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RECONSTRUCTING 3-COLORED GRIDS FROM HORIZONTAL
AND VERTICAL PROJECTIONS IS NP-HARD: A SOLUTION TO

THE 2-ATOM PROBLEM IN DISCRETE TOMOGRAPHY∗

CHRISTOPH DÜRR† , FLAVIO GUIÑEZ‡ , AND MARTIN MATAMALA§

Abstract. We consider the problem of coloring a grid using k colors with the restriction that
each row and each column has a specific number of cells of each color. This problem has been known
as the (k − 1)-atom problem in the discrete tomography community. In an already classical result,
Ryser obtained a necessary and sufficient condition for the existence of such a coloring when two
colors are considered. This characterization yields a linear time algorithm for constructing such a
coloring when it exists. Gardner et al. showed that for k � 7 the problem is NP-hard. Afterward
Chrobak and Dürr improved this result by proving that it remains NP-hard for k � 4. We close the
gap by showing that for k = 3 colors the problem is already NP-hard. In addition, we give some
results on tiling tomography problems.
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1. Introduction. Tomography consists of reconstructing spatial objects from
lower dimensional projections and has medical applications as well as nondestructive
quality control applications. In the discrete variant, the objects to be reconstructed
are discrete, as, for example, atoms in a crystalline structure [1].

One of the first studied problems in discrete tomography involves the coloring of
a grid using a fixed number of colors with the requirement that each row and each
column has a specific total number of cells of each color. In order to formalize this
problem we introduce some definitions and notations.

For any positive integer n, we denote the set {0, . . . , n − 1} by [n]. Throughout
the paper, whenever we index matrices or vectors, we let the indices start at 0. This
will be very convenient in various proof constructions. The finite grid of size m × n
corresponds to the set [m] × [n], and its elements are called cells. A cell (i, j) is the
intersection of row i and column j; in figures we represent a cell as a unit square, and
we number rows top-down and columns from left to right.

Given a finite set of colors C, let M be an assignment of colors in C to each cell
of the m × n grid. We denote by Mij the color assigned to cell (i, j). We refer to
such an assignment as a C-colored grid. The projection of a C-colored grid M is the
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sequence of vectors rc ∈ [n+ 1]m, sc ∈ [m+ 1]n, for each c ∈ C, where

rci = |{j : Mij = c}|, scj = |{i : Mij = c}|,

for i ∈ [m] and j ∈ [n]. Notice that the projection (rc, sc)c∈C of a C-colored m × n
matrix satisfies

∑
c∈C

rci = n,
∑
c∈C

scj = m,
∑
i∈[m]

rci =
∑
j∈[n]

scj(1.1)

for each i ∈ [m], j ∈ [n], and c ∈ C, respectively. In the problem that we consider,
the goal is to compute a C-colored grid M that has a given projection. Formally, we
consider the following problem.

k-color tomography problem.

• Input: a sequence of vectors rc ∈ [n+1]m, sc ∈ [m+1]n for each c ∈ C, with
|C| = k, that satisfy (1.1).

• Output: a C-colored grid M with (rc, sc)c∈C as projection vectors.
We refer to the problem as k-CTP.

As the projection of one of the colors is redundant by (1.1), we sometimes omit
in the instance the vectors rc, sc for some fixed color c ∈ C. In this case, this color is
called the ground color. In the context of discrete tomography, the remaining colors
can represent k′ = k−1 different types of atoms arranged in a two-dimensional atomic
structure, and the ground color represents the absence of an atom in a specific loca-
tion. Due to this analogy, k-CTP was introduced in [13] as the k′-atoms consistency
problem, and it has also been referred to as the k′-atom problem [6] or simply as the
k′-color problem [8, 9, 21]. However, throughout this paper we will always refer to
this problem as the k-CTP.

It has been known for a long time that for k = 2 colors the problem can be
solved in polynomial time [23]. Around a decade ago it was shown that the k-CTP is
NP-hard for k � 7 colors [13]. By NP-hardness, we mean that the decision variant—
deciding whether a given instance is feasible, i.e., admits a solution—is NP-complete.
Shortly after, this result was improved to show NP-hardness for k � 4 colors, leaving
open the case when k = 3 [8]. The present paper closes the gap by showing that
for three colors the problem is already NP-hard. The proof of this result is given in
section 2.

In section 3, we present one of the consequences of our main result: The problem
of finding two graphs H and G on the same set of vertices, with H ⊆ G and specified
degrees, is NP-hard.

In addition, in section 4 we address a more general problem, namely, tiling to-
mography with rectangular tiles as introduced in [6]. In this problem, we are given a
set of rectangular tiles T , an m× n grid, and projections rτ ∈ [n+1]m, sτ ∈ [m+1]n

for each tile τ ∈ T . The goal is to find a partition of the grid into translated copies
of tiles from T (called a T -tiling) satisfying the required projections. In accordance
to our previous notation we call this problem the T -tiling tomography problem, or
T -TTP.

For this problem, we determine the complexity of T -TTP for almost every set T
of tiles. More precisely, we prove the following. If T consists of at least three tiles,
the problem is NP-hard, regardless of the sizes of the tiles in T . It is also NP-hard if
T consists of two tiles, one of them having width and height at least 2. These results
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are obtained by reductions from the 3-CTP. On the positive side, we show that if
T consists of two tiles both of unit height (or by symmetry both of unit width),
then the problem can be solved greedily in polynomial time, generalizing previous
results from [12, 22, 21, 9]. We leave open the case when T consists of two tiles
of dimensions 1 × p and q × 1 for p, q � 2. For the particular case p = q = 2, a
clever polynomial time algorithm has been provided [25]; however, it does not seem
to generalize easily.

Throughout this paper, for |C| = 2 we denote the colors of C as black and white
and use symbols B,W , respectively. For |C| = 3 we denote the colors as red, green,
and yellow and use symbols R,G, Y , respectively. We choose white and yellow to be
ground colors and mostly omit their projections. For the 2-CTP, by a colored cell
we mean a cell colored black, and use the similar convention for an uncolored cell,
meaning colored white. As we previously observed, an instance (rB , rW , sB, sW ) of
the 2-CTP can be given just by the pair (rB , sB). In addition, when there is no risk
of confusion, we drop the superscript and simply denote it as (r, s).

2. NP-hardness proof. This section is devoted to the proof of the NP-hardness
of the 3-CTP. We closely follow the reduction from vertex cover in [8], but with a
different gadget. Vertex cover is a well-known NP-hard problem [14].

Vertex cover problem.

• Input: a graph H = (V,E) and an integer k.
• Output: a set S ⊆ V of size |S| = k such that for every uv ∈ E, u ∈ S or
v ∈ S.

Given an instance (H, k) of vertex cover, the idea is to construct an instance
(rR, rG, sR, sG) of the 3-CTP which has a solution if and only if the former instance
has a solution. To this purpose we require some preliminary results, which are included
in section 2.1. In section 2.2, we construct the gadget which is the main ingredient
of this reduction. Finally, in section 2.3 we present the reduction itself and we prove
that it satisfies the required conditions.

2.1. Classical lemmas. The first result of this section is the well-known char-
acterization of the existence of binary matrices satisfying given row and column sum
vectors due to Gale and Ryser. We remark that this result characterizes the instances
of 2-CTP that have a solution. Before stating the lemma, we need to introduce some
notation.

The conjugate of a vector x ∈ [m + 1]n is defined as the vector x∗ ∈ [n + 1]m,
where x∗

i = |{j : xj > i}|. There is a very simple graphical interpretation of this, as
shown in Figure 2.1. Let M be the m × n grid such that in column j, the first xj

cells are colored (black) and the others remain uncolored (remain white). Then the
coordinates of the conjugate of x are the row sums of the colored cells of M .

Notice that this is slightly different from the usual definition of conjugate, since
here the length m of x∗ is fixed and then x∗ can have some zero coordinates. Observe
that x∗ is always a nonincreasing vector. If in addition x is nonincreasing, then
x∗
i = max{j : xj > i} + 1, and hence x∗

i > j if and only if xj > i. Therefore
(x∗)∗ = x, which actually motivates the term conjugate.

