
Composition of Dynamic Analysis Aspects

Éric Tanter
PLEIAD Laboratory

Computer Science Department (DCC)
University of Chile – Chile

etanter@dcc.uchile.cl

Philippe Moret Walter Binder
Danilo Ansaloni

Faculty of Informatics
University of Lugano – Switzerland

firstname.lastname@usi.ch

Abstract
Aspect-oriented programming provides a convenient high-level
model to define several kinds of dynamic analyses, in particular
thanks to recent advances in exhaustive weaving in core libraries.
Casting dynamic analyses as aspects allows the use of a single
weaving infrastructure to apply different analyses to the same base
program, simultaneously. However, even if dynamic analysis as-
pects are mutually independent, their mere presence perturbates the
observations of others: this is due to the fact that aspectual compu-
tation is potentially visible to all aspects. Because current aspect
composition approaches do not address this kind of computational
interference, combining different analysis aspects yields at best un-
predictable results. It is also impossible to flexibly combine various
analyses, for instance to analyze an analysis aspect. In this paper
we show how the notion of execution levels makes it possible to
effectively address these composition issues. In order to realize this
approach, we explore the practical and efficient integration of exe-
cution levels in a mainstream aspect language, AspectJ. We report
on a case study of composing two out-of-the-box analysis aspects
in a variety of ways, highlighting the benefits of the approach.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Language Constructs and Features

General Terms Algorithms, Languages, Measurement

Keywords Aspect-oriented programming, execution levels, as-
pect composition, dynamic program analysis, AspectJ

1. Introduction
Dynamic crosscutting with the pointcut and advice mechanism
is particularly well-suited for defining different kinds of dynamic
analyses, such as profiling [26, 6, 2], data race detection [9, 1], or
memory leak detection [21, 35]. The advantage of using aspects
for dynamic analysis stems from the convenient high-level model
offered by join points (representing specific points in the execution
of a program), pointcuts (denoting a set of join points of interest),
and advice (code to be executed whenever a join point of interest
happens). A dynamic analysis aspect is easier to define, tune and
extend, compared to an equivalent implementation based on low-
level code instrumentation tools.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
GPCE 2010 Submission
Copyright c© 2010 ACM [to be supplied]. . . $5.00

A practical impediment to define these analyses as aspects is
that most aspect-oriented programming (AOP) frameworks do not
support aspect weaving in the core libraries of the language because
of bootstrapping issues, as well as to avoid infinite regression when
advice invoke methods in those libraries. In [35, 36], the authors
addressed this issue for Java and AspectJ, using a particular imple-
mentation technique based on code duplication within method bod-
ies and on bypasses to allow reverting to the original bytecode of
a method (before aspect weaving). Therefore, it now becomes pos-
sible to cast existing dynamic analyses as aspects. However, this
raises the need for proper composition of such dynamic analysis
aspects (analysis aspects, for short).

Aspect composition is a multi-faceted topic [10, 4, 13]. A lan-
guage like AspectJ only addresses the shared join point problem
with a limited pragmatic mechanism to declare precedence be-
tween aspects. Other proposals have targeted semantic interactions,
whereby the effects of two aspects conflict with each other [28, 37].
However, even if two aspects are totally independent from each
other (no shared join point, no direct semantic interaction), they
may still interfere with each other because their own computa-
tion can be observed by the other aspect. Because analysis aspects
tend to rely on fairly exhaustive pointcuts (e.g., all invocations,
all instantiations, etc.) visibility is critical. Depending on the ac-
tual visibility of aspectual computation, different scenarios can be
achieved, as will be explained in Section 2. For instance, it is crucial
to be able to apply different analysis aspects and to ensure a stabil-
ity property according to which the set of join points observed by
each of them is unaffected. It is also important to be able to ana-
lyze analysis aspects (e.g., profiling object allocation in a data race
detection aspect); and even to apply a given analysis to itself!

Recently, Tanter proposed execution levels [31] as a means to
structure aspect-oriented programs in order to avoid problems such
as infinite regression and unwanted interference between aspects.
Inspired by work on reflective architectures [15, 12], the default
semantics of execution levels is that aspectual computation is con-
sidered “meta”, and therefore occurs at a higher-level than that of
the base program. As a consequence, aspectual computation is itself
invisible to other aspects. Aspects that need to observe the activity
of other aspects can be deployed at higher levels. Every aspect ob-
serves and potentially affects the computation at the level below it.
The language proposed by Tanter includes the possibility for appli-
cation and aspect programmers to explicitly shift execution up and
down if needed, in order to address specific visibility requirements.

So far, execution levels are implemented in AspectScript [33]
and in an extension of AspectScheme [17], both of which rely on
dynamic weaving. This work addresses the practical and efficient
integration of execution levels in a mainstream aspect language
like AspectJ, where pointcuts are partially evaluated at compile
time [24, 20]. In particular, this work focuses on the integration
and composition of analysis aspects.

The original scientific contributions of this work are:

• The design of a coherent subset of execution levels suited to
the AspectJ compilation and programming models, which takes
into account the specificities of analysis aspects.

• The integration of execution levels in AspectJ, with complete
bytecode coverage (including the Java class library), and sup-
port for most features of AspectJ. Our tool, called MAJOR2,
relies on a generalization and extension of previously developed
techniques.

• A validation of our approach in different use case scenarios,
as well as an evaluation reporting on the size of woven code
and presenting a performance comparison of code woven with
MAJOR2 respectively with the standard AspectJ weaver.

This paper is structured as follows: Section 2 motivates the need
for execution levels by discussing different ways of composing two
independently-developed analysis aspects. Section 3 presents our
model of execution levels for AspectJ, and Section 4 details our
implementation. Section 5 presents evaluation results. Section 6
discusses related work, and Section 7 concludes.

2. Motivating Scenarios
As motivating scenarios, we consider different ways of composing
two analysis aspects, the data race detector Racer [9] and the object
allocation profiler Prof, and different composition scenarios.

The aspects. Figure 1 shows the (refactored and simplified)
Racer aspect, which is a refined implementation of the Eraser data
race detection algorithm [29]. Racer reports a potential1 data race
if two or more threads access the same field without holding any
common lock, and if at least one of these threads is writing to the
field. With each field f , Racer associates a set of locks L(f) and a
finite-state machine to keep track of read and write operations per-
formed by different threads. The first time f is accessed, L(f) is
initialized with all the locks held by the accessing thread. Subse-
quently, each time f is accessed, L(f) is replaced by the intersec-
tion of the locks in L(f) and the locks held by the accessing thread.
If L(f) becomes empty and the field has been accessed by more
than one thread, at least one of them having performed a write ac-
cess, a potential data race is reported. Racer intercepts acquisition
and release of intrinsic locks (expressed with lock and unlock
pointcuts) in order to keep track of the locks held by each thread
(the thread-local variable locksHeld). It checks for potential data
races upon each field access (the staticFieldSet, fieldSet,
staticFieldGet, and fieldGet pointcuts). Details of the Racer
implementation are presented in [9].

Figure 2 illustrates the simplified Prof aspect. It intercepts all
object allocations and keeps some statistics on the number and
size of allocated objects (method profileAllocation, not shown
here). Note that in order to avoid infinite regression, both aspects
declare specific scope pointcuts (scopeRacer and scopeProf)
and use them repeatedly at each advice declaration. This ensures
that each aspect does not see join points produced by its own
computation2. Such pointcuts are simply redundant with execution
levels [31], as will be made clear in Section 3.

