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a b s t r a c t

Traditional approaches to predict a second-order stationary vector random field include simple and

ordinary cokriging, depending on whether or not the mean values of the vector components are

assumed to be known. This paper explores a variant of cokriging, in which the mean values of the vector

components are related by linear combinations with known coefficients. Equations for the cokriging

predictor and for the variance–covariance matrix of prediction errors are presented. A set of computer

programs is provided and illustrated with applications to mineral resources evaluation, in which the

proposed cokriging variant compares favorably with traditional approaches.

& 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Cokriging is a widely used technique for the spatial predic-
tion of coregionalized variables. Application fields in the geos-
ciences include mineral resources evaluation (Journel and
Huijbregts, 1978; Pan et al., 1993), petroleum reservoir modeling
(Xu et al., 1992; Hohn, 1999), geochemistry (Wackernagel, 1988),
groundwater hydrology (Ahmed and De Marsily, 1987; Kitanidis,
1997), and soil sciences (Yates and Warrick, 1987; Stein et al.,
1988).

Considering the coregionalized variables as one realization of a
second-order stationary vector random field, the main variants
are simple and ordinary cokriging, depending on whether or not
the mean of the vector random field is assumed to be known
(Myers, 1982; Ver Hoef and Cressie, 1993; Wackernagel, 2003).
Nevertheless, a seeming issue of ordinary cokriging is the under-
weighting of the covariates (the weights of the covariates sum
to zero and are often of small magnitude), as though these
covariates were of little significance for prediction (Goovaerts,
1998; Hohn, 1999). This underweighting may be explained
because the mean of the vector random field (a first-order
moment) is assumed to be constant and unknown, while only
the spatial correlation structure (direct and cross covariance
functions, i.e., second-order moments) is known. In practice, this
ll rights reserved.

rg/CGEditor/index.htm.
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assumption may be too severe and cause a loss of information,
making covariates less relevant for the prediction than they
should be.

More weight can be assigned to the covariates by modifying
the constraint on the sum of ordinary cokriging weights. One such
variant is the so-called ‘‘rescaled’’ or ‘‘standardized’’ ordinary
cokriging (Isaaks and Srivastava, 1989; Goovaerts, 1998), in
which the weights of all the variables sum to one. However, this
new constraint yields unbiased predictions only if all the compo-
nents of the vector random field have the same constant mean,
which is a quite specific situation (e.g., when these compo-
nents represent the same quantity measured with different
devices or on different supports) (Goovaerts, 1997; Pebesma, 2004;
Papritz, 2008).

There are many public packages available for cokriging second-
order stationary vector random fields, which differ in the program-
ming languages, allowed space dimensions, number of vector
components, and number of nested structures used for spatial
correlation modeling (Carr et al., 1985; Marcotte, 1991; Deutsch
and Journel, 1992; Pan et al., 1992; Pebesma and Wesseling, 1998;
Pebesma, 2004). However, these packages are restricted to simple,
ordinary, and standardized ordinary cokriging.

In this context, the aim of this paper is threefold: (i) to present
cokriging in a more general framework, in which the mean values
of the vector components are related by linear combinations with
known coefficients (even though these mean values are
unknown); (ii) to provide practitioners with computer programs;
(iii) to present case studies in mineral resources evaluation,
in order to demonstrate the applicability and versatility of the
proposed programs.

www.elsevier.com/locate/cageo
dx.doi.org/10.1016/j.cageo.2011.06.001
http://www.iamg.org/CGEditor/index.htm
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2. Cokriging vector components with linearly dependent means

2.1. Assumptions

Consider a second-order stationary vector random field with N

real-valued components defined in Rd, Z¼(Z1,y,ZN)T, and denote
by m¼(m1,y,mN)T its mean vector (constant in space) and by
C(h)¼(Cij(h): i¼1,y, N; j¼1,y, N) its covariance matrix for a
given lag separation vector hARd.

Furthermore, let us assume that the mean values satisfy linear
relationships of the form:

8kAf1,. . .,Kg,
XN

i ¼ 1

ak,imi ¼ bk ð1Þ

for some known real-valued vector b¼(b1,y,bK)T and known
matrix A¼(ak,i: k¼1,y,K; i¼1,y, N) of rank KrN. Since A is a
full-rank matrix, its rows are linearly independent, meaning that
there is no redundancy or inconsistency between the relation-
ships in Eq. (1).

Up to an eventual reordering of the components of Z, Eq. (1) is
equivalent to

A m¼ b ð2Þ

with A¼(A1 A2), where A1 is a K� (N�K) matrix and A2 is a K�K

matrix of rank K. Without loss of generality, one can assume that
b¼0 (it suffices to work with the shifted vector random field
Z�d, where d is a vector such that Ad¼b, instead of Z).

