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Abstract Conventional geostatistics often relies on the

assumption of second order stationarity of the random

function (RF). Generally, local means and local variances

of the random variables (RVs) are assumed to be constant

throughout the domain. Large scale differences in the local

means and local variances of the RVs are referred to as

trends. Two problems of building geostatistical models in

presence of mean trends are: (1) inflation of the conditional

variances and (2) the spatial continuity is exaggerated.

Variance trends on the other hand cause conditional vari-

ances to be over-estimated in certain regions of the domain

and under-estimated in other areas. In both cases the

uncertainty characterized by the geostatistical model is

improperly assessed. This paper proposes a new approach

to identify the presence and contribution of mean and

variance trends in the domain via calculation of the

experimental semivariogram. The traditional experimental

semivariogram expression is decomposed into three com-

ponents: (1) the mean trend, (2) the variance trend and (3)

the stationary component. Under stationary conditions,

both the mean and the variance trend components should

be close to zero. This proposed approach is intended to be

used in the early stages of data analysis when domains are

being defined or to verify the impact of detrending tech-

niques in the conditioning dataset for validating domains.

This approach determines the source of a trend, thereby

facilitating the choice of a suitable detrending method for

effective resource modeling.

Keywords Semivariogram � Non-stationarity �
Mean trend � Variance trend

1 Introduction

Trends are defined as low-frequency, large scale variations

of a certain regionalized variable (Olea 1991). Here, the

term ‘trend’ refers to large scale patterns in the local mean

and/or local variance. Dealing with trends in the mean and/

or variance is a longstanding challenge in mineral resource

modeling. Mean trends are an important part of modeling

natural resources (Leuangthong and Deutsch 2004).

Extensive research has been conducted to deal with mean

trends. Kriging estimators have been modified to account

for mean trends by many authors such as Matheron (1969),

Olea (1974), Davis and David (1978), and Costa (2009)

among others. An iterative approach to filter the mean

trend was proposed by Neuman and Jacobson (1984). Their

approach resembles universal kriging, in that the mean

trend is estimated from a set of functionals and its coeffi-

cients are iteratively estimated along with the inference of

the residuals variogram. However, variance trends are not

M. A. Cuba (&)

Department of Civil & Environmental Engineering, Centre

of Computational Geostatistics, University of Alberta,

3-133 Markin/CNRL NREF, Edmonton, AB T6G 2W2, Canada

e-mail: cuba@ualberta.ca

O. Leuangthong

SRK Consulting (Canada) Inc., 2100, 25 Adelaide St. East,

Toronto, ON M5C 3A1, Canada

e-mail: oleuangthong@srk.com

J. M. Ortiz

Department of Mining Engineering, University of Chile,

Avenida Tupper 2069, 8370451 Santiago, Chile

e-mail: jortiz@ing.uchile.cl

J. M. Ortiz

ALGES Laboratory, Advanced Mining Technology Center

(AMTC), University of Chile, Avenida Tupper 2069, 8370451

Santiago, Chile

123

Stoch Environ Res Risk Assess (2012) 26:247–260

DOI 10.1007/s00477-011-0501-9



addressed. Journel and Rossi (1989) discussed the impor-

tance of accounting for trends and highlighted that different

kriging approaches tend to give similar estimates when

interpolating in densely sampled regions, with differences

arising only when extrapolation is required in poorly

sampled regions. In their analysis, trend models are fitted

either by a local estimation of the mean value in ordinary

kriging or the fitting through polynomials via kriging with

a trend, usually retaining only low order monomials. There

is no mention to variance non-stationarity and the issues of

variogram estimation are addressed by finding a proper

residual variogram or covariance, which in practice may

not be simple. Furthermore, the global compensation of the

kriging variance due to the presence of variance trends is

disregarded as a problem.

While there is vast literature regarding non-stationarity

in the mean, variance trends are often only mentioned in

the presence of mean trends. These patterns of variability

in the local standard deviation that are related to variations

of the local mean are usually referred to as a proportional

effect (Isaaks and Srivastava 1989; Manchuck et al. 2009).

Detrending and/or data transformations are offered as

possible solutions to mitigate the influence of a propor-

tional effect in resource modeling.