Applying both aspects with AspectJ. Applying both as-
pects out of the box is impossible with AspectJ, yielding a

1 The algorithm employed by Racer is prone to false positives.
2 Note that scopeRacer includes a control flow check in order to skip all
join points produced by its own computation, including its callees, while
scopeProf only rules out join points that are lexically in its source code.
The kind of scope pointcuts to use depends on the specificities of each
aspect—but it can have an important impact on performance.

public aspect Racer {
final ThreadLocal<Bag> locksHeld = new ThreadLocal<Bag>(){ ... };
pointcut staticFieldSet() : set(static * *);
pointcut fieldSet(Object o) : set(!static * *) && target(o);
pointcut staticFieldGet() : get(static * *);
pointcut fieldGet(Object o) : get(!static * *) && target(o);

pointcut scopeRacer() : !within(Racer) && !cflow(...) && ... ;

before(Object l) : lock() && args(l) && scopeRacer() {
Bag locks = locksHeld.get(); locks.add(l);

}
after(Object l) : unlock() && args(l) && scopeRacer() {

Bag locks = locksHeld.get(); locks.remove(l);
}
before(Object owner) : fieldSet(owner) && scopeRacer() {

JoinPoint.StaticPart jpsp = thisJoinPointStaticPart;
String id = jpsp.getSignature().toLongString().intern();
SourceLocation loc = jpsp.getSourceLocation();
checkRaceUponFieldSet(owner, id, loc, locksHeld.get(),

Thread.currenThread());
}
... // similar advice for fieldGet, staticFieldGet and staticFieldSet

}

Figure 1. Simplified aspect for data race detection.

public aspect Prof {
pointcut scopeProf() : !within(Prof);
after() returning(Object o) : call(*.new(..)) && scopeProf() {

profileAllocation(o);
} ...

}

Figure 2. Simplified aspect for object allocation profiling

NoAspectBoundException. The reason is that in its initializa-
tion, Racer instantiates some objects; this triggers Prof and starts
its initialization, which happens to access a field. This field access
provokes the retrieval of the Racer instance, whose initialization is
however not complete!3

Even if we manually modify the aspects so as to avoid
this initialization circularity, the obtained results are not consis-
tent4. The issue is that each aspect “sees” the computation of
the other aspect. Concretely, the execution of advice in Racer
produces join points that are matched by Prof (i.e. method
checkRaceUponFieldSet allocates objects), while the execution
of advice in Prof has join points that are matched by Racer
(i.e. method profileAllocation accesses some fields). Hence,
the output of each aspect is affected by the presence of the other.

However, it is not even possible to achieve consistent semantics
according to which Racer analyzes the execution of both the base
program and advice in Prof, whereas Prof profiles the execution
of both the application and advice in Racer; this is because the
scope pointcuts introduced in both aspects to avoid infinite regres-
sion rule out all computation that happens in the control flow of
each aspect. This means that Racer sees Prof advice computation
only when the advice is triggered from application code, but not
from Racer code (and vice versa). In order to properly “separate”
the aspects such that they analyze only the base program, both as-
pects need to be modified; in this case, the pointcuts scopeRacer
and scopeProf must be changed to exclude the computation of
both aspects from weaving.

3 The control flow condition in the scopeRacer pointcut does not avoid the
issue because the AspectJ compiler generates code that retrieves the aspect
instance prior to evaluating the pointcut residue.
4 In AspectJ, precedence declarations allow us to control the order of
advice that match the same join point. In this example, an eventual
precedence declaration has no impact, because the sets of join points
matched by the two aspects are disjoint.

Clearly, requiring changes of both aspects to weave their com-
position is bad software engineering practice, violating basic black-
box composition and reuse principles. For each composition of dif-
ferent analysis aspects, the involved aspects need to be modified.

Composition scenarios. In addition to the sensible composition
semantics described above, there are other interesting scenarios
of aspect composition; for example, profiling object allocation in
Racer with Prof (while Racer is analyzing a base program), or
checking for data races in Profwith Racer (while Prof is profiling
a base program). For the development, testing, and optimization
of analysis aspects, these scenarios are important. While in some
special cases it may be possible to weave the advice methods of one
compiled aspect with another aspect, AspectJ provides no proper
support for flexibly composing aspects in different ways.

In this paper we present an implementation of execution levels
for AspectJ that enables flexible composition of (analysis) aspects
in order to support, amongst others, the following scenarios of
aspect composition:

1. Racer and Prof are simultaneously applied to a base program,
without perturbating each other.

2. Racer is applied to a base program, and Prof is applied to
Racer. That is, Prof profiles object allocation in the Racer
implementation.

3. As above, Racer is applied to a base program, but now Prof is
applied to both the base program and Racer, thereby profiling
all object allocations in the composed program.

4. One instance of Racer is applied to a base program, and a
second instance of Racer is applied to code executed by the
first Racer instance. That is, the second Racer instance checks
for data races in the Racer implementation itself.

These scenarios, as well as many others that are not explicitly
addressed in this paper (e.g., applying Racer to Prof, applying the
same instance or different instances of Prof to a base program and
to Racer, etc.) can all be easily expressed with our implementation
of execution levels for AspectJ, as we will show in Section 3.

3. Levels for Analysis Aspects in AspectJ
The purpose of this section is to provide background on execution
levels [31] and to expose the design of execution levels support
in AspectJ. The design focuses on supporting dynamic analysis
aspects and therefore does not cover the full-fledged proposal of
execution levels as originally formulated by Tanter.

3.1 Execution Levels in a Nutshell
Aspectual computation and meta-circularity. An aspect ob-
serves the execution of a program through its pointcuts, and af-
fects it with its advice. An advice is like a method, and therefore
its execution also produces join points. Similarly, pointcuts as well
can produce join points. For instance, in AspectJ, one can use an
if pointcut designator to specify an arbitrary Java expression that
ought to be true for the pointcut to match. The evaluation of this
expression is a computation that produces join points. In higher-
order aspect languages like AspectScheme [17], AspectML [14], or
AspectScript [33], all pointcuts and advice are standard functions,
whose application and evaluation produce join points as well.

The fact that aspectual computation produces join points raises
the crucial issue of the visibility of these join points. In all lan-
guages, by default, aspectual computation is visible to all aspects—
including themselves. This of course opens the door to infinite
regression issues (a.k.a. meta-circularity in reflective architec-
tures). These are typically addressed with ad-hoc checks (like

pc()

..p.move(..)..

call

..this.setX(..)..

call

ctx
adv(..ctx..) ...before... proceed(p); ...after...

call call call... ...

...

call ...

L0

L1

L2

Figure 3. Execution levels in action: pointcut and advice are eval-
uated at level 1, proceed goes back to level 0.

!cflow(adviceexecution() && within(A))) in AspectJ, or
primitive mechanisms (like AspectScheme’s app/prim and As-
pectML’s disable). However, all these approaches eventually fall
short for they fail to address the fundamental problem, which is
that of conflating levels that ought to be kept separate [12].

Execution levels. In order to address this issue, a program com-
putation is structured in levels. Computation happening at level 0
produces join points observable at level 1. Aspects are deployed at
a particular level, and observe only join points at that level. This
means that an aspect deployed at level 1 only observes join points
produced by level-0 computation. In turn, the computation of an as-
pect (i.e. the evaluation of its pointcuts and advice) is reified as join
points visible at the level immediately above: therefore, the activity
of an aspect standing at level 1 produces join points at level 2.

Crucially, an aspect that acts around a join point can eventually
invoke the original computation. For instance, in AspectJ, this
is done by invoking proceed in the advice body. The original
computation ought to run at the same level at which it originated!5

In order to address this issue, it is important to remember that when
several aspects match the same join point, the corresponding advice
are chained, such that calling proceed in advice k triggers advice
k + 1. Therefore, the semantics of execution levels guarantees that
the last call to proceed in a chain of advice triggers the original
computation at the lower original level.