For integral n-vectors x, y, we say that y majorizes1 x, denoted by x � y, if∑
j∈[�] yj �

∑
j∈[�] xj for every � ∈ {1, . . . , n − 1}, and

∑
j∈[n] yj =

∑
j∈[n] xj . We

write x ≺ y if in addition the inequality is strict for at least one �.

1Sometimes it is also said that y dominates x.
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Fig. 2.1. Example of a column vector x and its conjugate x∗.

In the rest of this section we consider an instance (r, s) of the 2-CTP with r ∈
[n + 1]m and s ∈ [m + 1]n. Gale and Ryser gave a useful characterization of the
instances of 2-CTP which admit a solution, in terms of conjugation and majorization.

Lemma 2.1 (Gale [12] and Ryser [22]; also see [23] for the second statement).
Let (r, s) be an instance of the 2-CTP such that r is nonincreasing. Then (r, s) has a
solution if and only if r � s∗.

Moreover, if r = s∗, then there is a single solution, namely, the coloring assigning
color to the first sj cells of column j for each j ∈ [n], and leaving the remaining cells
uncolored.

Again, there is a simple graphical interpretation of this. Let M be a colored
grid where in column j the first sj cells are colored and the remaining cells are left
uncolored. Then the row projection of M is the vector r′ = s∗. If r′ = r we are done.
Otherwise, by using r ≺ s∗ one can show that there are rows i < i′ and column j such
that Mij = B and Mi′j = W and such that by exchanging these entries the invariant
r � r′ is preserved while reducing the value

∑
i |ri − r′i|. We refer to the papers cited

above for a complete proof.
Now, we recall a well-known fact about the 2-CTP. Here, for a subset of rows

I ⊆ [m] we denote I = [m] \ I. Similarly, for J ⊆ [n] we have J = [n] \ J .
Lemma 2.2 (Ryser [23]). Let (r, s) be a feasible instance of the 2-CTP. Let a row

set I and a column set J be such that

(2.1)
∑
i∈I

ri −
∑
j∈J

sj = |I × J |.

Then every solution of (r, s) colors all the cells in I × J and none in I × J .
Proof. Sets I and J divide the grid into four parts, I × J , I × J , I × J , and

I ×J . The value
∑

i∈I ri equals the number of colored cells in the first two parts and∑
j∈J sj the number of colored cells in the second and last parts. So the difference

is the number of colored cells in I × J minus the number of colored cells in I × J .
So when (2.1) holds, the first part must have only colored cells and the last part
none.

To introduce the last result of this section we need some extra notation. For
0 � k � t, we denote by

(
[t]
k

)
the set of all vectors x in {0, 1}t for which the sum∑

i∈[t] xi equals k. Observe that
(
[t]
k

)
are the characteristic vectors of the k-sets (also

called k-combinations) of [t].

It is not difficult to see that majorization � defines a partial order in
(
[t]
k

)
. We

denote by Lt,k the lattice generated by this partial order in
(
[t]
k

)
. (See Figure 2.2 for
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(0, 1, 1, 0, 1)

(1, 1, 1, 0, 0)

(0, 1, 0, 1, 1)

(0, 0, 1, 1, 1)

(1, 1, 0, 0, 1) (1, 0, 1, 1, 0)

(1, 0, 1, 0, 1) (0, 1, 1, 1, 0)

(1, 0, 0, 1, 1)

(1, 1, 0, 1, 0)

Fig. 2.2. The lattice L5,3 of the set
([5]

3

)
ordered by majorization upward. Only nontransitive

arcs are shown. Bold indicates a chain of maximum length.

an example.) Observe that Lt,k has unique maximum and minimum elements which
are, respectively,

x = (1, . . . , 1︸ ︷︷ ︸
k

, 0, . . . , 0) and x = (0, . . . , 0, 1, . . . , 1︸ ︷︷ ︸
k

).

As for any partial order, a sequence of elements satisfying x0 ≺ x1 ≺ · · · ≺ xq is
called a chain, and the length of the longest chain is called the depth of the partial
order.

The following is the key lemma in the construction used in [7]. It shows that the
depth of Lt,k is polynomially bounded in terms of k and t. For sake of completeness,
we include the proof presented in [7] with only some slight modifications, mainly in
notation.

Lemma 2.3. For 0 � k � t, the depth of Lt,k is k(t− k) + 1.
Proof. We define the function ϕ that assigns ϕ(x) =

∑
�∈[t],� �=0

∑
i∈[�] xi− 1

2k(k+1)

to each x ∈ Lt,k. Observe that for x ≺ y we have
∑

j∈[�] xj �
∑

j∈[�] yj for every

� ∈ {1, . . . , t}, and the inequality is strict for at least one �. Therefore x ≺ y implies
ϕ(x) < ϕ(y). Then any chain x1 ≺ x2 ≺ . . . ≺ xq in Lt,k satisfies ϕ(x1)+q−1 � ϕ(xq).

Furthermore, straightforward calculation shows that ϕ(x) = k(t−k) and ϕ(x) = 0.
Then the length of any chain in Lt,k is at most ϕ(x)− ϕ(x) + 1 = k(t− k) + 1.

There is a simple way to visualize this lemma. Figure 2.2 contains the lattice L5,3

and shows only nontransitive arcs. Observe that every edge in the path corresponds
to shift a 1 exactly one position. Then in a path from x to x, we shift each of the
k 1’s of x exactly t − k positions to the right. Then, any maximum size chain has
exactly k(t− k) + 1 elements. We remark that the value ϕ(x) as defined in the proof
corresponds with the level of x in Lt,k.

2.2. The gadget. The gadget depends on some integers t, k, u, v with 1 � k � t,
u, v ∈ [t], u �= v, and two vectors x, y ∈

(
[t]
k

)
.

The interpretation of these parameters is that [t] represents the vertex set of a
graph on t vertices, x, y the characteristic vectors of two vertex sets of size k, and uv
an edge of the graph. The gadget is defined as the instance of the 3-CTP of t rows
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Fig. 2.3. The structure of the gadget for t = 7.

and 2t+ 2 columns with the following projections for i, j ∈ [t]:

rRi =

{
i+ 2 if i ∈ {u, v},
i+ 1 otherwise,

rGi =

{
i+ 1 if i ∈ {u, v},
i+ 2 otherwise,

sRj = t− j + xj − 1, sGj = 0,

sRt = 1, sGt = t− 1,

sRt+1 = t− k + 1, sGt+1 = k − 1,

sRt+2+j = 0, sGt+2+j = t− j − yj .

We recall that R,G, Y refer to the colors red, green, and yellow. A cell colored with
color red will be called a red cell. A green cell and a yellow cell are defined analogously.

Observe that any solution of the gadget has no green cell in the first t columns,
no yellow cell in the columns t, t + 1, and no red cells in the last t columns. Hence,
the t × (2t + 2) grid can be divided into three parts (see Figure 2.3): a t × t block
having colors red and yellow (called RY-block), a t×2 rectangle having colors red and
green (called 2-column translator), and another t × t block having colors green and
yellow (called GY-block). Again, each of the previous t× t blocks is subdivided into
an upper triangle, a diagonal, and a lower triangle.

We will use the main diagonal of the RY-block (and GY-block) to encode the
characteristic vector of a set of size k. The 2-column translator plays a double role:
on the one hand, it allows us to translate a red-yellow code in the RY-block to a green-
yellow code in the GY-block; on the other hand, if the two main diagonals codify the
same vector, it allows us to test whether the edge uv is covered by that vector.

Lemma 2.4. If the instance (rR, rG, sR, sG) of 3-CTP defined above has a solu-
tion, then x � y. Moreover, if x = y, then it has a solution if and only if xu+xv � 1.
See Figure 2.4 for an example of a coloring of the gadget when x = y.