In practice, domains are influenced by physical condi-

tions that make it difficult to assume stationarity. The

process of domaining when modeling mineral deposits

relies on the geologic characterization of the information

sampled by exploratory drilling campaigns. This charac-

terization can be classified as generic or detailed depending

on the geologist’s criteria. A generic geologic interpreta-

tion is more restrictive for domaining because it tends to

combine different rock types into a more generic rock type

category. For example, magnetite exoskarn, garnet exos-

karn and other types of exoskarn rock types may be char-

acterized as simply exoskarn. On the other hand, a detailed

interpretation better accounts for the heterogeneities in

mineral grades, and gives more flexibility for defining

larger domains because the various rock types interpreted

can be combined into suitable stationary domains. In the

case of generic geologic interpretations, mean and variance

trends are more likely to be present. This poses a potential

challenge for modeling using conventional geostatistical

approaches, unless these trends are removed and residuals

are modeled. Ignoring trends and applying conventional

geostatistics can lead to:

• inflation of conditional variances;

• an incorrect definition of the corresponding semivari-

ogram model; and

• compensation of the conditional variances over differ-

ent regions in the domain, that is, over-estimation in

some regions and under-estimation in others.

There are many approaches aimed at dealing with mean

trends. One common approach considers decomposition of

the original value into a mean component and a residual

component (1):

R uð Þ ¼ Z uð Þ � m uð Þ; ð1Þ

where Z(u) represents the random variable (RV) in original

scale units, R(u) is the residual value after removing the

mean trend, m(u) is the mean trend and u is a location

vector in Rn. The mean trend component m(u) is the

expected value of Z(u), hence, the residual R(u) is centered

at zero mean.
Classical approaches consist of calculating mean trends

as smoothed models that are intended to capture the large

scale variability of the mean in the domain. These models

can be built using interpolation techniques such as moving

window averaging or some kriging variants, and in the case

of high dimensional trend models, they can be constructed

by combining lower dimensional trends (McLennan 2007;

Leuangthong et al. 2008). Also, the use of neural networks

to obtain the mean trend has been proposed in Kanevski

et al. (1996), and Demyanov et al. (2001) proposed the use

of wavelets and frames for the same purpose.

David (1977) and Cressie (1985) discussed the use of

relative semivariograms to account for variance trends that

are proportional to the local means squared. Leuangthong

and Deutsch (2004) proposed the use of stepwise condi-

tional transformation for dealing with the residuals in

presence of both the mean and variance trends. The trend in

the variance is usually addressed as a consequence of the

proportional effect that may be present in a domain because

of the nature of the regionalized variable to be modelled.

The proportional effect considers large scale dependences

between local means and local variances in a domain or the

dependence of mean and variances of two conditional

distributions (Manchuck et al. 2009). However, the vari-

ability of the local variances in a domain can be indepen-

dent to the variability of the local means, that is, mean

trends are not necessarily related to variance trends.

Underlying geologic structures rule the occurrence of the

variable of interest in the domain. Consider a generic

geologic characterization that combines two types of cop-

per minerals in a domain, such as chalcopyrite and bornite.

The former has less variability in copper grades compared

to the latter. If the chalcopyrite mineralogy is dominant in

one side of the domain and the bornite in the other with a

soft transition in between, then there is a large scale pattern

of variability of copper grades in the domain or a variance

trend. In terms of a random function (RF), this is related

to differences in the variance between regions of RVs

(see Fig. 1d–f).

Two or more domains with different variability and the

same mean should not be combined simply because there is
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no mean trend. As in the case of mean trends, building

geostatistical models in presence of variance trends can

also have negative consequences. It is recommended to

remove the variance trend after removing the mean trend;

the latter could mask the variability in the domain since

only one value is available at each location. A similar

discussion is undertaken by Myers (1989). He gives an

example of this by using a database of daily readings of

SO2, removing the mean trend by using increments, and the

variance trends by means of a logarithmic transformation.

Another approach to remove this trend is by standardizing

the local variability (2):

Y uð Þ ¼ R uð Þ
ffiffiffiffiffiffiffiffiffiffiffi

r2 uð Þ
p ð2Þ

where R(u) is the residual value after removing the mean

trend, in original scale units with zero mean, Y(u) is the

standardized RV after removing the variance trend, and

r2(u) is the variance trend and u is a location vector in Rn.

The resulting variances of Y(u) are all equal to one.

This paper proposes a method to identify and quantify

the sources contributing to a trend by decomposing the

experimental semivariogram into stationary and non-sta-

tionary components. These types of analysis are common

and have been documented previously by other authors

focussing mainly on mean trends, usually looking for a

trend-free direction and assuming an isotropic behaviour of

the residuals or modeling a local mean by some functional

(Matheron 1969; Journel and Rossi 1989; Olea 2006). Still,

there are a multitude of geomodeling methods and sug-

gestions for dealing with trends related to the mean and/or

the variance and the choice of which method is appropriate

and effective for any particular setting is challenging. The

proposed decomposition of the experimental semivario-

gram requires little additional effort for the geomodeler,

with the added benefit of identifying the source of the trend

contribution. The ability to identify whether the mean and/

or the variance contributes to the non-stationarity of the

deposit or reservoir feeds into a decision support system to

determine an appropriate geomodeling approach to

resource modeling.