This is shown in Figure 3. A call to a move method in the
program produces a call join point (at level 1), against which a
pointcut pc is evaluated. The evaluation of pc produces join points
at level 2. If the pointcut matches, it passes context information ctx
to the advice. The advice execution produces join points at level 2,
except for proceed: control goes back to level 0 to perform the
original computation, before going back to level 1 for the after-part
of the advice.

Crucially, execution levels do support the fact that aspects may
call into library code (such as the Java class library). This is because
execution levels are a property of a flow of control, not of a static
entity like a class. Therefore, the same method in the same object
may be executed at different levels depending on who calls it.

Level shifting. The default semantics of execution levels are safe
by default: computation shifts up whenever a pointcut or advice ex-
ecutes, and shifts down when returning to the original computation.
This ensures that infinite regression can never happen, and also en-
sures that the computation of an aspect is invisible to other aspects
at the same level. This safe default may however be too strict in cer-
tain cases. The proposal of Tanter includes level-shifting operators,
up and down to allow for fine-grained control of visibility.

First, an aspect can be deployed at a higher level, e.g., level 2, in
order to observe computation of other aspects. Note that the same

5 This issue is precisely why using control flow checks in AspectJ in order
to discriminate advice computation is flawed. See [31] for more details.

aspect instance can be deployed at different levels if needed. Also,
one can use down to push some part of an advice to the level be-
low, so that it becomes visible to other aspects standing at the same
level. Finally, in order to handle deferred (and possibly concurrent)
advice execution, the proposal also includes level-capturing func-
tions, i.e. functions that are run at the level at which they are defined
(irrespective of the level at which they are actually applied). As we
will see, only a subset of these features are needed for tackling the
issue of composition of dynamic analysis aspects.

3.2 Language Design
We now derive a design for AspectJ with execution levels, based on
the specificities of AspectJ, as well as the characteristics of analysis
aspects.

Analysis aspects. Aspects that are used for dynamic analysis be-
long to a peculiar category. According to the classification system
of Rinard et al. [27], analysis aspects have only augmentation ad-
vice because after crosscutting, the original computation always ex-
ecutes. This is because analysis aspects are monitoring and gather-
ing information about the execution of a base program, something
which is clearly orthogonal to the functionality being advised. Also,
analysis aspects are independent aspects in the sense that they may
read some fields from the base computation but are not writing to
fields that the base program (and other analysis aspects) may read
or write to.

These specificities of analysis aspects perfectly match the de-
fault semantics of execution levels, according to which aspect com-
putation should not be visible to each other. In addition, there is no
need for an analysis aspect to “push down” some of its compu-
tation. As a consequence, the fine-grained control over execution
levels provided by level-shifting operators is not required in the lan-
guage per se when dealing with analysis aspects. It is enough for
the weaver to ensure that aspectual computation is run at a higher
level. Therefore, our AspectJ extension does not support explicit
level shifting at the moment.

Finally, we support before, after and around advice, as well as
if pointcut designators, as these may be used in analysis aspects.

Levels and threads. The original formulation of execution levels
includes a mechanism for defining functions (or in the Java setting,
objects) that capture the level at which they are created and always
run at that level. While this is definitely an interesting feature,
for instance to properly support scheduling threads that execute
runnable objects originating from different levels, we do not need
it for this case study; its integration is left for future work.

However, the original proposal of Tanter does not address con-
currency explicitly: it does not specify at which level newly-
created threads should run. In this work, we do need to support
multi-threading because it is common for analysis aspects to cre-
ate some threads, such as “shutdown hooks” to emit the gathered
statistics before the JVM terminates (e.g., the profiling aspects in
DJProf [26]), cleanup threads to process weak references that have
been cleared by the garbage collector (e.g., the memory leak detec-
tion aspect of Villazón et al. [35]), or thread pools for performing
analysis tasks in parallel with program execution (e.g., the calling-
context profiling aspect of Binder et al. [6] and the parallelized
version of Racer [1]).

We extend the semantics of execution levels to support multiple
threads in the following manner: a thread runs at the level at which
it is created. Therefore, if an aspect running at level 1 creates a
thread, this thread also runs at level 1. This means that it produces
join points at level 2, just like the aspect that spawned it.

All threads initially started in the JVM run at level 0. This
includes the base program main thread of course, as well as system
threads, such as finalizer threads.

base program

Racer Prof

base program

Racer

Racer

base program

Racer

Prof

(a) (c) (d)
base program

Racer

Prof

(b)

L0

L1

L2

L0

L1

L2

L0

L1

L2

L0

L1

Figure 4. Different deployment and instantiation scenarios.

Aspect deployment. The language proposed in [31] is an aspect
language for a higher-order procedural core language with dynamic
deployment of aspects. Dynamic deployment means that the lan-
guage features an explicit deploy operator that, when run at level
n, dynamically installs an instantiated aspect at level n + 1. In
contrast, AspectJ does not support dynamic deployment of aspects.
Rather, aspects are specified at build time, or at program start up, if
load-time weaving is used. Without dynamic deployment, we must
rely on some static specification of aspect deployment that includes
the level at which aspects are deployed. This moves us outside of
the realm of the programming language per se into the realm of the
actual weaver used to effectively apply aspects.

Our MAJOR2 weaver operates statically to transform the Java
class library, and at load-time for weaving all other classes (both ap-
plication and aspect classes). It uses ajc out of the box for compil-
ing aspects (with ajc weaving disabled), and also supports AspectJ
annotation syntax with any Java compiler. Once aspects and appli-
cation classes are compiled, MAJOR2 supports the specification of
level deployment, for instance:

major2.sh Racer[1] Prof[1] Main

deploys both the Racer and the Prof aspects at level 1 (the de-
fault). This corresponds to Figure 4a, while the following deploys
Racer at level 1 and Prof at level 2 (Figure 4b):

major2.sh Racer[1] Prof[2] Main

The semantics of this configuration is that Prof profiles memory
allocation of the implementation of the Racer aspect.

Aspect instantiation. With dynamic aspect deployment, aspect
instantiation is explicit. It is therefore possible to deploy the same
aspect instance at different levels, so that it observes the compu-
tation of all these levels. MAJOR2 also supports specification of
aspect instantiation, statically. For instance, we may want to de-
ploy a single instance of Prof at both levels 1 and 2 (Figure 4c), so
that it profiles memory allocation of both the base program and the
Racer aspect:

major2.sh Racer[1] Prof[1+2] Main

We may also want to deploy different instances of an aspect at each
level. For instance, this can be used to deploy an instance of Racer
on top of another instance of Racer, thereby doing race detection
of the race detection aspect itself (Figure 4d):

major2.sh Racer[1,2] Main

To summarize, in MAJOR2:

• aspect deployment is specified on the command line per aspect,
using square brackets containing a comma-separated list of
level specifications;

• a level specification is either one number, or several numbers
separated by the + sign;

• there is a separate instance of the aspect deployed per level
specification; each aspect instance stands at the specified
level(s).

Codebases. In practice, an analysis aspect is usually complex and
does not fit in a single aspect definition file. MAJOR2 supports
coarser grained specifications than those we have introduced. In
particular, MAJOR2 supports the notion of codebases. A codebase
gathers a set of of Java packages and archives under a single name.
It is then possible to associate an aspect identifier (like Racer or
Prof) to a set of codebases. The interest of codebases is to clearly
identify which code only belongs to certain aspect(s), and use that
information for optimization purposes, as will be explained in Sec-
tion 4.7. Beyond the command line interface illustrated above, MA-
JOR2 supports XML configuration files that embed all codebase
and aspect deployment declarations. We do not present configura-
tion files in this paper.

To sum up, on the surface, our extension of AspectJ to support
execution levels is limited to the small syntactic extension at startup
time to specify instantiation and deployment of aspects with respect
to levels. Compared to the original formulation of execution levels,
our proposal does not support dynamic deployment of aspects,
explicit level-shifting and level-capturing objects, but it includes
a specification of the semantics of levels in the presence of threads:
threads run at the level at which they are created.