Proof. Assume the instance has a solution; we will show that this implies x � y.
Consider the yellow projection vectors rY = 2t+2−rR−rG and sY = t−sR−sG. We
have that rYi = 2(t−i)−1 for i ∈ [t]. Note that rY is a nonincreasing vector. Similarly,
we obtain that sYj = j + 1 − xj and sYt+2+j = j + yj for j ∈ [t] and sYt = sYt+1 = 0.

The conjugate of the yellow column projections is the vector (sY )∗ with coordinates

(sY )∗i = 2(t− i)− 1− xi + yi.

Then it is clear that rY � (sY )∗ if and only if x � y. By assumption, the instance
(rR, rG, sR, sG) has a solution, and then the instance (rY , sY ) of 2-CTP has a solution
as well. By Lemma 2.1, it follows that rY � (sY )∗ and therefore x � y. This shows
the first part of the lemma.
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yellow

︸ ︷︷ ︸
y

x︷ ︸︸ ︷
0 0 1 0 1 1 0

0 0 1 0 1 1 0

u

v

green

red

Fig. 2.4. A solution of the gadget for t = 7, k = 3, u = 1, v = 4, and x = y. Observe that xv = 1.

Now assume that for x = y the instance of the 3-CTP has a solution. Since
(sY )∗i = rYi − xi + yi for each i, we have rY = (sY )∗. By Lemma 2.1, any solution
must color in yellow the sYj first cells of column j for each j and no other cell. In
particular this means that the lower triangle of the RY-block must be red, the lower
triangle of the GY-block must be green, and both upper triangles have to be yellow.
Also on the first diagonal, the cell (i, i) has to be red if xi = 1 and yellow otherwise.
On the second diagonal, the cell (i, t + 2 + i) must be yellow if xi = 1 and green
otherwise.

Let us assume by contradiction that xu = xv = 0. Then the cells (u, t), (u, t +
1), (v, t), (v, t + 1) of the 2-column translator have to be all red to satisfy the row
projections. This contradicts the column projection sRt = 1, and hence the instance
is not realizable.

Conversely, assume xu + xv � 1. We color the RY-block and the GY-block as
above. Notice that this immediately shows that for each j ∈ [t], the number of red
and green cells is t−j−(1−xj) and 0, respectively, for column j, and 0 and t−j−xj,
respectively, for column t+ 2 + j.

We will color the cells of the 2-column translator in a manner that respects the
required row and column projections. If i �∈ {u, v} and xi = 1, that is, (i, i) is red and
(i, t+2+ i) is yellow, we color the cells (i, t) and (i, t+1) in green. Then the number
of red and green cells in row i is i+1 and i+2, respectively. If i �∈ {u, v} and xi = 0,
that is, (i, i) is yellow and (i, t + 2 + i) is green, we color the cell (i, t) in green and
(i, t+ 1) in red. Again, the number of red and green cells in row i is i+ 1 and i+ 2,
respectively.

Without loss of generality assume that xv = 1. Then we color (v, t) in green and
(v, t+ 1) in red. Since (v, v) is red and (v, t+ 2+ v) is yellow, the number of red and
green cells in row v is i + 2 and i + 1, respectively. For row u, we color (u, t) in red
and the cell (u, t + 1) in red if xu = 0 and in green otherwise. It is not difficult to
check that in both cases the number of red and green cells in row u is i+2 and i+1,
respectively.

Finally, since the only red cell in column t is (u, t), the number of green cells is
t− 1. Also, the number of green cells in column t+1 is

∑
i�=v xi =

∑
i xi − 1 = k− 1,

since xv = 1. Therefore the coloring (or {R,G, Y }-assignment) defined above is a
solution of the instance, which concludes the proof of the lemma.

2.3. The reduction. Let us consider an instance (H, k) of vertex cover. Let
t = |V (H)| and μ = |E(H)|. Thus, we will assume that V (H) = [t] and that
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{e0, e1, . . . , eμ−1} is a list of the edges of H . Observe that without loss of generality,
we can assume that k � t− 2.

Let N = (k(t − k) + 1)μ + 1 be the number of gadgets that we will use in the
reduction. We define the instance (rR, rG, sR, sG) withN(t+1)+1 rows andN(t+2)+t
columns as follows.

For row p = 0, . . . , N(t+ 1), let

a =

⌊
p

t+ 1

⌋
and i = p mod (t+ 1).

We view the set of rows as divided into N blocks of t+ 1 rows each and a last block
with a single row. With this convention, a is the block index and 0 � i � t corresponds
to the cell index inside the row block of p.

Let us consider the edge ea mod μ = uv, where u < v. We define the row projec-
tions as

rRp = a(t+ 2) +

⎧⎪⎪⎨
⎪⎪⎩
t− k if i = 0 and a < N,
0 if i = 0 and a = N,
i+ 1 if i− 1 ∈ {u, v},
i if i− 1 ∈ [t] \ {u, v},

rGp = (N − 1− a)(t+ 2) +

⎧⎪⎪⎨
⎪⎪⎩
t+ 2 if i = 0 and a = 0,
t+ 2 + k if i = 0 and a > 0,
i if i− 1 ∈ {u, v},
i+ 1 if i− 1 ∈ [t] \ {u, v}.

In the same manner, for column q = 0, . . . , N(t+ 2) + t− 1, let

b =

⌊
q

t+ 2

⌋
and j = q mod (t+ 2).

Similarly as for the rows, we view the set of columns as divided into N blocks with
t+2 columns each and a last block with only t columns. Again, b corresponds to the
block index and 0 � j � t + 1 to the cell index inside each column block. For block
index b < N , we define

sRq = (N − 1− b)(t+ 1) + 1 +

⎧⎨
⎩
t− j if j ∈ [t],
1 if j = t,
t− k + 1 if j = t+ 1.

For b = N we set sRq = 0, for each q = N(t+ 2) + j with j ∈ [t]. Finally, in order to

define sG we need to distinguish two cases. First, for block index b = 0 we have

sGq =

⎧⎨
⎩
0 if j ∈ [t],
t if j = t,
k if j = t+ 1.

Moreover, for 0 < b � N the requirements are

sGq = (b − 1)(t+ 1) + 1 +

⎧⎨
⎩
t− j if j ∈ [t],
t− 1 if j = t,
k − 1 if j = t+ 1.
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Fig. 2.5. The general structure of our reduction.

Lemma 2.5. The instance (rR, rG, sR, sG) has a solution if and only if there
exists a k-vertex cover in H.

Proof. For one direction of the statement, assume that the vertex cover instance
has a solution, and let z ∈

(
[t]
k

)
be the characteristic vector of a vertex cover of size

k, i.e., zi = 1 if and only if i belongs to the vertex cover.
We now construct a solution to the instance of the 3-CTP. Consider the parti-

tioning of the grid, as in Figure 2.5. For convenience we sometimes refer to the source
as the 0th row translator and to the sink as the N th row translator. Moreover, we
refer to the cell at column a(t + 2) + j and row a(t + 1) as the jth cell of the ath
row translator. We color the R-frame in red and the G-frame in green. Let j be in
[t]. We color the jth cell of the source in yellow if zj = 1 and in red otherwise. For
a = 1, . . . , N − 1 we color the jth cell of the ath row translator in green if zj = 1 and
in red otherwise. In the sink we color the jth cell in green if zj = 1 and in yellow
otherwise.

Now for each block index a = 0, . . . , N − 1, consider the instance for the gadget
defined by x = y = z, and u, v, with u < v and such that uv = ea mod μ. Since
z is a vertex cover, we have that zu + zv � 1 and therefore by Lemma 2.4 the
instance for gadget a is feasible. Then we color the (t+ 1)× (2t+ 2) cells starting at
(a(t+ 1) + 1, a(t+ 2)) exactly as in the solution for the gadget. It is straightforward
to check that this grid coloring satisfies the required projections, and therefore the
instance of the 3-CTP has a solution.

For the converse, assume that (rR, rG, sR, sG) has a solution, namely, a grid M
colored with colors in {R,G, Y }. For every a = 1, . . . , N we apply Lemma 2.2 for the
red color and intervals I = [a(t+ 1), N(t+ 1)] and J = [0, a(t+ 2)− 1], which shows
that in M , I × J is completely red and I × J is free of any red. This implies that in
M the R-frame must be all red, and all GY-blocks must be free of any red. Using an
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analogous argument, we have that every cell of the G-frame must be green, and all
RY-blocks must be free of any green.