2 Domaining for mineral deposits modeling

In conventional geostatistics, the semivariogram model is

used to define the spatial continuity of a stationary random

function (SRF). In practice, it is obtained by fitting the

experimental semivariogram computed from the available

dataset within a domain. This measure of spatial continuity

is then used to infer metal or mineral grades or any attri-

bute of interest at unsampled locations via estimation or

simulation. A fundamental component of this framework is

the decision of stationarity that permits the extraction of

Fig. 1 Schematic 1D Gaussian

environments: a constant local

mean and local variance;

b linear mean trend and constant

local variance; c two sub-

regions of constant local

variance but different local

means; d two regions of

constant local mean but

different local variance with a

transition zone; e two sub-

regions of different local means

and different local variances;

f two regions of different local

means and different local

variances with a transition zone;

the dashed lines represent some

confidence limits of the normal

distributed RVs Z(u)
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relevant statistics about the domain using only the available

sampled data. Often, the assumption of second order sta-

tionarity, where the mean of the RVs and covariances of

every two RVs separated by a common vector are con-

sidered to be constant, is sufficient for inference. However,

in presence of a trend, the variogram is incorrectly esti-

mated by the conventional approach, and should be infer-

red as a variance of the difference of the two RVs. A

thorough discussion on the different types of stationarity

often encountered in the literature and in practice can be

found in Myers (1989), although this paper mainly dis-

cusses handling non stationarity by means of universal

kriging and intrinsic random functions (IRFs) of order k

(IRF-k).

Presence of mean trends is common in mineral deposits

and results in a non-stationary environment (see Fig. 1b, c,

e, f). Spatial variations in the local mean are captured by a

semivariogram which increases rapidly and continues to do

so beyond the sill (Chilès and Delfiner 1999). Domains

without an apparent mean trend can still be non-stationary

if the local variances are not constant. This condition is

widely seen in practice when the variability of the variable

of interest changes between regions within the proposed

domain (see Fig. 1d–f).

In practice, domaining may be carried out using generic

geologic characterizations. The resulting domains may be

unsuitable for modeling using conventional geostatistics

because of the presence of mean and variance trends. Even

when the domain is assumed as stationary despite the

presence of these trends, the estimated uncertainty

parameters are inadequate for short and medium term mine

planning which require a more accurate prediction or

estimation of local uncertainty parameters.

When modelling a mineral deposit, transitions of vari-

ability of the regionalized variable between rock types can

be hard or soft. A soft transition can be seen as an inter-

mediate zone with gradual change in the local mean and/or

in the local variance between two different sub-domains.

On the other hand, a hard transition is an abrupt change in

the local mean and/or local variance, usually present when

the two sub-domains are independent of each other. Sket-

ches of some possible transitions in a domain that are

assumed to be multi-Gaussian are shown in Fig. 1. In case

(a), the different rock types share the same local means and

variances, making the domain suitable for modeling using

conventional geostatistics. Case (b) shows the conventional

mean trend case where there is a gradual large scale change

in the local mean and no variation in the local variance.

This is the classical trend case addressed in virtually all

trend literature. Case (c) presents the hard boundary case

with two independent sub-domains (s1) and (s2) placed one

next to the other. The problem is present only in the local

mean, notice the local variances are kept as constant. In

case (d), a soft transition (s2) between sub-domains (s1)

and (s3) is shown. Notice that in this case the local mean is

constant. Usually, this case is considered as stationary,

because only variability in the local means is considered as

a unique condition for non-stationarity. In case (e) the local

means and local variances are assumed as variable with an

abrupt change or hard boundary between them. Geologi-

cally this case occurs when the two rock types (s1) and (s2)

that are assumed to be part of the domain are of indepen-

dent geologic events, e.g. thin post-mineral dikes (s1) that

cross a mineralized host rock (s2). Finally, case (f) shows

soft transitions of local means and local variances. Both the

local mean and local variance of the sub-domain (s1)

slowly increases in the form of (s2) as it reaches sub-

domain (s3). Of the cases presented, this can be considered

the most realistic. Case (a) is the only one that can be

considered as somewhat appropriate to be assumed as

multi-Gaussian, however, it is the most uncommon in

practice. All other cases are simplistic approximations of

reality but fairly practical for modeling after re-scaling

local mean and variances. Some authors proposed

approaches for dealing with soft boundaries, including

McLennan (2007) and Larrondo and Deutsch (2004). For

the hard boundary case, there is no other solution but sub-

domaining because the two sub-domains involved are

independent with no information from one domain con-

tributing in the estimation of the other.

3 Continuous and discrete forms of semivariograms

The variogram can be expressed as a second order moment

that measures the variability between two locations sepa-

rated by a vector h. It is expressed as the variance of the

increment of two RVs at locations u and u ? h, (3)

(Journel and Huijbregts 1978).

