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Asymmetric magnetic dots: A way to control magnetic properties
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We have used Monte Carlo simulations to investigate the magnetic properties of asymmetric dots
as a function of their geometry. The asymmetry of round dots is produced by cutting off a fraction of
the dot and is characterized by an asymmetry parameter α. This shape asymmetry has interesting
effects on the coercivity (Hc), remanence (Mr), and barrier for vortex and C- state formation. The
dependences of Hc and Mr are non monotonic as a function of α with a well defined minima in
these parameters. The vortex enters the most asymmetric part and exits through the symmetric
portion of the dot. With increasing α the vortex formation starts with a C-state which persists for
longer fields and the barrier for vortex exit diminishes with increasing asymmetry, thus providing
control over the magnetic chirality. This implies interesting, naively-unexpected, magnetic behavior
as a function of geometry and magnetic field.

I. INTRODUCTION

Recently much attention was dedicated to the study of
regular arrays of magnetic particles produced by a num-
ber of lithographic techniques. Besides the basic scien-
tific interest in the magnetic properties of these systems,
they may provide the means for the production of new
magnetic devices, or as high-density magnetic recording
media1. The properties exhibited by these nanostruc-
tures are strongly dependent on the geometry, and there-
fore understanding the effect of the shape is fundamental
for the development of applications of such materials2.
The magnetization of nanodots may reverse by one of

two possible mechanisms: vortex nucleation and coherent
rotation3. Vortex states are characterized by an in-plane
and an out-of-plane magnetization. The in-plane mag-
netization is characterized by vortex chirality, defined
as the magnetization direction around the vortex core
(clockwise or counterclockwise). The out-of-plane mag-
netization is defined by the vortex core or polarity. In
this way, vortices exhibit four different magnetic states
defined by their polarity and chirality.
Methods to control the chirality in single FM layer ele-

ments exploit an asymmetry in the applied field, such as
produced by a magnetic force microscope tip4,5, a mag-
netic pulse6, a magnetic field gradient7, or the magneti-
zation history8.
Alternatively asymmetric disks may provide control

over the vortex chirality with an in-plane magnetic
field9–14. The effect of geometry on the vortex nucleation,
annihilation and switching field distribution was explored
in 40-nm-thick Ni80Fe20 disk arrays, with a diameter of
300 nm and different degrees of asymmetry13. These
measurements and micromagnetic simulations showed
that the nucleation and annihilation of vortices vary lin-
early, while the switching field distribution oscillates with
the ratio of the long/short asymmetry axes. More re-

cently, studies of arrays of asymmetric Co dots showed
that the vortices can be manipulated to annihilate at par-
ticular sites under specific field orientations and cycling
sequences.14

In this paper, Monte Carlo simulations are used to
study the magnetic configurations and reversal processes
of asymmetric dots as a function of their geometry. The
behavior of the chirality, coercive field and remanent
magnetization is studied for non-interacting asymmetric
dots as a function of their aspect ratio. Our results show
that the asymmetry determines the region where vortex
nucleation occurs, fixing the chirality of the vortex.

II. MODEL

Our starting point is a uniform circular dot with di-
ameter d = 80 nm and height h = 20 nm. We introduce
asymmetries in these dots by cutting specific sections
characterized by a parameter α = R′/R, as illustrated
in Fig. 1. The field is applied in-plane along the asym-
metry direction.
A symmetric dot is characterized by α = 1.0, while a

semi circular dot is given by α = 0.0. To simulate the
magnetic properties we used Monte Carlo simulations,
assuming that the interdot distance is large enough that
magnetic interactions are negligible, i.e., each dot be-
haves independently15–17. The internal energy, Etot, of a
single dot with N magnetic moments is given by

Etot =
1

2

∑
i6=j

(Eij − Jij µ̂i · µ̂j) + EH , (1)

where Eij is the dipolar energy given by

Eij = [~µi · ~µj − 3(~µi · n̂ij)(~µj · n̂ij)] /r
3
ij , (2)
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FIG. 1. (Color online) Geometrical parameters of a nanodot.
The white surface represents the cut surface.

with rij the distance between the magnetic moments
~µi and ~µj , and n̂ij the unit vector along the direction
that connects the two magnetic moments. Jij is the ex-
change coupling, which is assumed nonzero only for near-
est neighbors and µ̂i is a unit vector along the direction

of ~µi. Here EH = −
∑

i ~µi · ~H represents the Zeeman

energy for a field ~H applied along the x direction. As
we are interested in polycrystalline samples, we have not
included anisotropy.