Together with the red and green row projections, this implies that in the source,
k cells are yellow and t − k are red, and in the sink k cells are green and t − k are
yellow. Moreover, in each row translator k cells are green and t−k are red. We define
vectors x0, x1, . . . , xN ∈

(
[t]
k

)
such that for all j ∈ [t],

• x0
j = 1 if and only if the jth cell in the source is yellow,

• xa
j = 1 if and only if the jth cell in the ath row translator is green for all

1 � a � N .
For a = 0, . . . , N , consider the colored subgrid Ma, corresponding to gadget a

(that is, the part of the solution given by the intersection of rows [a(t+1)+1, a(t+1)+t]
and columns [a(t+ 2), a(t+ 2) + 2t+ 1]). We number the rows of Ma from 0 to t− 1
and the columns from 0 to 2t + 1. Let uv = ea mod μ. By subtracting from the row
projections the number of red and green cells in the frames, we deduce that for each
i ∈ [t], row i in Ma contains i+2 red cells and i+ 1 green cells if i ∈ {u, v} and i+1
red cells and i+ 2 green cells if i �∈ {u, v}.

We proceed similarly for the columns t and t + 1. By subtracting from the
column projections the quantities that are in the frames, we deduce that column t of
Ma contains one red cell and t − 1 green cells, and column t + 1 contains t − k + 1
red cells and k − 1 green cells. In addition, column a(t + 2) + j for j ∈ [t] contains
t− j red cells that are not in the R-frame. Since GY-blocks are free of red, these cells
must be in either the ath row translator or in column j of Ma. Note that the jth
cell of the ath row translator is red if and only if xa

j = 0. Therefore column j of Ma

contains n− j + xa
j − 1 red cells and no green cell. Similarly column t+ 2+ j of Ma

contains t− j − xa+1
j green cells and no red cell.

This implies that Ma is a solution to the gadget defined by u, v, x, and y with
x = xa and y = xa+1. Then by Lemma 2.4 we obtain that xa � xa+1. Since this
holds for each a = 0, 1 . . . , N − 1, it follows that

(2.2) x0 � x1 � · · · � xN .

However, by Lemma 2.3 there are at most k(t−k)+1 different vectors in the sequence
(2.2). Thus by the choice of N and the Pigeonhole principle, there exists an � such
that

x� = x�+1 = · · · = x�+μ−1.

Using the second part of Lemma 2.4, we have that x�
u + x�

v = xa
u + xa

v � 1
for each uv = ea mod μ and a ∈ {�, . . . , � + μ − 1}. Finally and since E(H) =
{e� mod μ, . . . , e�+μ−1 mod μ}, we conclude that x� encodes a k-vertex cover of H .

In Figure 2.6 we show a solution for the instance (rR, rG, sR, sG) of three-CTP
associated to the complete graph on three vertices. Some other examples, as well as
an applet that solves 3-CTP for small instances, can be found in [10].

Theorem 2.6. The decision problem associated to 3-CTP is NP-complete in the
strong sense.

Proof. Clearly a solution of the 3-CTP can be checked in polynomial time and
then the associated decision problem lies in the class NP.

On the other hand, notice that N = (k(t − k) + 1)μ + 1 = O(t4) and then the
number of rows and columns of the instance (rR, rG, sR, sG) are m = N(t+ 1) + 1 =
O(t5) and n = N(t + 2) + t = O(t5), respectively. Then (rR, rG, sR, sG) consist of
2(m+ n) = O(t5) numbers, each of them bounded by n = O(t5). So the unary code
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Fig. 2.6. A solution of an instance of 3-CTP associated to the complete graph on three vertices.
Edges are ordered as 12, 13, 23, t = µ = 3, k = 2, N = 9, N(t+1)+1 = 37 rows and N(t+2)+t = 48
columns. x0 = x1 = (0, 1, 1), x2 = x3 = x4 = x5 = x6 = (1, 0, 1), x7 = x8 = x9 = (1, 1, 0).

of the instance has size O(t10). Then by Lemma 2.5 it turns out that the decision
problem is strongly NP-complete.

We recall that Theorem 2.6 solves the consistency part of Question 4.2 in [13],
also known as the 2-atom problem in discrete tomography [7].

3. Simultaneous realization of graph factors. The degree sequence prob-
lem consists in finding a graph whose degree sequence equals a given nonincreasing
sequence d of positive integers. When such a graph exists it is called a realization of d,
and d is called a graphical sequence. There are several characterizations of graphical
sequences leading to polynomial time algorithms for reconstructing a desired graph
[11, 17, 16, 24]. Similarly, the graph factor problem2 is the problem of finding a subset
of edges F of a given graph G = (V,E) such that the degree function of the graph
H = (V, F ) is a given function d : V → N. The degree sequence problem is a particu-
lar case of the graph factor problem when G is the complete graph. It is known that
the graph factor problem can be solved in polynomial time (see, for example, [2]).

A further generalization is the problem of finding two graphs H = (V, F ) and
G = (V,E) with F ⊆ E and such that H and G are realizations of two given functions
a and b from V to N, respectively. In [19], Kundu proved that this problem always has
a solution when b and the difference sequence b− a are both graphical and a has span
at most one. Here, the span of a sequence is the difference between its maximum and
minimum values. Moreover, Kleitman and Wang gave a polynomial time algorithm
which under the above conditions finds such realizations [18].

2Also known as the f -factor problem.
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Lovász observed that this problem is polynomially equivalent to an edge coloring
problem of the complete graph satisfying some degree constraints for each color [20].
In what follows we consider this version of the problem. Formally, the simultane-
ous realization problem (SRP) is the problem of finding two edge disjoint spanning
subgraphs HR and HG of the complete graph whose degree functions are two given
functions dR and dG. Hence, given functions dR and dG, a solution of the SRP is a
partial edge coloring of the complete graph with colors red and green, where the set of
red edges induces a graph with degree sequence dR and the set of green edges induces
a graph with degree sequence dG. In [5], Chen gave a simple proof of Kundu’s result
which leads to a linear time algorithm for solving the SRP when the inputs are two
graphical sequences dR and dG and the sequence dR + dG has span at most one.

In [3], Brualdi and Ross studied the variant of the problem where the complete
graph is replaced by a complete bipartite graph Km,n over sets of size m and n.
We call bigraphical sequences the sequences that admit a realization as subgraphs
of Km,n. Later, Anstee showed that this variant has a solution whenever the input
are two bigraphical sequences and the sum of them, restricted to one of the two
independent sets of Km,n, has span at most one. Under these restrictions a solution
can be computed in polynomial time [4]. In [15], Gúıñez, Matamala, and Thomassé
obtained a necessary condition for the simultaneous realization of two bigraphical
sequences, which turns out also to be sufficient when the sum of the sequences has
span at most two in each independent set of Km,n. This characterization allows us
to obtain a polynomial time algorithm for constructing the simultaneous realization
when the above conditions are satisfied.

As the reader may have already noticed, this variant of the problem is equivalent
to the 3-CTP by means of the following identification between a grid of size m × n
and a complete bipartite graph Km,n: rows and columns are identified with vertices,
and cells are identified with edges. Therefore, Theorem 2.6 implies NP-hardness of
the analogous of SRP on complete bipartite graphs.

We will see that this hardness result also holds for complete graphs. Before
proving this, we will show that the restriction of 3-CTP to symmetric instances is
NP-hard.

Symmetric 3-CTP.

• Input: an instance (rR, rG, sR, sG) of 3-CTP defined in the n× n grid such
that rR = sR and rG = sG.

• Output: a symmetric solution M of (rR, rG, sR, sG), that is, Mij = Mji, for
each i, j ∈ [n].