4. Implementing Execution Levels
In this section we discuss our implementation of execution levels
in MAJOR2. We explain how execution levels—a dynamic control
flow property—are mapped to statically woven code. Our imple-
mentation of execution levels in MAJOR2:

1. enables aspect weaving with full bytecode coverage,

2. supports libraries that are shared between the base program
and aspects (as well as between aspects deployed at different
execution levels), and

3. uses the unmodified AspectJ weaver as a black box.

The first goal is crucial for analysis aspects, as excluding certain
classes from weaving would yield incomplete and inaccurate re-
sults for most dynamic analyses. The second goal is closely re-
lated to the first goal, since both the base program and aspects in-
voke methods in the Java class library; that is, the Java class li-
brary is always shared; our approach also supports the sharing of
other libraries. The third goal allows us to use different versions of
AspectJ, and (typically) to switch to a new AspectJ release without
any changes in our implementation.

We now expose our implementation of execution levels for
AspectJ, starting by a high-level overview of the approach (Sec-
tions 4 and 4.2). We then describe the code transformation approach
to integrating execution levels, as well as the handling of multiple
aspect instances (Sections 4.3 to 4.6). We conclude by discussing
some optimizations (Section 4.7) and limitations (Section 4.8) of
the current implementation.

4.1 From Execution Levels to Code Versions
Semantically, the execution of a method produces join points.
These join points may be seen by pointcuts that may match them;
if so, the corresponding pieces of advice are triggered.

In aspect languages that perform weaving statically, join point
production is partially evaluated [24]: based on the static properties
of code, it is determined whether or not a given expression can
produce a join point that will be matched at runtime [20]. If so,
such a join point shadow is transformed so as to invoke advice
appropriately. If it can be statically determined that the pointcut

CV-orig

CV0AspectJ
Weaver

body

Racer

CV1AspectJ
Weaver

body

Prof

body =

CV-orig

CV0

CV1

ArrayList.isEmpty()
switch(currentLevel){

}

0:

1:

2:

Figure 5. Obtaining and combining different code versions for the
scenario of Figure 4b. (In practice, the AspectJ compiler is invoked
with, and produces, whole classes.)

however never matches join points corresponding to the shadow,
then no transformation happens. The matching of the pointcut may
also depend on runtime information not available at compile time:
in that case, the shadow is woven together with a residue, i.e. a
conditional expression that guards the invocation of the advice.

With execution levels, the join points produced by the execution
of a method vary. If base program code, running at level 0, invokes
a method, it produces join points at level 1, that may be matched
by aspects deployed at that level. If an aspect deployed at level n
calls this same method, then it produces join points at level n + 1,
visible only for aspects deployed at level n + 1.

Taking into account levels when weaving aspects statically can
be done in different ways. The most straightforward is to simply
weave aspects normally, and add an extra residue at each shadow
that checks if the current execution level matches the level at which
a given aspect has been deployed. However, this approach implies
that for each and every join point shadow in a method, the check
of levels is performed. A more efficient approach in practice, which
we use in MAJOR2, is to factor out the check of levels upon method
entry and dispatch appropriately to a particular code version. More
precisely, there is one code version per execution level, and each
code version corresponds to the code with the instrumented shad-
ows of the aspects deployed at the level directly above it.

4.2 Overall Weaving Process
To illustrate the overall weaving process with code versions, let us
consider the scenario of Figure 4b: Racer is deployed at level 1 and
Prof is deployed at level 2. Figure 5 depicts how aspect weaving
is done for a method that can be called from any execution level,
such as ArrayList.isEmpty().

For each execution level, a code version of that method body is
generated. It is obtained by invoking the AspectJ weaver with the
definition of the aspects deployed at the level immediately above.
In this scenario, there are three levels: code executed at level 0
produces join points at level 1, therefore shadows corresponding
to Racer are inserted in code version CV0; code executed at level 1
produces join points at level 2, so shadows are instrumented for the
Prof aspect in code version CV1. Finally, code executed at level 2
is not visible to any aspect, so in this case the code version is the
original, uninstrumented method body CV-orig.

All three code versions CV0, CV1 and CV-orig are combined
into a single definition of isEmpty: the method starts by checking
the current execution level (a property of the running thread), and
dispatches accordingly to the appropriate code version. This intu-
itive description of the weaving process is made more precise and
complete in the remainder of this section.

1 if (!GlobalState.isBootstrap()) goto WovenBodies;
2 goto OriginalBody; // bytecode: goto_w
3

4 WovenBodies:
5 int currentLevel = ExecutionLevel.currentLevel();
6 switch (currentLevel) { // bytecode: tableswitch
7 case 0: goto WovenWithAspectsAtLevel_1;
8 ...
9 case N-1: goto WovenWithAspectsAtLevel_N;

10 case N: goto OriginalBody;
11 default: goto Error; // should never happen
12 }
13 Error: throw new IllegalExecutionLevelError();
14 WovenWithAspectsAtLevel_1: ... // code version for execution level 0
15 ...
16 WovenWithAspectsAtLevel_N: ... // code version for execution level N − 1
17 OriginalBody: ... // code version for execution level N

Figure 6. Code pattern generated for each method, assuming that
aspects are deployed at levels 1..N (pseudo-code)

4.3 Merging Code Versions
Figure 6 illustrates the general code pattern generated by MAJOR2,
merging multiple code versions into a single method body.

The first two lines in Figure 6 enable bootstrapping the
JVM with a woven Java class library; they are only gener-
ated for methods in the Java class library. The static method
GlobalState.isBootstrap() returns true while the JVM is
bootstrapping. It is crucial not to execute any woven code during
JVM bootstrapping, since otherwise the class dependencies intro-
duced by the AspectJ weaver would change the class initialization
order and crash the JVM. Because the JVM mandates lazy class ini-
tialization [22] and the woven bytecode that would trigger class ini-
tialization is not executed during bootstrapping, the original class
initialization order is preserved. This approach to bootstrapping a
standard JVM with a modified Java class library was first intro-
duced in [7] and also applied in the initial version of MAJOR [35].

Lines 4–12 jump to the code version corresponding to
the current thread’s execution level. The static method
ExecutionLevel.currentLevel() returns the execution
level of the current thread, which is kept in a thread-local variable.6

If the current thread’s execution level does not correspond to any
code version, an IllegalExecutionLevelError is thrown (this
may only happen if the user wrongly specifies that certain code
versions need not be created as an optimization, see Section 4.7).
The code versions are simply concatenated in lines 14–17.

Note that all code versions are reached using the goto w and
tableswitch bytecodes to transfer control to the actual bytecode
sequence corresponding to the current execution level. A naive so-
lution would be to use standard conditional branch bytecodes in-
stead, but this could fail because the offset is then limited to signed
16 bit values. This proves to be insufficient in practice because the
generated method can be fairly long (all code versions are concate-
nated). In contrast, goto w and tableswitch bytecodes support
signed 32 bit values as offsets [22].7

4.4 Merging Class Files
If aspects are deployed at n levels, weaving of a class file C0 in-
volves merging of n + 1 class files (if no optimizations are ap-

6 Conceptually, this variable corresponds to the Dynamic Inserted-Code By-
pass (DIB) used by the initial version of MAJOR to avoid infinite regression
when advice invoke methods in the Java class library [35]. In fact, from the
implementation point of view, the support of execution levels in MAJOR2
is a generalization of the code duplication technique used in MAJOR.
7 While the total size of a merged method must not exceed 216 bytes (see
Section 4.8), goto w and tableswitch bytecodes are needed to encode
jump offsets ≥ 215.

plied): the original class file C0, and the n class files Ci resulting
from weaving C0 with the aspects deployed at level i using the
standard AspectJ weaver. While the merging of code versions at
the level of individual method bodies has been explained in Sec-
tion 4.3, we now discuss issues of merging whole class files.