Simulation of the magnetic configuration of 10-100 nm
structures is not possible at present with standard com-
putational facilities due to the large number of magnetic
moments within each particle. To avoid this problem we
use a scaling technique developed earlier,18 for the cal-
culation of the phase diagram of cylindrical particles. In
this approach we define a scaling factor x (0.01-0.001),
small enough to reduce the system to a computationally
manageable size while still large enough to conserve its
physical complexity, i.e., for instance the possibility for
the development of a magnetic vortex. With this, physi-
cally reasonable results are obtained, in agreement with
micromagnetic calculations, as long as the exchange con-
stant is rescaled by J ′ = xJ , T ′ = xT , and N ′ = Nx3η

with η ≈ 0.55 − 0.57. In particular for cylinders, this
method allows rescaling geometric parameters (height,
h, and diameter, d, for instance) without loosing physi-
cally meaningful results for the phase diagram and for the
general magnetic state of a single nanoparticle.19 Thus
using this method the geometric parameters are rescaled
as d′ = dxη and h′ = hxη

For our simulations we use the same parameters used
earlier,15,20 which produced for symmetric Fe dots good
agreement between simulations and experimental mea-
surements. These parameters are the magnetic mo-
ment |~µi| = µ = 2.2 µB, with µB the Bohr magneton,
bcc lattice constant a0 = 0.28 nm, and J = 40 meV.
For the dot sizes considered in this paper, N would be

larger than 107, which is computationally unmanageable.
Thus we replace the dot with a smaller one according to
the scaling technique described above.18–21 Correspond-
ingly, we also scale the exchange interaction by a factor
x ≡ J ′/J =0.00245, i.e., we replace J with J ′ = 0.098
meV in the expression for the total energy. In this case
η ≈ 0.57 and d′ = 80xη = 2.68 nm.
The Monte Carlo simulations are carried out using the

Metropolis algorithm with local dynamics and single-
spin flip methods22. The new orientation of the mag-
netic moment is chosen randomly with a probability
p = min[1, exp(−∆E/kBT

′)], where ∆E is the change
in energy due to the reorientation of the spin, kB is the
Boltzmann constant, T ′ = xT and T = 10 K.
The initial state of the system is set up using a random

number generator which is used to randomly choose the
spin sequence and their individual orientations. A large
magnetic field of H = 5.5 kOe is applied along the [100]
crystallographic direction, labeled as the x axis. This
produces a configuration in which the system is satu-
rated and therefore most of the magnetic moments point
along this direction. We define Ms as the magnetization
at the maximum applied field (5.5 kOe), Mr as the re-
manent magnetization and Hc as the coercivity. Field
steps of ∆H = 0.1 kOe are used in all calculations, that
is 110 ∆H values for the complete hysteresis cycle. It is
important to recognize that, due to the non-equilibrium
situation, the number of Monte Carlo steps (MCS) used
is a critical issue in the calculation of the hysteresis loops.
Hence, we first study the effect of the MCS on the coer-
civity.
Figure 2 illustrates Hc for a symmetric dot as a func-

tion of MCS. Hc converges asymptotically to 0.47 after
4000 MCS per field value. However, the effects discussed
here are qualitatively similar above MCS ≥ 3500. There-
fore we fix the number of Monte Carlo steps for each field
at this value, performing typically 385.000 Monte Carlo
steps per spin for a complete hysteresis loop. These num-
bers are independent of the scaling factor, as discussed
in ref. 21. For each calculation six hysteresis loops, with
different random number seeds, are averaged to obtain
the results presented here.

III. RESULTS AND DISCUSSION

The main aim of this work is to investigate the effect of
the disk shape asymmetry on the magnetization reversal
process. Fig. 3 shows a strong geometry dependence of
the hysteresis curves for different α. For 0.9 < α ≤ 1.0 a
neck appears with implies that the reversal occurs by
means of the nucleation and propagation of a vortex.
Further decrease of α leads to almost square loops and
the coercivity and remanence change as a function of α,
as shown for h = 20 and 30 nm in Figs. 4(a) and 4(b), re-
spectively. Even a small asymmetry, (α = 0.95), induces
an abrupt decrease of both the coercivity and remanence.
However, further decreases of α produces an increase in
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FIG. 2. Coercivity, Hc, of a symmetric dot for different num-
bers of Monte Carlo Steps, MCS.

the remanence and coercivity. This is a consequence of
the competition between exchange, local dipolar interac-
tions and geometry. The magnetic moments produced
on the new surface experience a lower exchange interac-
tion facilitating the formation of a C state. Moreover as
expected from the Pole Avoidance Principle23, a C state
nucleates to avoid the magnetic pole at the new surface.
The C state, which is the precursor of a vortex, decreases
the coercivity. However, further increase of the asym-
metry competes with the local effects described above,
tending to inhibit vortex formation. Therefore the de-
pendence of the coercivity with α is non monotonic.

The surprising large quantitative difference between
the h = 20 nm and h = 30 nm sample in Fig 4(b) is
due to the full collapse of the coercivity and the verti-
cal change in magnetization as a function of the field, as
expected from the formation of a vortex.

We analyze the reversal mechanisms from snapshots of
the spin configurations for different values of α and the
applied magnetic field. Figs. 5 (a), (b) and (c) show
snapshots at particular field values for h = 20 nm and
α = 1.0, 0.5 and 0.1. These snapshots show that all the
dots reverse their magnetization via vortex nucleation
and propagation, even the dots with α = 0.1, which ex-
hibit almost square hysteresis loops. In symmetric dots,
square loops are a sign of coherent reversal, and the ap-
pearance of a neck indicates that the reversal is driven
by a vortex nucleation and propagation15. However for
asymmetric dots reversal by vortex nucleation may lead
to a square loop.