Accordingly, the last K components of m (subvector m2) can
be expressed as a function of the first (N�K) components
(subvector m1):

m2 ¼X m1 ð3Þ

with X¼�A�1
2 A1. Equivalently,

m¼ F m1 with F¼
IN�K

X

� �
ð4Þ

where IN–K is the identity matrix of size (N–K)� (N–K).

2.2. Cokriging equations

In the following, it is of interest to predict Z at a given location
x0AR

d, given the values of one or more components of Z known at
surrounding locations {xa: a¼1,y,n}.

2.2.1. Matrix formulation of cokriging equations

In the first instance, let us suppose that all the components of
the vector random field are known at all the data locations
(isotopic sampling). In such a case, the system of cokriging
equations can be written in a simple matrix form. The predictor
of Z(x0) is

Zn
ðx0Þ ¼

Xn

a ¼ 1

KT
aZðxaÞ ð5Þ

where {Ka, a¼1,y,n} are N�N matrices of weights to be
determined. Since these weights actually depend on location x0,
the complete notations should be Ka(x0); however, the shortened
notation Ka will be used hereafter for the sake of simplicity.

The expectation of the prediction error is

EfZn
ðx0Þ�Zðx0Þg ¼

Xn

a ¼ 1

KT
a�IN

 !
m¼

Xn

a ¼ 1

KT
a�IN

 !
Fm1 ð6Þ

where IN is the identity matrix of size N�N. Since m1 is a vector
of free components that can take any real value, the only way to
ensure that the predictor is unbiased (i.e., that the expected error
is zero) is to impose the following constraint:

Xn

a ¼ 1

KT
a�IN

 !
F¼ 0 ð7Þ

The variance–covariance matrix of the prediction error is

R¼ Ef½Zn
ðx0Þ�Zðx0Þ�½Z

n
ðx0Þ�Zðx0Þ�

T g

¼ E
Xn

a ¼ 1

KT
aZðxaÞ�Zðx0Þ

" # Xn

a ¼ 1

KT
aZðxaÞ�Zðx0Þ

" #T
8<
:

9=
;

¼
Xn

a ¼ 1

Xn

b ¼ 1

KT
aCðxa�xbÞKb�

Xn

a ¼ 1

Cðx0�xaÞKa

�
Xn

a ¼ 1

KT
aCðxa�x0ÞþCðx0�x0Þ ð8Þ

where for a, bA{0,y,n}, C(xa�xb) is the N�N matrix whose
generic term is Cij(xa�xb).

It remains to minimize the variances of the prediction errors of
the components of Z (diagonal terms of R), under the unbiased-
ness constraint (Eq. (7)). All calculations done, one obtains the
following system of equations:

Cðx1�x1Þ � � � Cðx1�xnÞ F

^ & ^ ^

Cðxn�x1Þ � � � Cðxn�xnÞ F

FT
� � � FT 0

0
BBB@

1
CCCA

K1

^

Kn

M

0
BBB@

1
CCCA¼

C ðx1�x0Þ

^

Cðxn�x0Þ

FT

0
BBB@

1
CCCA ð9Þ

where M is a (N–K)�N matrix of Lagrange multipliers and 0 a
(N–K)� (N–K) matrix of zeros.

The variance–covariance matrix of the prediction errors (Eq. (8))
simplifies into

R¼ Cðx0�x0Þ�
Xn

a ¼ 1

KT
a½Cðxa�x0ÞþFM� ð10Þ

Note that, in the isotopic sampling case, the cokriging matrix
in Eq. (9) is singular if the components of Z are linearly dependent
(Appendix A), for instance if these components sum to one, as
found when dealing with regionalized compositions or with class
indicators (Tolosana-Delgado et al., 2008). In this case, one or
more component(s) must be omitted during cokriging, in order to
remove the linear dependence.

In case of a heterotopic sampling (i.e., when one or more
components of Z are unknown at some data locations), the
previous equations (Eqs. (5)–(10)) must be modified by removing
the rows and/or columns of C(xa�xb), Ka, and F corresponding to
missing data values.

2.2.2. Special cases

Let us note a few specific cases of the former cokriging system:
�
 K¼N: simple cokriging (Myers, 1982; Wackernagel, 2003). In
this case, X, F, and M are empty matrices.

�
 K¼0: ordinary cokriging (Myers, 1982; Wackernagel, 2003). In

this case, X is an empty matrix and F is the N�N identity
matrix.

�
 K¼N�1 with X a (N–1)�1 matrix of ones: rescaled or

standardized ordinary cokriging, where all the components
of Z have the same unknown mean value (Isaaks and
Srivastava, 1989; Goovaerts, 1998). In this case, F is a vector
of ones.