2c u; uþ hð Þ ¼ Var Z uð Þ � Z uþ hð Þf g ð3Þ

Notice that there is no restriction about the mean or the

variance of the two RVs, and that it does not depend on

first or second order stationarity of the RF. Two types of

variograms can be obtained, the non-centered (4) and the

centered (5) (Gneiting et al. 2001).

2cNC hð Þ ¼ E Z uð Þ � Z uþ hð Þ½ �2
n o

ð4Þ

2cC hð Þ ¼ Var Z uð Þ � Z uþ hð Þf g
¼ E Z uð Þ � Z uþ hð Þ½ �2

n o

� E Z uð Þ � Z uþ hð Þf g½ �2

¼ 2cNC hð Þ � E Z uð Þ � Z uþ hð Þf g½ �2 ð5Þ

Notice in the absence of a drift, both the centered and

non-centered variograms are equal. Assuming a SRF, the
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semivariogram can be linked to the covariance in the form

C(h) = C(0) - c(h). Some semivariograms called

unbounded do not have covariance counterparts, such as

the power model (Goovaerts 1997; Deutsch 2002).

Historically, the reason why geostatisticians preferred the

use of the semivariogram over covariance is because

the former does not require the previous knowledge of the

mean of the RVs for the stationary case (Deutsch and

Journel 1997).

In Gneiting et al. (2001), the influence of a trend in the

mean in a quadratic form can be filtered using the centered

semivariogram (6).

cNC hð Þ ¼ Q hð Þ þ cC hð Þ ð6Þ

where Q hð Þ ¼
Pd

i¼1 aih
2
i ; h = [h1, …, hd]T 2 Rn, d is the

dimension of the Euclidean space, ai C 0 for i = 1, …, d,

and the subscripts C and NC denote centered and non-

centered, respectively.

The mean trend does not have any impact in the vari-

ability of the realizations of a RV, that is,

Var Z uð Þf g ¼ Var R uð Þ þ m uð Þf g ¼ Var R uð Þf g. Recall the

mean trend component m(u) at location u is a single value.

However, when considering a regionalized variable sam-

pled over a domain the mean trend inflates the variability,

since its effect is additive. Consider a realization z is drawn

over a finite domain from an IRF Z, the variance of z is

expressed as (7).

r2
z ¼ r2

r þ 2C r;mð Þ þ r2
m ð7Þ

where rz
2 is the variance of the sampled values z in the

domain, rr
2 is the variance of the residuals r in the domain

after removing the mean trend in the form (1), rm
2 is the

variance of the mean trend component in the domain, and

C(r, m) the covariance between the residuals r and the

mean trend values m at the locations of z in the domain.

In the case where the z values are not influenced by any

mean trend, that is, mi = c, then, both terms rm
2 and

2C(r, m) in (7) are zero, hence only the term rr
2 contributes

to rz
2. This can be considered as the stationary case. Notice

in expression (7) there is no requirement that m is a smooth

representation of the large scale variability of z in the

domain. Both the variability of m and its relationship with r

contribute to the variance of z, as shown in (7). Likely, the

term 2C(r, m) would be expected to be zero since there is

no apparent relationship between r and m; therefore, the

contributions to the variance of z should come from the

variability of r and m in the domain. Consider a scaling

factor, s 2 [-1, 1], is used to get m in the form m = s 9 r.

The sign of the scaling factor s defines the sign of C(r, m),

therefore, rz
2 becomes a function of s for this example. For

any positive s the variability of z increases as a result of

rm
2 , rr

2 and C(r, m), on the other hand, for any negative s as

s tends to -1, m will tend to cancel to r and the values of z

will tend to zero, hence rz
2 tends to decrease. Both rm

2 and

rr
2 contributes to rz

2 but C(r, m) reduces it. A relationship

between r and m exists when m shares some patterns with r,

for the presented example it is the scaling factor s.

However, trends are not noisy structures as presented in

the previous example. They are present as large pattern

smooth structures in the domain. One of the reasons why

the random values r would have a relationship with a trend

m of that nature is that m has not been completely removed

from z and the residual r is contaminated with some part of

m, in the form m ¼ m0 þ m00; where the residual is r ? m0.
The relationship between m0 and m00 makes C r þ m0; m00ð Þ
be different from zero. The other reason is due to the non-

stationary nature of z; since particular local structural

patterns are inherent of the natural process that generated

z. In this document r is still considered as a realization of a

SRF. The trend contamination is addressed in the following

example. Consider a 1D unconditionally simulated dataset

of 1,000 regularly spaced data points, separated by 1 unit of

distance (uod) (see Fig. 2). A spherical semivariogram

model of range of 20uod (8) was used for the simulation.

c hð Þ ¼ Sph20 hð Þ ð8Þ

Two linear trends are added to the unconditional

simulated values (see Fig. 3). The first case is a linear

trend with positive slope (see Fig. 3a, b) and the second

case is a linear trend with negative slope (see Fig. 3c, d).