Theorem 3.1. The symmetric 3-CTP is NP-hard.
Proof. The associated decision problem clearly belongs to the class NP. Thus, we

construct a polynomial reduction from 3-CTP to symmetric 3-CTP as follows: Given
an instance (rR, rG, sR, sG) of 3-CTP defined in an m × n grid, let (r̂R, r̂G, ŝR, ŝG)
be an instance of symmetric 3-CTP defined in an (m+ n)× (m + n) grid, where for
i ∈ [m+ n]

r̂Ri = ŝRi =

⎧⎨
⎩
rRi +m if i ∈ [m],

sRi−m otherwise, and r̂Gi = ŝGi =

{
rGi if i ∈ [m],

sGi−m + n otherwise.

By definition (r̂R, r̂G, ŝR, ŝG) is symmetric and clearly it can be constructed in poly-
nomial time in m and n. Then it remains to show that the instance (rR, rG, sR, sG)
is feasible if and only if (r̂R, r̂G, ŝR, ŝG) is feasible.
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First, let M ∈ {R,G, Y }m×n be a solution of (rR, rG, sR, sG). Then we define a
coloring M̂ of the (m+ n)× (m+ n) grid in which each cell in [m]× [m] is colored in
red, each cell in [m]× [m] is colored in green, and the subgrids [m]× [m] and [m]× [m]
are colored according to M and M t, respectively. The reader can easily check that
M̂ is a solution for (r̂R, r̂G, ŝR, ŝG).

On the other hand, consider a solution M̂ of the instance (r̂R, r̂G, ŝR, ŝG). We
apply Lemma 2.2 for (r̂R, ŝR) and intervals I = J = [m]. This shows that every
cell in [m] × [m] is colored in red and that in [m] × [m] none cell is colored in red.
Similarly, applying Lemma 2.2 for (r̂G, ŝG) and intervals I = J = [m], we conclude
that [m] × [m] is all colored in green. Let M be restriction of M̂ to the subgrid
[m] × [m]. Then the row projections of M are exactly rR for color red and rG for
color green. Similarly, the columns projections are the vectors sR and sG for colors
red and green, respectively. Hence M is a solution of (rR, rG, sR, sG).

From Theorem 3.1 it follows directly that the simultaneous realization problem is
NP-hard for complete graphs with loops. However, from this observation we were not
able to derive the same result for complete graphs without loops. Instead, we prove
it directly.

Theorem 3.2. The simultaneous realization problem is NP-hard.
Proof. We reduce it from the 3-CTP. Let (rR, rG, sR, sG) be an instance of the

3-CTP defined in a m × n grid. We set V = [m + n], and the following degrees, for
i ∈ [m] and j ∈ [n]:

dRi = rRi +m− 1, dGi = rGi ,

dRm+j = sRj , dGm+j = sGj + n− 1.

Now we show that the instance (rR, rG, sR, sG) of 3-CTP is feasible if and only if the
instance (dR, dG) of SRP is feasible. For one direction, assume that there is a solution
M to the 3-CTP instance. We construct a solution, ER, EG, to the graph problem
as follows. For any i ∈ [m] and j ∈ [n], the edge joining vertices i and m+ j belongs
to ER if Mij = R and to EG if Mij = G. Also, for any i, i′ ∈ [m] with i �= i′, we
have ii′ ∈ ER and for any j, j′ ∈ [n] with j �= j′, the edge that joins m+ j and m+ j′

belongs to EG. Clearly, ER, EG satisfy the required degrees.
For the converse, consider the quantity Φ =

∑
i∈[m] d

R
i −

∑
j∈[n] d

R
m+j . By as-

sumption (1.1), Φ = m(m− 1). Since this value also equals

2(|ER ∩ [m]2| − |ER ∩ {m, . . . ,m+ n− 1}2|),

there is a red edge between every pair of vertices i, i′ with 0 � i < i′ < m and no red
edge between any pair m+ j,m+ j′ with 0 � j < j′ < n. Similarly, we can show that
there is a green edge between every pair of vertices m+ j,m+ j′ with 0 � j < j′ < n.

Now let M be the m × n grid with cell (i, j) colored in red or green if the edge
joining i and m+ j belongs to ER or EG, respectively. By the degree requirements,
M is a solution to the 3-CTP instance.

4. Tiling tomography. We generalize the k-CTP in the following manner: in-
stead of assigning colors to each cell we assign colors to tiles, which are sets of con-
nected cells. Throughout this section we consider only rectangular tiles which consist
of all cells of [p] × [q] for some positive integers p, q. To ease the presentation we
introduce some names for special kinds of tiles. A tile of dimension p× q is called a
unit tile if p = q = 1, a square if p = q = 2, a horizontal bar of length p if q = 1, and
a vertical bar of length q if p = 1. Bars of length 2 are called dominoes.
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τ2

τ3

τ1

Fig. 4.1. A tiling of the grid with copies of a 2× 2-tile, a 1× 3-tile, and a 2× 1-tile.

In this context let T be a set of tiles, each with a distinct color (but dimensions
are not required to differ). A T -tiling of an m×n grid is a partitioning of the grid into
smaller colored rectangles, each being a translated copy of a tile in T . In Figure 4.1 a
T -tiling of the grid 9×15 is given, where T consists of one square (τ1), one horizontal
bar of length 3 (τ2), and one vertical domino (τ3).

The ith horizontal projection of a tile τ ∈ T of a T -tiling of an m× n grid is the
number of cells in the ith row of the grid being leftmost upper corners of copies of
the tile τ . Vertical projections are defined similarly. In Figure 4.1 the horizontal and
vertical projection of tiles τ1 and τ2 are

rτ1 = (2, 2, 1, 1, 1, 2, 1, 3, 0),

rτ2 = (3, 1, 1, 1, 2, 2, 2, 1, 2),

sτ1 = (2, 1, 0, 2, 0, 0, 2, 0, 1, 1, 0, 1, 1, 2, 0),

sτ2 = (1, 0, 2, 3, 0, 2, 1, 2, 2, 1, 0, 0, 1, 0, 0).

We remark that another equivalent projection could have been defined, namely, the
one that for each row i and tile τ ∈ T counts the number of cells of the ith row being
covered by some copy of τ . But it is easy to verify that a simple vector basis change
relates these alternative projections to the projections defined above.

For a set of tiles T , we consider the following problem.
(T -TTP).
• Input: vectors rτ ∈ [n+ 1]m and sτ ∈ [m+ 1]n for each τ ∈ T .
• Output: a T -tiling T of the m× n grid with rτ and sτ and horizontal and
vertical projections, respectively, for each τ ∈ T .

The complexity of T -TTP has been studied for several sets of tiles (see Table 4.1).
On one hand, a polynomial time algorithm exists when the set of tiles contains one
unit tile and one bar of length q. The case q = 1 corresponds to 2-CTP and then can
be solved by Ryser’s algorithm [12, 22]. The case q = 2 was settled in [21] and then
generalized to any q in [9]. Moreover, it has been proved to be polynomially solvable
when the set of tiles is composed of one vertical domino and one horizontal domino [25].

On the other hand, if the set of tiles consists of one unit tile and one square,
then the problem was proved to be as hard as 3-CTP [6]. This relation also holds for
specific three-tile sets T : when each tile is a unit tile, then the problem is equivalent to
3-CTP, and when it contains two unit tiles and one domino it is known to be as hard
as 3-CTP [6]. Therefore from Theorem 2.6 we know that these three problems are NP-
hard. The problem is also NP-hard when the set of tiles is composed of two unit tiles
and one square, or one unit tile, one vertical domino, and one horizontal domino [6].

In this section we clarify the complexity status for rectangular tiles. On the one
hand, the problem is NP-hard when |T | � 3 or |T | = 2 and one of the tiles is not a
bar. On the other hand, we show that the problem is polynomial time solvable when
T consists of two horizontal bars (or by symmetry, of two vertical bars). The only
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Table 4.1

Summary of previous known results of T -TTP for rectangles. We also include the NP-hardness
of 3-CTP (Theorem 2.6). We use “ ∝3-CTP” to symbolize that the problem “admits a reduction
from 3-CTP” (i.e., it is as hard as 3-CTP).

