain even better results by combination of the proposed 

methods in cascade. There are several alternatives available to combine the methods. For example, 

LMG-EJS-BTH reached only 116 errors (a 28% error reduction), LMG-EJS-BTH-BIP reached 112 

errors (a 31% error reduction).  

 

We also tested the proposed method under illumination changes, occlusions with sunglasses and 

scarves and for small pose variations. Results on two different face databases (AR and Extended 

Yale B) with significant illumination changes showed over 90% recognition rate. The combination 

LMG-EJS-BTH-BIP reached 98% and 99% recognition rate in images with sunglasses and scarves 

from the AR database, respectively. The proposed method reached 93.5% recognition on faces with 

small pose variation of 25° rotation and 98.5% with 15% rotation in the FERET database. 
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Table 1. Borda count computation example for a case of a gallery with 4 face images and 6 Gabor 
jets.  
 

  
Matrix S Matrix O 

Matrix P 
c1 c2 c3 c4 c5 c6 c1 c2 c3 c4 c5 c6

i1 0.7 0.2 0.6 0.4 0.2 0.7 1 1 2 2 1 2 9 
i2 0.8 0.0 0.1 0.2 0.7 0.1 2 0 0 0 2 0 4 
i3 0.9 0.6 0.9 0.5 0.8 0.6 3 2 3 3 3 1 15 
i4 0.3 0.9 0.2 0.3 0.1 0.8 0 3 1 1 0 3 8 
 
  



35 
 

 
Table 2. Example with the BIP score computations for the same case presented for the original 
Borda count of Table 1. 
 

  
Matrix S Matrix O Matrix SijOij Matrix P

c1 c2 c3 c4 c5 c6 c1 c2 c3 c4 c5 c6 c1 c2 c3 c4 c5 c6 
i1 0.7 0.2 0.6 0.4 0.2 0.7 1 1 2 2 1 2 0.7 0.2 1.2 0.8 0.2 1.4 4.5 
i2 0.8 0.0 0.1 0.2 0.7 0.1 2 0 0 0 2 0 1.6 0 0 0 1.4 0 3 
i3 0.9 0.6 0.9 0.5 0.8 0.6 3 2 3 3 3 1 2.7 1.2 2.7 1.5 2.4 0.6 11.1 
i4 0.3 0.9 0.2 0.3 0.1 0.8 0 3 1 1 0 3 0 2.7 0.2 0.3 0 2.4 5.6 
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Table 3. Example of the BTH score computation for the original Borda Count of Table 1. 
 

  
Matrix S Matrix O Matrix Q 

Matrix P
c1 c2 c3 c4 c5 c6 c1 c2 c3 c4 c5 c6 c1 c2 c3 c4 c5 c6 

i1 0.7 0.2 0.6 0.4 0.2 0.7 1 1 2 2 1 2 1 0 2 0 0 2 5 
i2 0.8 0.0 0.1 0.2 0.7 0.1 2 0 0 0 2 0 2 0 0 0 2 0 4 
i3 0.9 0.6 0.9 0.5 0.8 0.6 3 2 3 3 3 1 3 2 3 0 3 1 12 
i4 0.3 0.9 0.2 0.3 0.1 0.8 0 3 1 1 0 3 0 3 0 0 0 3 6 
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Table 4. Rank-1 face recognition rate on different subsets of FERET database for different face 
recognition algorithms published in the literature. 
 