The correlation coefficients between the unconditional

realizations and the trends are 0.104 and -0.104

respectively for the positive and negative slope trends.

These values of correlation coefficient make the variances

of the combined values z vary from 3.39 for the positive

slope trend to 2.78 for the negative slope trend. The

variance of the unconditional simulated values rr
2 and the

Fig. 2 Unconditional simulated realization of 1,000 data points

regularly spaced each 1uod
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variance of the trends rm
2 are similar for both cases, only

the covariances between the unconditional realization and

the trends are different. According to expression (7) these

covariances participate in the calculation of rz
2 by adding

2C(r, m), the values of these terms are 0.30 and -0.30 for

the positive and negative slope trend cases and cause the

gap between the rz
2 values.

For the exercise, the MATLAB detrend tool is used to

remove any possible existing mean trend in the uncondi-

tional realization r (see Fig. 4a). The new residuals are

compared to the previous trend cases in order to verify any

relationship between them (see Fig. 4b) and the resulting

correlation coefficient is virtually zero. The trend obtained

from the unconditional realizations is what initially pro-

duced a positive covariance between the unconditional

realizations and the first trend case, because both trends

have positive slopes. Conversely, for the second trend case

where the sign of both trends is different, the covariance

between them is negative. The de-trended random vari-

ability of the residuals does not have any relationship with

any of the trend cases presented in this example and the

variance of z, rz
2, is the result of the sum of the variance of

the de-trended random variability, rr
2, and the variance of

the trend, rm
2 . In practice it may be very difficult to remove

completely the trend from the z values. However, the

present document proposes an approach to identify and

quantify the mean and variance trends in the z values.

In conventional geostatistics, the experimental semi-

variogram is calculated by assuming the RVs belong to a

SRF, that is, from the centered semivariogram expression

(4). In practice, the calculation is based on the realization

data pairs, z uið Þ; z ui þ hj

� �� �

; found at the two extremes of

each particular separation vector, hj (9). This is often

referred to as the method-of-moments approach (Matheron

1962). However, the reality is that it is very difficult to find

a dataset where data points are separated exactly by hj. For

Fig. 3 Two linear trend cases of negative slope (a) and positive slope (c) added to unconditional simulated realizations and their respective

scatter plots between the unconditional realizations and the trend values (c, d)
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dealing with this problem, angular and distance tolerances

are used to approximate the experimental semivariogram

(Deutsch and Journel 1997; Deutsch 2002). The tolerances

define a n-dimensional region for each hj for a domain in

Rn in order to capture a representative amount of experi-

mental semivariogram pairs h; 0:5 z uið Þ � z ui þ hð Þ½ �2
� �

from a cloud semivariogram.

c
_

hð Þ ¼ 1

2N hð Þ
X

N hð Þ

i¼1

z uið Þ � z ui þ hð Þ½ �2 ð9Þ

4 Impact of mean and variance trends

in the semivariogram

During the calculation of the experimental semivariogram

(9) the available dataset z, is split in two parts. The first part

corresponds to the sub-group at the head of the separation h

vector, zu, and the second part to the sub-group at the tail of

the separation vector, zu?h. When the length of the sepa-

ration vector is zero, both sub-groups consist of all the

conditioning data, zu = zu?h = z. For lengths of the sep-

aration vector smaller than half of the size of the domain

both the sub-groups at the head and at the tail of the sep-

aration vector may share part of the available dataset. Since

the domain is finite, the increment in the length of the

separation vector is usually accompanied by a reduction in

data pairs to calculate the semivariogram. Ideally, under a

decision of second order stationarity, the two sub-groups

are expected to have the same experimental mean

(mu & mu?h) and variance (ru
2 & ru?h

2 ).

The influences of the means and variances of the two

sub-groups at the two extremes of the separation vector h

can be obtained by expanding expression (9) and adding

the local means of the two sub-groups. Notice in expression

(9) the mean trend is assumed to be removed, implying that

the second component 0.5[mu - mu?h]2 should be zero; it

should not modify the experimental semivariogram

expression if it is calculated in a stationary environment.