NP−hardP

[6]2 tiles

[25]

[10]

[21]

[6]

2-CTP [12, 22]

4 tiles

3 tiles

3-CTP [6]

3-CTP

3-CTP

[6]

4-CTP [7]

∝

∝

case that remains open is when T consists of one vertical bar of length p and one
horizontal bar of length q. In this case, for p, q � 2 it is known that the problem can
be solved in polynomial time [25], but its complexity is unknown otherwise, that is,
when p, q � 2 and one of p, q is at least 3.

4.1. Polynomial time algorithm for two horizontal bars. In this section we
exhibit a polynomial time algorithm for tiling tomography problem for two horizontal
bars. Clearly, this also solves the case of two vertical bars. It generalizes the greedy
algorithm from [9], which itself is a generalization of the greedy algorithm from [22]
for 2-CTP.

To be more precise, we prove that a more general problem admits a polynomial
time algorithm. For an integral nonnegative vector h = (h0, . . . , hm−1), we denote
by H(h) the finite collection of cells, arranged in left-aligned rows, such that row i
contains exactly hi cells. We say that H(h) is the histogram3 of shape h. In particular,
the m × n grid is the histogram of shape h = (n, . . . , n). We construct an algorithm
that iteratively tiles the empty grid with horizontal bars from right to left. Thus, at
each step the remaining set of cells to tile is a histogram.

Theorem 4.1. The tiling tomography problem can be solved in polynomial time
for two horizontal bars.

Proof. Let q1 and q2 be the lengths of the two horizontal bars. Thus, we refer
to them as a q1-bar and a q2-bar, respectively. As mentioned, the algorithm solves
the more general problem, where the region to tile is a histogram H(h) for some
integral vector h. Thus, at each stage of the algorithm its configuration is a tuple
(h; r1, r2, s1, s2), where (r1, s1) and (r2, s2) are the required projections for q1-bars
and q2-bars, respectively.

3Notice that our use of the term “histogram” differs from the standard one used in graphical
representations, where the bars are displayed vertically.
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The algorithm is as follows:
Let T be the histogram H(h).
While maxj hj > 0, do
begin

• Let � = maxj hj . Let j1 = �− q1 and j2 = �− q2.
• If s1j1 = s2j2 = 0, abort and return “no solution”. Otherwise let
c ∈ {1, 2} be such that scjc > 0.

• Let i be a row that maximizes rci among all rows satisfying
hi = �.

• Place a qc-bar at position (i, jc) in T , decrease scjc and rci by
one, and hi by qc.

end
Return T if all vectors h, r1, r2, s1, s2 are zero, and return “no solu-
tion” otherwise.

Clearly, if this algorithm produces a tiling, then it has the required projections.
Now we have to show that if the instance has a solution, then the algorithm will
actually find one. To this purpose we assume that the instance I := (h, r1, r2, s1, s2)
is feasible and show that the algorithm will not return “no-solution” and preserve
feasibility of the intermediate instance.

Let S be a solution to I and � = maxhi. If � = 0, then r1, r2, s1, s2 are all zero,
since the instance is feasible and the algorithm produces S.

Otherwise, consider j1 = �− q1 and j2 = �− q2. For every row i satisfying hi = �,
we have that there is either a q1-bar at position (i, j1) or a q2-bar at position (i, j2)
in S. Therefore one of s1j1 , s

2
j2

must be nonzero. Let c, i be the values the algorithm
chooses. Let I ′ be the instance obtained after the iteration of the algorithm, that is,
rci , s

c
jc are decreased by 1 and hi by qc.
If S has a qc-bar at position (i, jc), then the tiling S′ obtained by eliminating that

bar is a solution to I ′, which shows that feasibility is preserved. Now suppose that S
does not have a qc-bar at position (i, jc). We will show that there is another solution
S′ which does have this property. Then we are in the case above, which completes
the proof.

By scjc > 0, there must be another row k in S with hk = � containing a qc-bar
at position (k, jc). By the choice of the algorithm, we know that rck � rci . From
this inequality, there exists a column j ∈ [�] such that the total number of qc-bars
at columns j′ � j is the same in both row i and row k. Note that j also satisfies
that for c′ �= c, the total number of qc′ -bars at columns j′ � j in row i is the same
as in the row k, since the length of both rows is �. Take j as the largest column
index satisfying this property. By the choice of j, there is a qc-bar in S at position
(i, j) and a qc′-bar at position (k, j). Then exchanging the bars of rows i and k in S
between columns j and � does not change the projections of S, and hence we obtain
the required property. In Figure 4.2 we exhibit an example of this exchange.

4.2. NP-hardness results. In this section we present two NP-hardness proofs
for the T -TTP for the case when T consists of two rectangles where one is not a bar,
and for the case when T consists of three rectangles. Both proofs are reductions from
the 3-CTP and share a particular structure that we first outline.

4.2.1. The general NP-hardness proof structure. Here is a general con-
struction that reduces 3-CTP to T -TTP.

Consider an instance (rR, rG, sR, sG) of the 3-CTP defined in an m × n grid.
For the reduction we have to choose a constant-size k × � grid, which we call a block,
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k

i

j1j

k

q1

j1

q2

i

j

Fig. 4.2. Transforming a solution when c = 1 and i are the choices of the algorithm.

and three different T -tilings of this block that we denote BR, BG, and BY . For each
c ∈ {R,G, Y } and τ ∈ T , let rc,τ and sc,τ be the τ -projections of the T -tiling Bc.
We write rc,T = (rc,τ )τ∈T and sc,T = (sc,τ )τ∈T for short. The reduction consists of
an mk × n� grid, whose projections for each τ ∈ T are defined as

rτxk+i = rRx · rR,τ
i + rGx · rG,τ

i + rYx · rY,τi ,(4.1)

sτy�+j = sRy · sR,τ
j + sGy · sG,τ

j + sYy · sY,τj

for each i ∈ [k], j ∈ [�], x ∈ [m], and y ∈ [n]. We think of the mk × n� grid as being
partitioned into m · n blocks of dimension k × �. Thus we refer to the set of rows
xk, . . . , xk + k − 1 in the mk × n� grid as the block row x and to the set of columns
y�, . . . , y� + � − 1 as the block column y. Similarly, we refer to the block indexed
by block row x and block column y as the (x, y) block. In the reduction each block
represents one cell of the m × n grid, which is given by its corresponding block row
and column indices. In order to prove the equivalence of both instances we need two
requirements to be satisfied.

The first requirement is that rR,T , rG,T , and rY,T are affinely independent (this
property is explained below). The same requirement must be satisfied by the column
projections sR,T , sG,T , and sY,T .

The second requirement is that in every solution T to the tiling instance defined by
(4.1), all blocks of T are either BR, BG, BY or blocks that have equivalent projections.

We recall that matrices A1, . . . , AN ∈ R
p×q are affinely independent if the system

N∑
i=1

αiA
i = 0,

N∑
i=1

αi = 0

has a unique solution α1 = · · · = αN = 0. It is not difficult to see that for affinely
independent matrices A1, . . . , AN , a matrix A, and an integer b, the system

N∑
i=1

αiA
i = A,

N∑
i=1

αi = b

can have at most one solution. Sufficient conditions for affine independence include, for
example, (i) linear independence, and (ii) affine independence of the projection onto a
lower dimensional space. For example, the row projection matrices rR,T , rG,T , rY,T ∈
N

k×t for t = |T | are affinely independent if the vectors rR,τ , rG,τ , rY,τ ∈ N
k are affinely

independent for some tile τ ∈ T .
Lemma 4.2. Let (rc,T , sc,T ) be the projections of block Bc for each c ∈ {R,G, Y },

and assume that they satisfy the two requirements. Then the instance (rτ , sτ )τ∈T of
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T -TTP defined by (4.1) has a solution if and only if the instance (rR, rG, sR, sG) of
the 3-CTP has a solution.