 Accuracy (%) Number of Errors 
Methods Fb Fc Dup1 Dup2 Fb Fc Dup1 Dup2 Total 

LMG [43]1 99.5 99.5 85.0 79.5 6 1 108 48 163 
LGBPWP [41] 1 98.1 98.9 83.8 81.6 23 2 117 43 185 
Weighted LLGP_FR [40] 1 99.0 99.0 80.0 78.0 12 2 144 51 209 
Weighted HGPP [38] 1 97.5 99.5 79.5 77.8 30 1 148 52 231 
Weighted LGBPHS [37] 1 98.0 97.0 74.0 71.0 24 6 188 68 286 
LGT [39] 1 97.0 90.0 71.0 67.0 36 19 209 77 341 
Weighted LBP [37][26] 1 97.0 79.0 66.0 64.0 36 41 245 84 406 
GFC [37][35] 2 97.2 79.9 68.3 46.6 33 39 229 125 426 
EBGM [37][34] 2 95.0 82.0 59.1 52.1 60 35 295 112 502 
1 results extracted from original source 
2 results extracted from the first referenced paper, and the original method is the second referenced paper 
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Table 5. Face recognition rate on different subsets of the FERET database for our proposed 
methods and compared to the best results published up to date in the literature LMG [43]. Sub index 
1 indicates FERET training set Train1, sub index 2 indicates FERET training set Train2.  
 

 Accuracy (%) Number of Errors 
Methods Fb Fc Dup1 Dup2 Fb Fc Dup1 Dup2 Total

LMG [43] 99.5 99.5 85.0 79.5 6 1 108 48 163 
LMG-GSJ1 99.7 99.5 86.3 81.2 4 1 99 44 148 
LMG-GSJ2 99.7 99.5 86.3 82.1 3 1 99 42 145 
LMG-EJS1a 99.8 100 88.0 84.2 2 0 87 37 126 
LMG-EJS1b 99.4 99.5 88.0 87.2 7 1 87 30 125 
LMG-EJS2 99.5 99.5 87.0 85.9 6 1 94 33 134 
LMG-BIP1 99.6 99.5 86.0 82.9 5 1 101 40 147 
LMG-BTH1 99.7 99.5 86.8 82.1 4 1 95 42 142 
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Table 6. Face recognition rate on different subsets of the FERET database for our proposed 
methods combined and compared to the best results published up to date in the literature LMG [43]. 
Sub index 1 indicates FERET training set Train1, sub index 2 indicates FERET training set Train2.  
 

 Accuracy (%) Number of Errors 
Methods Fb Fc Dup1 Dup2 Fb Fc Dup1 Dup2 Total 

LMG [43]1 99.5 99.5 85.0 79.5 6 1 108 48 163 
LMG-GSJ-BTH-BIP1 99.7 99.5 86.6 83.8 4 1 97 38 140 
LMG-GSJ-BTH-BIP2 99.6 99.5 86.8 83.8 5 1 95 38 139 
LMG-EJS-BTH1 99.8 99.5 88.9 85.9 2 1 80 33 116 
LMG-EJS-BTH2 99.5 100 88.1 86.3 6 0 86 32 124 
LMG-EJS-BIP1 99.5 100 87.8 86.3 6 0 88 32 126 
LMG-EJS-BIP2 99.2 99.5 87.4 86.3 10 1 91 32 134 
LMG-EJS-BTH-BIP1a 99.5 100 88.8 87.6 6 0 81 29 116 
LMG-EJS-BTH-BIP1b 99.8 99.5 89.2 86.8 2 1 78 31 112 
LMG-EJS-BTH-BIP2 99.6 100 88.2 86.3 5 0 85 32 122 
1 results extracted from original source 
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Table 7. Results of face recognition with illumination changes on the Extended Yale B database. 

 

 Accuracy (%) 
p0 p1 p2 p3 p4 

[32] 98.1 --- --- --- --- 
LMG --- 99.3 99.8 99.6 99.1 
LMG-EJS-BIP-BTH --- 99.4 99.4 99.5 99.5 
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Table 8. Results of face recognition with illumination changes and occlusion with sunglasses and 
scarves on the AR database. 

 

 Accuracy (%) 
 Normal Sunglasses Scarves

LGBPHS [37] --- 80 98 
SRC [32] 95.7 97.5 93.5 
LMG 98.6 97.7 97.2 
LMG-EJS-BIP-BTH 99.1 98.0 99.0 
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Table 9. Results of face recognition on the subsets with pose variation bd, be, bf and bg of the 
FERET database.  
 