For α = 1.0 the vortex can nucleate either at the up-
per or lower portion of the dot, depending of the seed
used in the simulation. For instance Fig. 5(a) shows the
propagation of a vortex which nucleates at the −y re-
gion, while for other seeds nucleation may occur at the
opposite region. However, for α < 1.0 (Figs. 5(b) and
(c)) the nucleation occurs always at the +y region (the
asymmetric part), determining uniquely the chirality, +z

FIG. 3. (Color online) Hysteresis loops for an asymmetric dot
as a function of α for height h = 20 nm (a) and h = 30 nm
(b). For α = 1.0 the uniform circular dot has a diameter of
d = 80 nm.

(see Fig. 1). This shows that the asymmetry controls
the position of vortex nucleation during reversal whereas
the vortex chirality is determined by the external mag-
netic field direction. In high magnetic fields, all spins
are aligned along the applied field. For asymmetric dots
the reversal proceeds as follows. As the field is reduced
at a particular negative field a vortex nucleates with a
counterclock-wise direction as viewed from the top (Fig.
1). The reversal starting from saturation in a negative
field proceeds in the opposite way. A qualitatively similar
behavior occurs for h = 30 nm. These results are in good
agreement with our independent OOMMF simulations24.

Finally, we investigate the shape of the vortex as a
function of the dot geometry. To characterize the vortex
we define β = ((

∑
i µix)

2+(
∑

i µiy)
2)/M2

s , where µix and
µiy are the x and y components of individual magnetic
moments, and i ranges over all dots. In this way, β = 0
represents a perfect vortex, while deviations from this
state are represented by β 6= 0. In particular, β = 1
represents a fully saturated ferromagnetic state. As β
varies from 1 to 0, a loop appears and its width represents
the stability of the vortex. Figure 6 shows β for different
α.

In all cases the vortex is almost perfect, β ≈ 0, at some
value of the external field. At this value the magnetiza-
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FIG. 4. (Color online) Coercivity (a) and remanence (b) for
asymmetric dots as a function of α for height h = 20 nm
(dots) and h = 30 nm (triangles).

FIG. 5. Snapshots of the magnetization for a dot with h =
20 nm at four different values of H . The points depict the
position of the magnetic atoms, while the arrows illustrate
the direction of the magnetic moments for α = 1.0 (a), 0.5
(b) and 0.1 (c). For (a) the vortex propagates from the −ŷ

to +ŷ direction with a clock-wise chirality while for (b) and
(c) the vortex propagates from the +ŷ to -ŷ direction with a
counterclock-wise chirality.

tion is zero and therefore represents the coercive field.
This value varies with the geometry of the dot, but also
the geometry influences the stability of the C state and
the vortex. In particular, for α = 1.0 the magnetization
reverses by vortex nucleation at a low field value, −0.3
kOe. The abrupt transition of β from 1 to zero is a conse-
quence of the fast propagation of the vortex to the center
of the dot. This state is very stable, as shown by the −2.2
kOe field required for vortex annihilation. This feature
is represented in Fig. 6(a) by the continuum transition
of β from 0 to approximately 0.3. For α = 0.9 nucle-
ation of a C-state occurs first at +0.9 kOe, represented
in Fig. 6(b) by the decrease of β from 1 to approxi-
mately 0.6. Then, a vortex nucleates at −0.1 kOe, which
annihilates at −1.9 kOe, after which a C-state appears
again, ending the magnetization reversal. This figure to-
gether with the snapshots in Fig. 5 confirms that a small
cut is required for the creation and stabilization of a C-
state. The results for α = 0.5 are qualitatively similar to
those for α = 0.9, although the C-state is more stable, as
evidenced by the slow decrease of β from 1 to approxi-
mately 0.5, until the vortex appears. During this reversal
the vortex nucleates at −1.3 kOe and annihilates at −1.7
kOe. Finally, for α = 0.1 the C-state is even more sta-
ble. The vortex nucleates at −2.4 kOe and annihilates at
−2.6 kOe. Thus, the coercivities increase, the C states
become more stable, and the vortices become less stable
with decreasing α. Interestingly, the degree to which the
Mr decreases depends critically on the height of the dot.

IV. CONCLUSIONS

The results presented above show that the asymmetry
determines the region of vortex nucleation and its chiral-
ity during magnetization reversal. The coercivity, rema-
nence, and vortex stability are strongly affected by the
asymmetry, with a non-monotonic behavior as a function
of α. These results are in agreement with previous experi-
mental evidence13,14 which explored the relation between
asymmetry and chirality. Moreover, it is showed that all
the dots reverse their magnetization via vortex nucleation
and propagation, even dots with α < 0.5, which exhibit
almost square hysteresis loops. Therefore asymmetry can
be used to tailor the magnetic properties of nanostruc-
tured magnetic particles for specific applications.
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FIG. 6. (Color online) Vorticity β of the left (thick lines)
and right (thin lines) branches of the hysteresis curves as a
function of the external magnetic field, for a) α = 1.0, b)
α = 0.9, c) α = 0.5 and d) α = 0.1.
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