Weaving with AspectJ may introduce extra methods, such as in
the case of around advice [20]. As methods introduced by dynamic
crosscutting are relevant only for the class file Ci where they are
defined, we rename such methods in the case of name clashes
(i.e. if dynamic crosscutting introduces two methods with the same
name in class files Ci and Cj , 1 ≤ i < j ≤ n). After an eventual
renaming step, for each method defined in at least one class file, the
corresponding code versions in the different class files are merged
as described in Section 4.3. If a code version is missing, a jump to
the Error label is generated (see Figure 6). Constructors are treated
in the same way as methods.

Weaving may also introduce extra static fields to hold instances
of type JoinPoint.StaticPart, which are initialized in the wo-
ven class initializer (static method <clinit>). If necessary, we re-
name these inserted static fields so as to avoid any name clashes.
All fields are preserved in the final class file after merging.

The class initializer is treated specially. For each class file Ci

(1 ≤ i ≤ n), we extract the code that initializes the static fields
holding JoinPoint.StaticPart instances from the class initial-
izer. Independently of the execution level at which the class initial-
izer is executed, all extracted initialization code must be executed.
To this end, in the final class file after merging, we generate a pri-
vate static method to hold all extracted initialization code and insert
an invocation to that method in the beginning of the class initial-
izer. The remainder of the class initializer corresponds to the code
pattern presented in Figure 6, where the different code versions ex-
clude the previously extracted initialization code. For the Java class
library, which is statically woven, the private static method is not
generated. Instead, the inserted static fields and the extracted initial-
ization code are moved to a separate class, in order not to disrupt
JVM bootstrapping by introducing class dependencies during the
bootstrapping phase; for details, see [7, 35].

Our approach results in the following initialization behavior.
The class initializer is executed when a class is used for the first
time [19, 22]; it is executed by the thread T that uses the class
for the first time. After JVM bootstrapping, each class initial-
izer is executed at the current level of thread T . During JVM
bootstrapping, the original class initializer is guaranteed to exe-
cute. For classes in the Java class library, the static fields holding
JoinPoint.StaticPart instances are initialized lazily when they
are accessed for the first time. For all other classes, they are imme-
diately initialized.

4.5 Inserting Level-Shifting Operations
Regarding the generation and merging of code versions, the classes
of compiled aspects are treated like any other classes. In addition,
level-shifting operations are inserted in each advice method and in
each method corresponding to compiled if pointcuts.

Figure 7 illustrates the code pattern implementing level
shifting. The static methods ExecutionLevel.up() and
ExecutionLevel.down() increment respectively decrement the
execution level of the current thread (which is kept in thread-local
storage) by one. The advice body surrounded by the level-shifting
operations corresponds to the merged code versions (see Figure 6).
Consequently, when an advice method is invoked by woven code,
shifting up is executed before the switch statement that jumps to
the according code version.

For around advice, level shifting is more complex. While around
advice bodies are treated as discussed before, it is also necessary to
properly handle the proceed calls. Recall from Section 3.1 that the

ExecutionLevel.up(); // increments the current thread’s execution level
try {

... // advice body (corresponding to the code pattern in Figure 6)
}
finally {

ExecutionLevel.down(); // decrements the current thread’s execution level
}

Figure 7. Generated level-shifting operations surrounding com-
piled advice bodies and if pointcuts.

desired semantics is as follows: proceed should imply going down
one level only for the last proceed in the chain of advice. This is
because that last occurrence of proceed triggers the execution of
the original base computation. Fortunately, the AspectJ compilation
strategy for around advice [20] makes it fairly straightforward to
obtain the proper semantics.

First of all, the original computation is extracted by the AspectJ
compiler into its own synthetic method in the woven class. In
a chain of advice, proceed calls are rewritten to invocations of
a proceed closure. This closure embeds either a call to the next
advice method in the chain, or a call to the synthetic method that
encapsulates the original computation. Therefore, all we have to
do is to insert level-shifting operations in this synthetic method:
invoking ExecutionLevel.down() upon method entry—thereby
ensuring that base computation happens at its original level—and
then calling ExecutionLevel.up() upon method completion—
ensuring that the advice code after the proceed statement runs at
the upper level.

4.6 Accessing Aspect Instances
MAJOR2 supports singleton aspect instances as well as multiple
aspect instances that are deployed at different execution levels.
Other kinds of non-singleton aspect instances are not supported at
the moment, such as per-object or per-control flow aspect associa-
tions (i.e. per* clauses is AspectJ). The AspectJ compiler generates
a static field and the public static method aspectOf in each com-
piled aspect class in order to hold and access the singleton aspect
instance. If only a single instance of an aspect is deployed (either
at one or at multiple execution levels), the generated aspectOf
method remains unchanged.

However, if multiple instances of an aspect are deployed (i.e. at
different execution levels), we need a mechanism to access the as-
pect instance of the current level8. To this end, MAJOR2 gener-
ates extra static fields to hold the specified aspect instances and
generates a switch statement in the aspectOf method (simi-
lar to the code pattern illustrated in Figure 6), in order to re-
turn the aspect instance that corresponds to the current thread’s
execution level. That is, if the current thread is executing at
level k, the aspect instance deployed at level k + 1 is returned (or
IllegalExecutionLevelError is thrown if the aspect has not
been deployed at level k + 1).

Aspect instantiation is performed in a special static method m
that is generated by the AspectJ compiler and invoked by the class
initializer of the compiled aspect class. MAJOR2 treats the class
initializer of compiled aspect classes specially so as to ensure that
method m is invoked independently of the current execution level
of the thread that executes the aspect’s class initializer. If multiple
instances of the aspect are deployed, the body of method m is
extended in order to create all required aspect instances.

8 Note that our approach to support multiple aspect instances relies on the
fact that an aspect has been designed to possibly be instantiated several
times, just like with per* clauses in AspectJ. In particular, the use of shared
(static) state must be considered with care.

4.7 Optimizations: Avoiding Useless Code Versions
Up to now, we have discussed the case of code that can be called
at any execution level, such as methods in shared libraries like
the Java class library. In the full-fledged formulation of execution
levels [31], level-shifting operators make it possible for any code to
be called from virtually any execution level.

Interestingly, our current design of execution levels for AspectJ
does not feature explicit level shifting (recall Section 3.2). In par-
ticular, it is not possible to move some computation down to the
level below the current one. Therefore, execution of code that is
statically declared to “belong” to level k (such as the codebase of
an aspect deployed only at levels ≥ k) cannot happen at a lower
level than k. It can happen at a higher level, though, because of the
possibility of aspects to invoke methods on objects associated with
a join point (e.g., calling hashCode on the target object of a call).
Therefore, it is possible to optimize the previously described weav-
ing process by only inserting the code versions of higher levels. In
the scenario of Figure 4b, this means that we need only a single
code version for the Prof codebase, and only two for Racer.

While the aforementioned optimization is sound and easy to
perform automatically, it might miss some opportunities for further
reducing the set of generated code versions. Therefore, we also
allow the user to explicitly specify that some codebases are never
invoked at certain execution levels, resulting in more aggressive
optimizations. For example, many analysis aspects do not invoke
any (possibly overridden) method of the base program; if they
acquire references to objects of the base program, they only use
the identity of these objects (and possibly the identity hash codes
as returned by the static method System.identityHashCode).
Consequently, in this case, only a single code version needs to be
generated for the methods in the base program (woven with the
aspects deployed at level 1).