c
_

hð Þ¼ 1

2N hð Þ
X

N hð Þ

i¼1

z uið Þð Þ2�2z uið Þz uiþhð Þþ z uiþhð Þð Þ2
h i

¼ 1

2N hð Þ
X

N hð Þ

i¼1

z uið Þð Þ2þ z uiþhð Þð Þ2
h i

� 1

N hð Þ
X

N hð Þ

i¼1

z uið Þz uiþhð Þ½ �¼1

2
r2

uþr2
uþh

� �

þ 1

2
mu�muþh½ �2

|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

Mean trend component

�C hð Þ ½10�

Assuming stationarity, the semivariogram is linked to

the covariance by c hð Þ¼C 0ð Þ�C hð Þ; a comparison of this

expression with (10) shows that the global variance of the

domain, assuming the available dataset is fully

representative of the domain, is r2
z ¼0:5 r2

uþr2
uþh

� �

þ
0:5 mu�muþhð Þ2: Recall the mean trend component

0:5 mu�muþhð Þ2 is not part of the global variance,

because the term -0.5(mu - mu?h)2 that cancels the

influence of the mean trend component was removed

from the experimental semivariogram expression in (9).

That is, if the discrete form of the centered semivariogram

(5) is used instead of the stationary non-centered

semivariogram (4) this mean trend component is

cancelled out in (10). If the mean is stationary or the

mean trend is removed from the domain, then the

variance of the domain is expressed as the average of

Fig. 4 Linear mean trend present in the unconditional realization r (a) and scatter plot between de-trended residual and the positive slope linear

trend (b)
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the respective variances of the two sub-groups, that is,

rz
2 = 0.5(ru

2 ? ru?h
2 ). The presence of a mean trend

component (10) makes the semivariogram of the dataset

increase above the variance of the domain. This is

consistent with one of the primary variogram behaviours

as documented in Gringarten and Deutsch (2001).

The global variance 0.5(ru
2 ? ru?h

2 ) without any influ-

ence of mean trends can be expressed as 0.5(ru -

ru?h)2 ? ruru?h in order to account for differences in the

variability of the sub-groups as in the mean trend form. The

differences in the variances of zu and zu?h are already

accounted in the global variance component; therefore, the

trend in the variance does not make the experimental

semivariogram increase above the sill. Hence, from

expression (10) the semivariogram can be re-written as a

function of the differences of the standard deviations and

difference of the means of zu and zu?h (11).

ĉ hð Þ ¼ 1

2
ru � ruþh½ �2

|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

Variance trend component

þ 1

2
mu � muþh½ �2

|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

mean trend component

þ ruruþh � C hð Þ
|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

stationary component

½11�

Expression (11) can be re-written so that the correlation

coefficient is introduced into the experimental semi-

variogram expression (12).

ĉ hð Þ ¼ 1

2
ru � ruþh½ �2þ 1

2
mu � muþh½ �2þruruþh 1� q hð Þð Þ

ð12Þ

From expression (11) the experimental semivariogram

can be separated into four terms: (a) Half of the squared

difference of the standard deviations of the two sub-groups,

0.5[ru - ru?h]2; (b) half of the squared difference of the

means of the two sub-groups, 0.5[mu - mu?h]2; (c) the

product of the two standard deviations of the two sub-

groups, ruru?h; and (d) the covariance between the two

sub-groups, C(h). Notice when the means and variances of

the two sub-groups are similar, i.e. ru & ru?h & r and

mu & mu?h & m, the experimental semivariogram

expression (11) relies only on components (c) and (d)

which is very similar to the stationary form of the

semivariogram, ĉ hð Þ ¼ r2 � CðhÞ:
It is often presented that when the experimental semi-

variogram is above the variance of the dataset or sill, then

the correlation between the two sub-groups separated by

h is negative (Gringarten and Deutsch 2001; Deutsch 2002;

Leuangthong and Deutsch 2004). However, linear mean

trends as presented in Fig. 3 can cause the experimental

semivariogram rise above the sill, while still maintaining a

positive correlation between the two sub-groups. The

influence of mean trends and the negative correlation case

between sub-groups separated by h are discussed further in

this document.

5 Method-of-moments and trends in the experimental

semivariogram

Under stationary conditions for all the h-scatter plots of the

available dataset, the means and variances of the marginal

distributions are expected to be very similar. Systematic

differences in them as a result of increasing the length of

the separation vector would imply a presence of mean or

variance trends in the domain which can be captured by the

experimental semivariogram (11). In this section, the

unconditional realization of 1,000 regularly spaced simu-

lated data points using the semivariogram model (8) is

used. To this dataset, three trend cases are added (Fig. 5):

(1) A linear trend in the form y = ax ? b with a negative

slope a along the entire domain. This case accounts

for a large variability in the local means.

(2) A symmetrically concave-shaped trend case. This

mean trend is presented in order to show a special

case and how this approach accounts for this type of

symmetric trend.

(3) A variance trend with no presence of mean trend. For

this, the variances of the two halves of the domain are

re-scaled.