 Accuracy (%) 
 bd be bf bg 
LMG 81.0 97.0 98.0 79.5 
LMG-EJS-BIP-BTH 93.5 98.5 98.0 91.5 
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Table 10. Minimum verification error result for the ORL face database using the DCF cost 
function for different methods including our LMG-verif. 
 
Transform Min(DCF) 
Eigenfaces* 6.99% 
KLT* 5.24% 
DCT* 5.23% 
WHT* 6.05% 
LMG-verif 4.93% 
* results extracted from [18] 
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Table 11. Shows, on the first column, the total number of jets and the number of jets for four 
different jet selections. The second column shows the ratio between the total number of jets and 
each of the four jet selections. The third column shows the ratio of the computational time 
employed between the total number of jets and each of the four jet selections. 
 

Method Number of Jets Ratio between No. of Jets Ratio between Computational Time
Base 4172 1 1 
Selection_1 2094 0.50 0.55 
Selection_2 2111 0.51 0.55 
Selection_3 3367 0.81 0.80 
Selection_4 2186 0.52 0.58 
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Fig. 1. Local matching Gabor consists of three main modules: image normalization, feature 
extraction through Gabor Jets computation and classification using Borda count matching. 
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Fig. 2. A face from the FERET database with the five grids for spatial scales (a) ν=0, (b) ν =1, (c) 
ν=2, (d) ν =3 and (e) ν=4. The sign + represent the spatial point on the grid where the Gabor 
wavelet is computed. The white squares represent the size of the Gabor jets for each spatial scale in 
pixels of (a) 25x25, (b) 37x37, (c) 51x51, (d) 71x71 and (e) 101x101. 
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Fig. 3. Illustration of Borda count computation method. (a) Matrix S with dimensions NxM, where 
Sij is the score of the j-th Gabor jet comparison with the i-th image of the gallery. (b) Matrix with 
sorted columns O with dimension NxM with values N-1 to 0 in each column. (c) Borda count score 
for the i-th gallery element as the sum of all column in the i-th rows of O. 
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Fig. 4. (a) Entropy histogram for all jets and all of the five wavelengths. (b) Equalized entropy for 
all jets and all of the five wavelengths. 
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Fig. 5. Selection of jets for each spatial frequency, (a) ν=0, (b) ν =1, (c) ν=2, (d) ν =3 and (e) ν=4, 
using GA. The total of jets selected is 2094, 50.19% of them, which means a 55% of computation 
time. 
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Fig. 6. Computed equalized entropy for jets at five spatial frequencies (a) ν=0, (b) ν =1, (c) ν=2, (d) 
ν =3 and (e) ν=4. The color represents different spatial frequencies, and the increased brightness 
represents higher entropy. 
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Fig. 7. Selection of jets for the five spatial frequencies, (a)-(f) ν=0, (b)-(g) ν =1, (c)-(h) ν=2, (d)-(i) ν 
=3 and (e)-(j) ν=4, using entropy (EJS). (a) to (e) are selection EJS1 and (f) to (j) EJS2. 
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Fig. 8. Face recognition rate in training set as a function of the threshold Th for BTH. 
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Fig. 9. Face recognition rate in FERET for Th between 0.8 and 0.89. 
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Fig. 10. Illustration of jet scores for the test images and gallery image from (a) the same person and 
(b) closest subject in the gallery. Jet positions from the EJS are shown as a bright point on the test 
images for two spatial frequencies λ2 and λ4. Jet scores above a threshold of 0.85 are shown as a 
bright square over each jet position. (a) Most jet scores are very high for face poses at -15° and 15° 
and high scores decrease slightly for face poses at -25° and 25°. (b) Results of comparing the test 
images to a different subject in the gallery. A significant number of jet scores are below the 
threshold 0.85 and therefore, the voting process will yield the correct face recognition with higher 
scores of (a). 