In the code pattern illustrated in Figure 6, jumps to code ver-
sions that have not been generated go to the Error label. That is,
erroneous user configurations are explicitly signaled by throwing
an error, instead of executing a wrong code version.9

4.8 Limitations
Currently, MAJOR2 does not support AspectJ constructs for static
crosscutting, i.e. for explicit structural class transformations, such
as the insertion of fields or changes to the class hierarchy. In
addition, as mentioned before, per* clauses are not supported.
Also, while cflow pointcuts are supported, they are not yet level-
sensitive. Similarly, we are currently exploring level-sensitive ex-
ception throwing and handling. Finally, code generated by AspectJ
within woven methods, such as type checks in residues or the al-
location of dynamic join point instances, do not produce any join
points that could be matched by aspects deployed at the next higher
level; this is consistent with the semantics of AspectJ, but it could
be interesting to expose this computation to some analysis aspects.

Threads used in shared libraries, such as Swing event-handler
threads, execute at the level at which they have been created. This
can raise issues because eventual callbacks on request objects ex-
ecute at that level as well. Supporting level-capturing objects [31]
would address the issue by ensuring that callback objects run at
the level at which they were created, rather than at the level of the
handler thread. Similar issues can happen with finalizers, which
should therefore be avoided. An alternative is to use weak refer-
ences and create separate threads for handling weak references that
are cleared by the garbage collector.

9 This approach also helps debugging analysis aspects: if the programmer
believes and specifies that an aspect never invokes any method of the base
program, an error will be thrown if the aspect violates this assumption.

The JVM specification [22] imposes various restrictions on
class files, such as a limit of 216 bytes for method bodies. Conse-
quently, even though MAJOR2 generates jumps with 32 bit offsets,
the code versions merged into a single method body may exceed
that limit. While this limitation affects any instrumentation tool that
inserts bytecodes (e.g., it affects the standard AspectJ weaver), the
merging of code version into a single method body aggravates the
issue. It can be solved by placing code versions in separate private
methods when the method size limit is exceeded.

5. Evaluation
In this section, we first validate our implementation of execution
levels for AspectJ in the use case scenarios we first discussed in
Section 2 and illustrated in Figure 4. Afterwards, we measure the
size of woven code and compare the performance of code woven
with MAJOR2 respectively with the standard AspectJ weaver.

Benchmarks and environment. For the evaluation, a selection of
benchmarks (antlr, hsqldb, jython, luindex, and lusearch) from the
DaCapo suite (dacapo-2006-10-MR2)10 with small workload size
serve as base programs. Our measurement environment is a 16-core
machine (Sun Fire X4450 Server, 4 quad-core Intel Xeon CPUs,
2.4 GHz, 16 GB RAM) running CentOS Enterprise Linux 5.3 and
the Oracle JDK 1.6.0 18 Hotspot Server VM (64 bit version with
default settings). We are using MAJOR2 with AspectJ 1.6.5. We
are weaving the aspects Racer and Prof presented in Section 2.

Handling the scenarios. To validate the soundness of our ap-
proach, we analyzed the output of the dynamic analyses in the four
scenarios illustrated in Figure 4. The output of Racer is a list of po-
tential data races (typically empty for single-threaded programs, al-
though finalizer threads may potentially introduce data races). The
output of Prof is the number of profiled object allocations.

In scenario 1 (Figure 4a), both Racer and Prof are deployed
at execution level 1. In order to validate that the aspects do not in-
terfere with each other, we first deployed only Racer and collected
the output; next we deployed only Prof and gathered the profile.
Afterwards, we deployed both aspects at the same level and col-
lected the combined output. For all our benchmarks, the output of
Racer is not affected by the presence of Prof.

For antlr, luindex, and lusearch, the number of object alloca-
tions reported by Prof is not affected by the presence of Racer
either. For hsqldb, we can observe small differences of approxi-
mately 10 object allocations. However, this difference comes from
the non-determinism of the program itself11: re-running hsqldb
with the same aspect(s) never gives the same exact number of
reported object allocations; the observed difference is within the
range of the non-determinism.

For jython, we obtain an unexpectedly high difference of 11354
object allocations. An examination of the benchmark code reveals
that initially, jython analyzes the archives in the class path, includ-
ing the Java class library (rt.jar) and also the archives compris-
ing the classes of the deployed aspects. Since MAJOR2 statically
weaves the Java class library, jython analyzes a larger rt.jar
when Racer is deployed. This example shows the limits of a code
transformation approach: for applications that rely on some form of
reflection, the extra code inserted by the weaver may cause pertur-
bations. Because the measurement of object allocation in jython is
significantly perturbated by inserted code, we omit that benchmark
in the validation of the following scenarios.

10 http://dacapobench.org
11 In many JVM implementations, identity hashcodes are random num-
bers, and random number generators are sources of non-determinism.
For multi-threaded programs, thread scheduling is another source of non-
determinism. hsqldb is a heavily multi-threaded benchmark [6].

Size Increase
[MB] factor

Scenario 1 95.68 2.06
Scenario 2 104.36 2.24
Scenario 3 105.56 2.32
Scenario 4 116.40 2.56

Table 1. Size of the woven Java class library (rt.jar) in the four
scenarios (no compression). The original size is 46.45 MB

In scenario 2 (Figure 4b), Racer is deployed at level 1 and Prof
is deployed at level 2. The output of Racer effectively does not
change when Prof is deployed on top of it.

In scenario 3 (Figure 4c), Racer is deployed at level 1, and
the same instance of Prof is deployed at both level 1 and level 2.
For antlr, luindex, and lusearch, we confirmed that the reported
number of object allocations corresponds to the sum of the object
allocations reported in scenario 1 and in scenario 2. For hsqldb,
we again notice a small difference due to non-determinism. This
observation confirms the consistency of our results.

In scenario 4 (Figure 4d), two instances of Racer are de-
ployed, one at level 1 and the other at level 2. First, we refac-
tor Racer to avoid any static fields, which would otherwise in-
troduce unwanted interference between the two Racer instances.
Then, in order to show the benefits of self-application, we intro-
duce a simple data race in its implementation. More precisely, we
drop synchronization for an access to a shared data structure that
updates the finite-state machines for data race detection within the
method checkRaceUponFieldSet. The broken Racer is still sta-
ble enough to produce valid results in our environment. Then, us-
ing the multi-threaded benchmark lusearch as base program, the
instance of Racer at level 2 is indeed able to report the simple data
race we introduced within Racer 12. This illustrates how an analy-
sis aspect can be used to analyze itself, without circularity issues.

Code bloat. Our implementation of execution levels in MAJOR2
can introduce significant code bloat, in particular for shared li-
braries where often all code versions are needed. In order to quan-
tify code bloat, we measured the size of the woven Java class li-
brary (rt.jar in our JVM) for the four aforementioned scenarios.
In the first scenario, two code versions are generated. In the other
scenarios, three code versions are produced.

Table 1 presents the size of the woven Java class library (with-
out any compression). In the first scenario, the woven Java class
library is about twice as large as the unmodified version. The gen-
erated two code versions, the switch statement upon method entry,
the invocations of advice methods, and the inserted static fields to
hold instances of type JoinPoint.StaticPart contribute to the
increase in size, which is however mitigated by the fact that some
parts of the class files, such as the constant pools, are not signifi-
cantly enlarged.

The additional increase in size for the other scenarios is rela-
tively small, although they require three code versions. This is ex-
plained by the fact that object-oriented programs have many small
methods. For such methods, the code bloat is often dominated by
the inserted switch statement. Furthermore, comparing scenar-
ios 1 and 2, the invocations of advice methods in Prof are not
duplicated, but moved from code version 0 to code version 1.