The experimental semivariograms are calculated using

expression (11) in order to quantify the impact of the mean

and variance trends in the domain. The semivariogram

plots for each case are calculated within a range of one half

the size of the domain and the contributions of each

component of the experimental semivariogram are color

coded in gray scale for visualization (see Fig. 6).

For the stationary case (Fig. 6a) almost all lags of the

experimental semivariogram are free of mean and variance

trends. Notice the mean trend identified in the initial

dataset in the previous section has been also identified by

this approach as a small region as well as small presence of

a variance trend. The experimental semivariogram of the

initial dataset combined with the linear mean trend case

(Fig. 6b) shows the mean trend component pushes the

stationary component upward; making it possible for the

experimental semivariogram to rise above the sill. For this

type of linear trend, the mean trend component increases

monotonically. The symmetric case of a parabolic mean

trend (Fig. 5d) shows that the mean trend is not recognized

in the experimental semivariogram (Fig. 6c). The station-

ary component of the experimental semivariogram is above

the sill when negative correlations between the sub-groups

are caused by the mean trend. Because of the symmetric

shape of this trend, the mean trend component is cancelled
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out in the experimental semivariogram and is considered to

be part of the random fluctuation of the residuals. This

condition is characteristic of this type of symmetric mean

trend. The variance trend case (Fig. 5d) can be identified in

the experimental semivariogram as a sub-region in the

stationary component (Fig. 6d) and it does not make the

experimental semivariogram rise above the current sill.

However, the sill of the semivariogram is not representa-

tive of the domain. It would be incorrect to use this

semivariogram for modeling.

In the first case (Fig. 6a) there is no influence of mean or

variance trends and the experimental semivariogram

reaches the variance of the domain and is relatively con-

stant with some ergodic fluctuations beyond the semivari-

ogram range. However, the mean trend that was earlier

indentified in this dataset is assumed to be negligible

herein. The light gray region represents the stationary

component of the experimental semivariogram, ruru?h -

C(h), in (11). This is considered as the ideal case of a

stationary domain. At each lag separation, h, the

h-scatter plots show that the cloud of data pairs are

centered along the 45� bisector. This implies the local

means and variances of the sub-groups at u and u ? h are

similar (see Fig. 7).

In the second case (Fig. 6b), the linear mean trend

makes the experimental semivariogram increase and at a

certain point it becomes larger than the variance of the

domain. Notice the stationary part behaves similar to the

experimental semivariogram of the first case (light gray

region), while the mean trend (gray region) is the only

source of additional increment in the experimental semi-

variogram. If the centered semivariogram (5) is calculated

the mean trend contribution is cancelled out leaving only

the stationary region. The differences in the local means is

what makes the cloud of data pairs in the h-scatter plots to

be non-centered, increasing the distances of the data pairs

from the 45� bisector as the lag distance increases. Hence

the experimental semivariogram may be above the variance

of the domain while the correlation coefficient of the

h-scatter plot is still positive (see Fig. 8).

The third trend scenario (see Fig. 6c) results in a special

case where the contribution of the mean trend component

Fig. 5 Initial dataset (a) influenced by linear mean trend (b), symmetric mean trend (c) and local variability in variances (d)
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cannot be seen in the experimental semivariogram plots.

Recall that, the mean trend component is captured when

differences in the means of the sub-groups appear as the

separation distance increases. For this case, the mean trend

component in the experimental semivariogram is cancelled,

since mu & mu?h, therefore, mu - mu?h & 0, and the

Fig. 6 Experimental variograms for initial dataset (unconditional simulated realization) (a) and influenced by linear mean trend (b), symmetric

mean trend (c) and locally variable variance (d)

Fig. 7 h-Scatter plots for

stationary case for lag distances

5 uod (a) and 10 uod (b)
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trend curve is considered as part of random fluctuation. In

such case, the mean trend is mirrored when calculating the

experimental semivariogram (see Fig. 9). As the length of

the separation vector increases the covariance between the

two sub-groups zu and zu?h tends to mask the variability of

the initial dataset because of the trend component and

the covariance becomes negative (see Fig. 10), making the

experimental semivariogram increase above the sill. The

characteristic that the experimental semivariogram increases

above the sill with no apparent contribution of the mean trend

component is a signature of this type of mean trend.

In the fourth case, the experimental semivariogram does

not show any tendency to grow above the sill. This is

because the trend in the variance does not contribute to the

semivariogram (see Fig. 6d). In the h-scatter plots the

variance trend increases with the difference in the vari-

ances of the marginal distributions of the two sub-groups at

the two extremes of the separation vector h (see Fig. 11).

Notice the differences in the variances of the two sub-

groups shrink the cloud of data pairs in the horizontal

direction because the first half of the dataset is the one with

smaller local variance (see Fig. 5d). If the variance trend

goes in the opposite direction, the cloud of data pairs will

tend to shrink vertically.