Proof. Let M ∈ {R,G, Y }m×n be a solution for the 3-CTP. We transform it into
a T -tiling T of the mk × n� grid by replacing each cell (x, y) of M by the k× � block
Bc for c = Mxy. We can check that by the definition of rτ and sτ in (4.1), this tiling
is a solution to the problem.

For the converse, suppose that there is a solution T to the tiling problem. By
the second requirement, every block (x, y) of T is BR, BG or BY or has projections
that are equivalent to one of them. Therefore, we construct a m× n matrix M with
entries in {R,G, Y } by taking Mxy = c according to whether the block (x, y) of T is
Bc or something that has equivalent projections.

Fix some arbitrary x ∈ [m]. By the first requirement, the xth block row projection
matrix ((rτxk+i)i∈[k])τ∈T has a unique decomposition into α1r

R,T + α2r
G,T + α3r

Y,T

for values satisfying α1 + α2 + α3 = n. By the definitions of the projections, we have
α1 = rRx , α2 = rGx and α3 = rYx . Then, in the block row x, the total number of blocks
Bc (or equivalent projections) is rcx. By the definitions of the projections, we have
that in xth row of M the total number of cells with entries equal to c is rcx. We
proceed in the same manner for the columns, which shows that M is a solution to the
3-CTP instance.

4.2.2. Two rectangles where at least one is not a bar. Let T = {τ1, τ2} be
such that τ1 and τ2 are rectangles of sizes p1×q1 and p2×q2, respectively. Observe that
if p1, p2 are both multiples of some integer a > 1, then we can partition the rows into
successive sets of a rows which, in any tiling, must be covered by the same tiles; then
contracting these sets into single rows, and considering rectangles of sizes (p1/a)× q1
and (p2/a)×q2 instead, does not change the problem. Clearly the analogous holds for
the columns if q1, q2 are both multiples of an integer greater than 1. Thus, without
loss of generality, we assume that gcd(p1, p2) = gcd(q1, q2) = 1.

Theorem 4.3. The tiling tomography problem is NP-hard for two rectangles if
at least one of them is not a bar.

Proof. If we denote by p1 × q1 and p2 × q2 the size of the rectangles, then
min{pi, qi} � 2 for at least one i ∈ {1, 2}. Without loss of generality, let us assume
that p1, q1 � 2. We will apply Lemma 4.2 for k = 2p1p2 and � = 2q1q2. The three
tilings of the k×� block are depicted in Figure 4.3 and defined formally as follows. The
set of rows I = [k] and the set of columns J = [�] are partitioned into sets I1, I2, I3, I4
and J1, J2, J3, J4 defined as

I1 = {0, . . . , p2 − 1}, J1 = {0, . . . , q2 − 1},

I2 = {p2, . . . , p1p2 − 1}, J2 = {q2, . . . , q1q2 − 1},

I3 = {p1p2, . . . , p1p2 + p2 − 1}, J3 = {q1q2, . . . , q1q2 + q2 − 1},

I4 = {p1p2 + p2, . . . , 2p1p2 − 1}, J4 = {q1q2 + q2, . . . , 2q1q2 − 1}.

Then BY is defined as a tiling using only tiles of type τ1, B
R is defined as the block

tiling that covers (I1 ∪ I4) × (J3 ∪ J4) with τ2-tiles and the rest with τ1-tiles, while
BG is defined as the block tiling that covers (I3 ∪ I4)× (J1 ∪J4) with τ2-tiles and the
rest with τ1-tiles. These tilings are uniquely defined.

Let us show that the row τ1-projections of the three tilings are affinely linear
independent. For that, let us consider α1r

R,τ1 +α2r
G,τ1 +α3r

Y,τ1 = 0 such that α1+
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J2

I1

I2

I3

I4

q2

p2

q1

p1

J1 J4J3

BGBR

B′
(bad tiling)BY

Fig. 4.3. The three valid and the bad block tilings in the proof of Theorem 4.3.

α2 +α3 = 0. Observe that for row i = p2 ∈ I2, we have α1r
R,τ1
i +α2r

G,τ1
i +α3r

Y,τ1
i =

α1 ·q2+α2 ·0+α3 ·0 and hence α1 = 0. Applying the same for i = p2p1 ∈ I3, we deduce
that α1 +α2 +2α3 = 0. Clearly this system of linear equations has a unique solution
α1 = α2 = α3 = 0. By the symmetry of τ1-tiles with respect to rows and columns of
{BR, BG, BY }, we can analogously deduce that the column τ1-projections are affinely
independent. Therefore the first requirement of the construction is satisfied.

The second requirement follows from a sequence of observations. Let T be the
solution to the tiling instance, obtained by the reduction. First note that in the
tiling BR, BG, BY , every tile is completely contained in the k × � block. Therefore
the tiling instance has zero τ1-projections at rows xk + i such that k − p1 < i < k.
Analogously, the τ1-projections at columns y�+ j are equal to zero if � − q1 < j < �.
As a result in T every τ1-tile is completely contained in some k × � block. Of course,
a similar observation holds for each τ2-tile in T . In other words, every block of T is
{τ1, τ2}-tiled.

Let B be a k × � block in T . Every row in I2 is completely covered by τ1-tiles
in each block BR, BG, or BY . Therefore by the row projections, this also holds for
B. The analogous holds for columns and hence each column j ∈ J2 of B is fully
covered by τ1-tiles. Moreover, for rows others than those in I2 we obtain a similar
property. Notice that in any solution of ap1 = p2(2p1 − b) for integers a and b, since
gcd(p1, p2) = 1, we have that a must be a multiple of p2. Then ap1 + bp2 = 2p1p2
with a, b � 0 implies that (a, b) ∈ {(0, 2p1), (p2, p1), (2p2, 0)}. Of course the same
observation holds if we replace p1, p2 by q1, q2. This and the fact that B is a partition
into τ1- and τ2-tiles imply the following property.

Property 1. Every row or column of B is either covered completely by τ1-tiles
or covered half by τ1-tiles and half by τ2-tiles.

The trickiest observation of the proof is that in B, the region I1×J1 is fully covered
by τ1-tiles. For the sake of contradiction, let us suppose that it is partially covered by
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τ2-tiles and, in fact, by a single tile of type τ2 since |I1 ×J1| = |p2× q2| = |τ2| and the
rows in I2 and the columns in J2 are covered only with τ1-tiles. As gcd(q1, q2) = 1,
the cell (p2, q2) is covered by a tile τ1 at position (p2, j) for some column j < q2.
By the same argument, the cell (p2, q2) is also covered by a tile of type τ1 at posi-
tion (q2, i) for some row i < p2. Therefore these two tiles overlap in (p2, q2), which
contradicts that T is a (valid) T -tiling. We remark that this result and a previous ob-
servation show that the whole sub-block (I1∪I2)× (J1∪J2) of B is fully covered with
τ1-tiles.

Let us first assume that row 0 of B is partly covered by τ2-tiles. We will show
that B is indeed equal to BR. By the previous property, the τ2-tiles must cover half
the columns of J in row 1. Since these columns cannot be those in J1 ∪ J2 and we
also have |I1| = p2, it is straightforward that I1× (J3 ∪J4) is fully covered by τ2-tiles.
Again, Property 1 states that for every column each cell in a row in I2 is covered by a
τ1-tile. In particular, this shows that for j ∈ J3∪J4, column j must be half covered by
τ1-tiles. Let us show that these p1p2 cells (i, j) are exactly those such that i ∈ I2 ∪ I3.
Clearly this holds if i ∈ I2. On the other hand, observe that |I2| = p2(p1 − 1) is not
zero (here we use p1 � 2) and it is not multiple of p1. Therefore the cell (p1p2, j) is
covered by a τ1-tile. But by the definition of the blocks, rc,τ2i �= 0 for a row i ∈ I3 if
and only if c = G and i = p1p2.

We conclude that (I2∪I3)× (J3∪J4) is fully covered by τ2-tiles and I4× (J3∪J4)
is fully covered by τ1-tiles. It remains to show that (I3 ∪ I4) × J1 contains only tiles
of type τ1. This is straightforward by Property 1 and the fact that each column in J2
is fully covered by τ1-tiles.