Surprisingly, code bloat in scenario 4 is worse than in sce-
nario 3, although only a single aspect is woven. In fact, weav-
ing with the Racer aspect deployed at level 1 respectively

12 As reported in [1], the original release of Racer had a race condition.
However, the algorithm would not be able to detect that particular race con-
dition, because it was not a simple data race (but a general race condition).

Orig. AspectJ MAJOR2
[ms] [ms] ovh. [ms] ovh.

antlr 112 6187 55.24 6313 56.37
hsqldb 594 55594 93.59 59038 99.39
jython 157 122401 779.62 129810 826.82
luindex 129 40142 311.18 42819 331.93
lusearch 235 87616 372.83 89948 382.76

Table 2. Overhead comparison for scenario 1: AspectJ versus
MAJOR2 (wall-clock time in milliseconds and overhead factor)

at level 2 yields equivalent bytecode. However, in the cur-
rent implementation, the renaming of inserted static fields to
hold JoinPoint.StaticPart instances prevents identification of
equivalent code versions. We are now exploring whether seman-
tically equivalent JoinPoint.StaticPart instances in different
code versions should be replaced by a single instance.

Runtime overhead. Here we explore the overhead introduced by
the management of execution levels (i.e. the switch statement gen-
erated within method bodies and the inserted level-shifting opera-
tions in advice methods). We measure execution time for scenario 1
and compare it with measurements using the standard AspectJ
weaver. For a fair comparison, both settings must weave the aspects
in the same set of classes. To this end, it is necessary to restrict the
scope of the two aspects to exclude each other’s classes and to ex-
clude the Java class library, because otherwise the standard AspectJ
weaver would break it13.

The measurements for our benchmarks are presented in Table 2.
In order to attenuate the impact of just-in-time compilation and
garbage collection, for each benchmark we report the median of
15 runs within the same JVM process. The extra overhead intro-
duced by MAJOR2 is insignificant compared to the excessive over-
head due to the actual dynamic analyses. If we take the execution
time with the AspectJ weaver as a baseline, MAJOR2 introduces
an overhead of 2–7%. Note that in general, Prof introduces only
minor overhead, while Racer is a very expensive dynamic analysis
that requires some access to shared state upon each field access.

6. Related Work
There is a considerable body of literature on aspect composition
and interaction issues [10]. Many proposals focus on the shared
join point problem, whereby two aspects affect the same join
points [5, 16, 25, 30]. Sanen et al. present a classification of as-
pect interactions [28], which includes: conflicts (semantical inter-
ference), dependencies (aspects that need other aspects), reinforce-
ment (aspects influencing correct working of others) and mutex
(interaction type of mutual exclusiveness). Our work is concerned
with the first kind of interactions, i.e. conflicts: a conflict happens
when an aspect works correctly in isolation, but fails to work when
composed with other aspects. Some work on aspect conflicts go
beyond syntactic conflicts, for instance by relating these issues to
feature interaction [23], or detecting semantic interference through
annotations [37]. Also, work on explicit effect analysis [11] can be
used to detect semantic interactions.

This work however departs from all this body of literature by fo-
cusing on what we call computational interference: the mere com-
putation of an aspect can interfere with others and thereby affect
their output. As we have seen, execution levels [31] provide an

13 In addition, the benchmark results given here use a refactored and op-
timized version of Racer that does not use the control flow check in the
scopeRacer pointcut. With the control flow check, AspectJ is much slower
than MAJOR2 (taking MAJOR2 as a baseline, the AspectJ overhead ranges
from 18% for hsqldb to over 80% for antlr and luindex).

elegant and effective solution to this issue. This article builds on
previous work on execution levels by addressing their practical and
efficient integration in a mature and compiled aspect language. Ex-
ecution levels themselves are rooted in work on metalevel archi-
tectures [15], in particular the meta-helix architecture of Chiba et
al. [12]. The work on stratified aspects of Bodden et al. [8] is a
first step to address the particular issue of infinite regression of as-
pects by declaring aspects on different levels. This is very similar
to execution levels but differs in one fundamental point: with strat-
ified aspects, levels are static properties of code (classes at level 0,
aspects at level 1, meta-aspects at level 2, etc.). Because this ap-
proach fails to recognize levels as a property of the execution flow,
it is unable to support code that may run at different levels. This is
fundamental to be able to handle callbacks from aspects to applica-
tion code as well as shared libraries.

Regarding instrumentation of shared libraries, the Twin Class
Hierarchy [18] replicates the full hierarchy of instrumented classes
into a separate package that coexists with the original one. As
pointed out in [32], the use of replicated classes limits the applica-
bility of instrumentation in the presence of native code. Thus, this
approach does not allow transparent instrumentation of the com-
plete Java class library. In contrast, MAJOR2 does not duplicate
any class, but relies on code duplication within method bodies,
an estabished technique that has been successfully used by the in-
strumentation framework FERRARI [7], the initial version of MA-
JOR [35], and the dynamic AOP system HotWave [34].

7. Conclusion
Aspect-oriented programming is particularly interesting to define
various kinds of dynamic analyses. A major attraction is the use
of a common weaving infrastructure with a high-level interface.
To fully realize the potential of dynamic analysis aspects, however,
it is important to be able to reuse and compose different analy-
ses together in a robust and flexible manner. Current approaches
to aspect weaving fail to support this vision because of the com-
putational interference effect: the mere presence of an aspect per-
turbates the observations made by other aspects, because of the
extra join points that are produced and observable by all aspects.
Execution levels provide a simple and effective framework to ad-
dress this issue. This paper has shown how execution levels can
be integrated into AspectJ, and has demonstrated with a case study
and different composition scenarios that this integration is indeed
practical. Future work includes addressing the current limitations
of the MAJOR2 implementation, in particular the lack of support
for level-capturing objects and level-sensitive cflow, and studying
a larger body of analysis aspects.

References
[1] D. Ansaloni, W. Binder, A. Villazón, and P. Moret. Parallel Dynamic

Analysis on Multicores with Aspect-Oriented Programming. In
AOSD 2010 [3], pages 1–12.

[2] D. Ansaloni, W. Binder, A. Villazón, and P. Moret. Rapid Devel-
opment of Extensible Profilers for the Java Virtual Machine with
Aspect-Oriented Programming. In WOSP/SIPEW 2010: Proceedings
of the First Joint International Conference on Performance Engineer-
ing, pages 57–62. ACM Press, Jan. 2010.

[3] Proceedings of the 9th ACM International Conference on Aspect-
Oriented Software Development (AOSD 2010), Rennes and Saint
Malo, France, Mar. 2010. ACM Press.

[4] A. Assaf and J. Noyé. Dynamic AspectJ. In Proceedings of the 4th
ACM Dynamic Languages Symposium (DLS 2008), Paphos, Cyprus,
July 2008. ACM Press.

[5] L. Bergmans, M. Akşit, and B. Tekinerdogan. Aspect composition
using composition filters. In Software Architectures and Component

Technology: The State of the Art in Research and Practice, pages
357–382. Kluwer Academic Publishers, 2001.

[6] W. Binder, D. Ansaloni, A. Villazón, and P. Moret. Parallelizing
Calling Context Profiling in Virtual Machines on Multicores. In PPPJ
’09: Proceedings of the 7th International Conference on Principles
and Practice of Programming in Java, pages 111–120, New York,
NY, USA, 2009. ACM.

[7] W. Binder, J. Hulaas, and P. Moret. Advanced Java Bytecode
Instrumentation. In PPPJ’07: Proceedings of the 5th International
Symposium on Principles and Practice of Programming in Java,
pages 135–144, New York, NY, USA, 2007. ACM Press.

[8] E. Bodden, F. Forster, and F. Steimann. Avoiding infinite recursion
with stratified aspects. In Proceedings of Net.ObjectDays 2006,
Lecture Notes in Informatics, pages 49–54. GI-Edition, 2006.