6 Discussion

Determining the influence of the local mean and/or vari-

ance trends on the semivariogram requires a representative

sampling of the domain. In presence of large unsampled

regions in the domain or blank spots, this approach may

lead to misinterpretation of the results. Even in instances

where the intention is not to identify presence of trends, the

calculated experimental semivariograms is unreliable

under these conditions.

Depending on the scale of the observation, the domain

may present an apparent trend (see Fig. 12). Some

Fig. 8 h-Scatter plots for linear

mean trend case for lag

distances 250 uod (a) and 500

uod (b)

Fig. 9 Sub-groups of the available dataset influenced by a parabolic mean trend at the head (a) and tail (b) of the separation vector h for a

separation distance of 400 uod
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techniques like universal kriging and ordinary kriging

consider a semivariogram model fitted from the experi-

mental semivariogram of the dataset with trend. The

problem of assuming stationarity of the partial dataset with

apparent mean trend (Fig. 12c) is that the semivariogram of

the large scale stationary process (Fig. 12b) is not acces-

sible. The semivariogram with apparent mean trend tends

to inflate the global variance as well as to exaggerate the

spatial continuity (Fig. 12d). From the partial dataset,

without the knowledge of the features of the complete

dataset, it is not possible to determine whether the trend is

apparent or representative. Therefore, it is recommended to

remove any presence of mean and/or variance trend in the

dataset prior to building a geostatistical model because of

the possible consequences.

Although the examples given in this paper are one

dimensional for ease of illustration and dissection of the

trend sources, there is no limitation to applying this

decomposition to two or three dimensions. Since semi-

variograms are directional in nature, a trend is often

apparent in one direction and not the other. Figure 13

shows an example of a semivariogram calculated for a two-

dimensional topographic dataset, where a mean trend is

easily detected in the north–south direction and an apparent

zonal anisotropy is visible in the east–west direction. This

example shows the source of the trend is attributed to the

mean component with negligible variance contribution.

Even in presence of a densely sampled data over a

domain, mean trends should be removed prior to model-

ling. Recall that the semivariogram, when influenced by

mean trends, tends to exaggerate the spatial continuity and

inflate the conditional variances. It results in an estimated

model that may be much smoother than it should be and the

uncertainty inflated. This is perhaps difficult to discern

locally in those regions with lots of samples, but it should

be more apparent in other regions with sparse data. A

semivariogram influenced by a trend should not be used as

an input of a geostatistical modeling technique in any case.

Therefore, even in presence of abundant data, the modeler

should still take care in considering the impact of the trend.

Fig. 10 h-Scatter plots for the

parabolic shaped trend case for

lag distances 10 uod (a) and 400

uod (b)

Fig. 11 h-Scatter plots for the

variance trend case for lag

distances 10 uod (a) and 500

uod (b)
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Fig. 12 Unconditional simulated dataset (a) and its corresponding experimental semivariogram without influence of any trend (b), a segment of

the unconditional simulated dataset of 100 data points with apparent mean trend (c) and its experimental semivariogram (d)

Fig. 13 Decomposed experimental semivariogram from topographic samples in normal score units for south–north (a) and east–west

(b) directions
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7 Conclusions

Non-stationary features such as mean and variance trends

of the dataset can be captured by analyzing the experi-

mental semivariogram. Differences in the local means and

local variances are identified by comparing the sub-groups

of datasets at the two extremes of the separation vector. It

is important to keep in mind the semivariogram is a two

point statistic and as such it may not adequately capture

complex trend features in the RF such as the concave/

convex symmetric mean trend cases. However, this type of

complex mean trend structures can be captured with the use

of generalized covariances (Chilès and Delfiner 1999),

where the spatial variability of the domain is verified by

taking configurations with more than two points as in the

semivariogram case.

The decision to accept or reject a certain domain prior to

geostatistical modeling can be made by using the proposed

approach for identifying trends in the domain and is based

on expert judgement. Accepting a domain implies that

mean and variance trends do not present a problem, and

avoids possible issues like global variance inflation or

artificial increases in the variogram range in the final result.

If the domain is rejected, additional pre-processing such as

sub-domaining and/or de-trending of the domain are nec-

essary until mean and/or variance trends do not represent a

problem in the domain. Even when the mean and variance

trends are removed from a dataset, it cannot be considered

as stationary yet. There is one additional condition that

should be verified, which is the stationarity of the spatial

covariance. Moreover, the performance of any technique

proposed for dealing with mean and/or variance trends can

be tested by this form of the experimental semivariogram.

The decomposition of the experimental semivariogram

does not require any additional information to that of

conventional semivariogram calculation. It permits quan-

tification of the sources that contribute to a trend, thereby

allowing for more suitable detrending approaches to be

considered for resource modeling.
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