In a similar fashion, we conclude that if column 0 is covered partly by τ2-tiles,
then B is exactly BG. Otherwise, that is, if row 0 and column 0 are covered only
with τ1-tiles, we have that (I1 ∪ I2)× J and I × (J1 ∪ J2) are covered completely by
τ1-tiles. As a result in B (I3 ∪ I4) × (J3 ∪ J4) is either fully covered with τ1-tiles or
fully covered with τ2-tiles by Property 1. These two possibilities correspond to the
tiling BY and another tiling B′, which we call bad, that is also depicted in Figure 4.3.

We now show that no bad tiling appears in T . Let NR be the number of blocks
in T that are tiled as BR. Similarly, let N ′ be number of bad blocks in T . Note
that the row projection of a bad tiling is equal to the row projection of BG and that
its column projection corresponds with that in BR. Therefore by the projections we
have the equalities

NR =
∑
x∈[m]

rRx , NR +N ′ =
∑
y∈[n]

sRy .

Since by assumption
∑

x∈[m] r
R
x =

∑
y∈[n] s

R
y , we conclude that N ′ = 0. Hence the

second requirement of our construction is satisfied, and by Lemma 4.2 this ends the
proof of Theorem 4.3.

4.2.3. Three rectangles. Clearly T -TTP seems to be more general than 3-
CTP when |T | � 3, but for a fixed tile set T the generalization is not straightforward.
In this section we show that 3-CTP reduces to any T -TTP where T consists of three
rectangles.

Theorem 4.4. The tiling tomography problem is NP-hard for any three rectan-
gular tiles.

Proof. Let p1×q1, p2×q2, and p3×q3 be the respective sizes of the three arbitrary
rectangles τ1, τ2, and τ3.
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k12

�12 �23 �

k
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q3

p2

q2

q1

p1

BYBGBR

Fig. 4.4. The three block tilings used in the proof of Theorem 4.4.

We apply the general proof scheme from section 4.2.1 with the three tilings
BR, BG, and BY that we define shortly. First, let us consider the following num-
bers:

k12 = lcm(p1, p2), �12 = lcm(q1, q2),

k13 = lcm(p1, p3), �13 = lcm(q1, q3),

k23 = lcm(p2, p3), �23 = lcm(q2, q3).

Without loss of generality, we assume that

k12 � k13 � k23 and(4.2)

k12 = k13 ⇒ �12 � �13;

otherwise we could rename the tiles. We apply Lemma 4.2 for k = k23 and � being
the smallest integer greater than or equal to �12 that is both a multiple of q2 and a
multiple of q3. The reader can easily check that k − k12 is a multiple of p2, �− �12 is
a multiple of q2, and �− �23 is a multiple of q3 (being zero if �23 � �12).

The three tilings of the k×� grid are depicted in Figure 4.4, and they are formally
defined as follows. The block BY is completely tiled with copies of τ3. In BR, the
[k12]× [�12] sub-block is completely tiled with τ1-tiles and the remainder with τ2-tiles.
Finally, BG is the block having the [k]× [�23] sub-block completely tiled with copies
of τ2 and the remainder with τ3-tiles.

Let us first show that the projections of these tiles satisfy the first requirement for
the general proof structure. For that, let α1, α2, α3 be such that α1r

R,T + α2r
G,T +

α3r
Y,T = 0 and α1 +α2 +α3 = 0. In particular, for the first row we obtain α1r

R,T
0 +

α2r
G,T
0 +α3r

Y,T
0 = 0. Notice that rc,τ10 is nonzero only for c = R, since BR is the only

block that contains τ1-tiles. This shows that α1 = 0. Similarly, there is no τ2-tile in
BY but at least one in BG, and hence rY,τ20 = 0 and rG,τ2

0 �= 0. This and the fact that
α2+α3 = 0 are sufficient to conclude that α2 = α3 = 0, and hence rR,T , rG,T , rY,T are
affinely independent. In order to prove that sR,T , sG,T , sY,T are affinely independent
we can use the same argument for the first column.

Before proving that the second requirement is satisfied, there are some observa-
tions to make. Observe that each BY , BR, or BG, satisfies the following property:

(4.3) τa-tile is at position (i, j) ⇒ i mod pa = 0 and j mod qa = 0.

This means that the τa-projections rc,τai and sc,τaj are zero if i mod pa �= 0 and
j mod qa �= 0, respectively, for all c ∈ {R,G, Y }. Hence in any solution T to the tiling
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instance resulting from the reduction, property (4.3) must hold for all blocks as well.
This observation is crucial for the proof.

In particular it implies the following fact. Fix some solution T to the tiling
instance resulting from the reduction. Consider a block B in T . We say that cell (i, j)
is a τa-τb row separation if i > 0 and either (i − 1, j) or (i, j) is covered by a copy of
τa and the other by a copy of τb. Then by (4.3) we obtain

(4.4) (i, j) is a τa-τb row separation ⇒ i mod pa = 0 and i mod pb = 0.

Obviously, the same observation holds for column separations, which are defined sim-
ilarly. We use this observation to show that the construction also satisfies the second
requirement.

Fix some solution T to the tiling instance resulting from the reduction. We
distinguish three types of blocks: (B1) blocks that contain a copy of τ1, (B2) blocks
that do not contain any copy of τ1 but contain at least one copy of τ2, and (B3) blocks
that are completely tiled with copies of τ3. Thus blocks of type (B3) are exactly BY .
It remains to show that blocks of type (B1) are exactly BR and blocks of type (B2)
are BG.

Consider a block B of type (B1). Then by the projections all copies of τ1 must be
contained in the region [k12] × [�12], and by observation (4.4) and assumption (4.2),
this region cannot contain any copy of τ2.

For the sake of contradiction, let us suppose that this region contains some copy
of τ3. Then somewhere in this region, a copy of τ1 must be side by side with a copy
of τ3. There cannot be a τ1-τ3 row separation at (i, j) for some i < k12. Otherwise i
would be both a multiple of p1 and p3, implying k13 < k12 and hence contradicting
assumption (4.2).

Then there must be a column separation at some cell (i, j) for j < �12. This
implies �13 < �12 and by (4.2), k12 < k13. Assume that (i, j− 1) and (i, j) are covered
by a copy of τ1 and τ3, respectively. The other case is symmetric. Then since there
is no τ1-τ3 row separation, (k12 − 1, j − 1) is covered by a copy of τ1 and (k12 − 1, j)
by a copy of τ3. Since k12 < k13, the cell (k12, j − 1) cannot be covered by a copy of
τ3. The only possibility that remains is that it is covered by a copy of τ2.

Let us see what happens with cell (k12, j). If it is covered by a copy of τ3, then we
have a τ2-τ3 column separation at (k12, j), implying in particular that j is a multiple
of q2. Since j is already a multiple of q1, we obtain a contradiction to the definition
of �12. On the other hand, if it is covered by a copy of τ2, then k12 is a multiple of
p1, p2, and p3, contradicting k12 < k13. This implies that the region [k12] × [�12] is
completely tiled with copies of τ1.

We have to show that the rest of the block is completely tiled with τ2-tiles. By
definition of k23, there cannot be a τ2-τ3 row separation. If there is a τ2-τ3 column
separation at some cell (i, j), then by definition of � it must be for a column j < �12.
But then we can repeat the argument above, which leads to a contradiction. Therefore
we conclude that every type (B1) block is of the form BR.

We now use a counting argument to show that all the blocks of type (B2) must
be BG. First, observe that the total number of (B1) blocks equals the projection
rR in the original instance of the 3-color tomography problem. Then we conclude
that in every (B2) block there is no copy of τ2 after column �23. Since there is no
τ2-τ3 separation either before column �23 or before row k23, every (B2) type block is
exactly of the form BG. Then the construction satisfies the second requirement for
Lemma 4.2, and we are done.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 
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[9] C. Dürr, E. Goles, I. Rapaport, and E. Rémila, Tiling with bars under tomographic con-
straints, Theoret. Comput. Sci., 290 (2003), pp. 1317–1329.
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