[9] E. Bodden and K. Havelund. Racer: Effective Race Detection
Using AspectJ. In International Symposium on Software Testing
and Analysis (ISSTA), Seattle, WA, July 20-24 2008, pages 155–165,
New York, NY, USA, 07 2008. ACM.

[10] L. Bussard, L. Carver, E. Ernst, M. Jung, M. Robillard, and A. Speck.
Safe aspect composition. In J. Malenfant, S. Moisan, and A. Moreira,
editors, Object-Oriented Technology: ECOOP 2000 Workshop
Reader, volume 1964 of Lecture Notes in Computer Science, pages
205–210. Springer-Verlag, 2000.

[11] B. C. d. S. Oliveira, T. Schrijvers, and W. R. Cook. EffectiveAdvice:
discplined advice with explicit effects. In AOSD 2010 [3], pages
109–120.

[12] S. Chiba, G. Kiczales, and J. Lamping. Avoiding confusion
in metacircularity: The meta-helix. In Proceedings of the 2nd
International Symposium on Object Technologies for Advanced
Software (ISOTAS’96), volume 1049 of Lecture Notes in Computer
Science, pages 157–172. Springer-Verlag, 1996.

[13] R. Chitchyan, J. Fabry, S. Katz, and A. Rensink. Editorial for
special section on dependencies and interactions with aspects. In
Transactions on Aspect-Oriented Software Development V, volume
5490 of Lecture Notes in Computer Science, pages 133–134.
Springer-Verlag, 2009.

[14] D. S. Dantas, D. Walker, G. Washburn, and S. Weirich. AspectML: A
polymorphic aspect-oriented functional programming language. ACM
Transactions on Programming Languages and Systems, 30(3):Article
No. 14, May 2008.

[15] O. Danvy and K. Malmkjaer. Intensions and extensions in a reflective
tower. In Proceedings of the 1988 ACM Conference on Lisp and
Functional Programming, pages 327–341, Snowbird, Utah, USA,
July 1988. ACM Press.

[16] R. Douence, P. Fradet, and M. Südholt. A framework for the
detection and resolution of aspect interactions. In D. Batory,
C. Consel, and W. Taha, editors, Proceedings of the 1st ACM
SIGPLAN/SIGSOFT Conference on Generative Programming and
Component Engineering (GPCE 2002), volume 2487 of Lecture
Notes in Computer Science, pages 173–188, Pittsburgh, PA, USA,
Oct. 2002. Springer-Verlag.

[17] C. Dutchyn, D. B. Tucker, and S. Krishnamurthi. Semantics and
scoping of aspects in higher-order languages. Science of Computer
Programming, 63(3):207–239, Dec. 2006.

[18] M. Factor, A. Schuster, and K. Shagin. Instrumentation of standard
libraries in object-oriented languages: The twin class hierarchy
approach. In OOPSLA ’04: Proceedings of the 19th Annual ACM
SIGPLAN Conference on Object-Oriented Programming, Systems,
Languages, and Applications, pages 288–300, New York, NY, USA,
2004. ACM.

[19] J. Gosling, B. Joy, G. L. Steele, and G. Bracha. The Java Language
Specification, Third Edition. The Java Series. Addison-Wesley, 2005.

[20] E. Hilsdale and J. Hugunin. Advice weaving in AspectJ. In
K. Lieberherr, editor, Proceedings of the 3rd ACM International
Conference on Aspect-Oriented Software Development (AOSD 2004),
pages 26–35, Lancaster, UK, Mar. 2004. ACM Press.

[21] C. Kung and C. Ju-Bing. Aspect-Based Instrumentation for Locating
Memory Leaks in Java Programs. In Computer Software and
Applications Conference, 2007. COMPSAC 2007, pages 23–28,
Beijing, China, 2007. IEEE Computer Society.

[22] T. Lindholm and F. Yellin. The Java Virtual Machine Specification.
Addison-Wesley, Reading, MA, USA, second edition, 1999.

[23] R. Lopez-Herrejon, D. Batory, and C. Lengauer. A disciplined
approach to aspect composition. In PEPM ’06: Proceedings of
the 2006 ACM SIGPLAN symposium on Partial evaluation and
semantics-based program manipulation, pages 68–77, New York,
NY, USA, 2006. ACM.

[24] H. Masuhara, G. Kiczales, and C. Dutchyn. A compilation and
optimization model for aspect-oriented programs. In G. Hedin, editor,
Proceedings of Compiler Construction (CC 2003), volume 2622 of
Lecture Notes in Computer Science, pages 46–60. Springer-Verlag,
2003.

[25] I. Nagy, L. Bergmans, and M. Aksit. Composing aspects at shared join
points. In NetObjectDays (NODe 2005), Lecture Notes in Informatics
69, pages 19–38, Erfurt, Germany, Sept. 2005.

[26] D. J. Pearce, M. Webster, R. Berry, and P. H. J. Kelly. Profiling with
AspectJ. Software: Practice and Experience, 37(7):747–777, June
2007.

[27] M. Rinard, A. Salcianu, and S. Bugrara. A classification system and
analysis for aspect-oriented programs. In Proceedings of the 12th
ACM Symposium on Foundations of Software Engineering (FSE 12),
pages 147–158. ACM Press, 2004.

[28] F. Sanen, E. Truyen, B. D. Win, W. Joosen, N. Loughran, G. Coulson,
A. Rashid, A. Nedos, A. Jackson, and S. Clarke. Study on interaction
issues. Technical Report AOSD-Europe Deliverable D44, AOSD-
Europe-KUL-7, Katholieke Universiteit Leuven, 28 February 2006
2006.

[29] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. Anderson.
Eraser: A Dynamic Data Race Detector for Multithreaded Programs.
ACM Trans. Comput. Syst., 15(4):391–411, 1997.

[30] É. Tanter. Aspects of composition in the Reflex AOP kernel.
In W. Löwe and M. Südholt, editors, Proceedings of the 5th
International Symposium on Software Composition (SC 2006),
volume 4089 of Lecture Notes in Computer Science, pages 98–113,
Vienna, Austria, Mar. 2006. Springer-Verlag.

[31] É. Tanter. Execution levels for aspect-oriented programming. In
AOSD 2010 [3], pages 37–48. Best Paper Award.

[32] E. Tilevich and Y. Smaragdakis. Transparent program transformations
in the presence of opaque code. In GPCE ’06: Proceedings of
the 5th International Conference on Generative Programming and
Component Engineering, pages 89–94, New York, NY, USA, 2006.
ACM.

[33] R. Toledo, P. Leger, and É. Tanter. AspectScript: Expressive aspects
for the Web. In AOSD 2010 [3].

[34] A. Villazón, W. Binder, D. Ansaloni, and P. Moret. Advanced
Runtime Adaptation for Java. In GPCE ’09: Proceedings of the
Eighth International Conference on Generative Programming and
Component Engineering, pages 85–94. ACM, Oct. 2009.

[35] A. Villazón, W. Binder, and P. Moret. Aspect Weaving in Standard
Java Class Libraries. In PPPJ ’08: Proceedings of the 6th
International Symposium on Principles and Practice of Programming
in Java, pages 159–167, New York, NY, USA, Sept. 2008. ACM.

[36] A. Villazón, W. Binder, and P. Moret. Flexible Calling Context
Reification for Aspect-Oriented Programming. In AOSD ’09:
Proceedings of the 8th International Conference on Aspect-oriented
Software Development, pages 63–74, Charlottesville, Virginia, USA,
Mar. 2009. ACM.

[37] A. Zambrano, S. Gordillo, and J. Fabry. A fine grained aspect coor-
dination mechanism. International Journal of Software Engineering
and Knowledge Engineering (IJSEKE), December 2010. To appear.