�
 KA{1,y,N–1} with X a matrix of zeros: mixed cokriging, in

which the K last components of Z have known means, while
the first N–K components have unknown means.
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2.2.3. Generalizations

The previous cokriging equations can be generalized in several
ways:
�
 Vector random field Z with nonstationary covariance functions.
This situation can be handled using, in Eqs. (9) and (10),
covariance matrices C(xa,xb) that separately depend on the
two spatial locations {xa, xb} (a, b¼0,y,n). Several approaches
for inferring and modeling nonstationary covariance functions
are described by Higdon et al. (1999), Fuentes (2001), and
Sampson et al. (2001), among others.

�
 Block cokriging, in which the objective is to predict the spatial

average of Z over a block with a support larger than that of the
data. In Eqs. (9) and (10), it suffices to replace C(xa�x0) and
C(x0�x0) by average matrices calculated by letting x0 discre-
tize the block (Myers, 1984).

�
 Cokriging with a moving neighborhood: The previous equations

(Eqs. (5)–(10)) are valid when working in a moving neighbor-
hood, provided that the same set of data is used to predict all
the components of Z at the target location or target block.
Otherwise, one can predict only one component at a time, so
that several cokriging runs are necessary to predict all the
components.

�
 Cokriging with variograms: Subject to a symmetry condition,

the cokriging equations (Eqs. (9) and (10)) can be rewritten
using direct and cross variograms instead of direct and cross
covariance functions (Myers, 1982; Wackernagel, 2003). Expli-
citly, by assuming that the covariance matrix C(xa�xb) is
symmetric for any a, bA{0,y,n}, one can replace C(xa�xb) by
C(0)�C(xa�xb), where C(xa�xb) is the N�N matrix of direct
and cross variograms between Z(xa) and Z(xb), i.e.,

Cðxa�xbÞ ¼
1
2E ZðxaÞ�ZðxbÞ
� �

½ZðxaÞ�ZðxbÞ�
T

� �
ð11Þ

Note that the symmetry condition holds when the direct and cross
covariance functions are fitted with a linear coregionalization
model (Journel and Huijbregts, 1978; Chil�es and Delfiner, 1999).
One may also rewrite the cokriging equations using matrices
of direct and pseudo-cross variograms G(xa�xb), which differ
from C(xa�xb) by a symmetric matrix with zeros on the
diagonal (Myers, 1991).

2.3. Inference of the constraints between mean values

In practice, the linear constraints between the mean values of
the vector components (Eq. (1)) can be determined in several
fashions:
�
 They can be imposed by the nature of the vector random field
under study. For example, if this random field represents a
regionalized composition, the mean values of its components
should sum to one (Tolosana-Delgado et al., 2008). Also,
random field components that represent the same magnitude
measured with different devices or on different supports
should have the same mean value, unless there is a systematic
bias in the measurements.

�
 They can be inferred by geological knowledge (e.g., stoichio-

metry of specific minerals or substitution processes in which
one element replaces another).

�
 They can be determined experimentally by fitting a linear or a

multilinear regression model between the local mean values of
the random field components, assuming that the random field
is locally second-order stationary (Journel and Huijbregts,
1978). For want of known values, these local means can be
estimated by ordinary kriging for each random field compo-
nent separately.
2.4. Program description

The previous cokriging approach has been implemented in a
MATLAB program called COKRIGE. The program allows the pre-
diction of second-order stationary vector random fields defined in
Euclidean spaces of one, two, or three dimensions, whose correla-
tion structure corresponds to a linear coregionalization model,
i.e., such that the direct and the cross covariances of the vector
components are linear combinations of the same set of basic
nested structures (Journel and Huijbregts, 1978; Wackernagel,
2003). Each basic structure can have a geometric anisotropy,
described by three rotation angles (subroutine SETROT) and three
ranges (Deutsch and Journel, 1992). The list of available basic
structures is provided in subroutine COVA; any new structure can
be added in this subroutine.

The program offers the following functionalities:
(1)
 No restriction on the number of vector components.

(2)
 Handling of heterotopic data sets. Missing data values can be

codified as not-a-number (NaN) or as values outside a trim-
ming limit interval.
(3)
 No restriction on the number of nested structures used in the
linear coregionalization model.
(4)
 Predictions at scattered or at gridded locations. In the latter
case, the grid nodes are ordered point by point to the east,
then row by row to the north, and level by level upward
(Deutsch and Journel, 1992).
(5)
 Either point or block cokriging can be used. In the latter case,
the block dimensions are equal to the grid mesh.
(6)
 Either a moving or a unique neighborhood can be used. In the
former case, the neighborhood is the region enclosed by an
ellipsoid centered on the target location and defined by three
rotation angles, three semiaxis lengths, and a maximum
number of data points to select (subroutines PICKSUPR,
SUPERBLK, and SEARCH) (Deutsch and Journel, 1992). All
the Z-components known at the selected data points are then
used for cokriging. A unique neighborhood is used if the first
semiaxis length is set to infinity.
(7)
 An option to filter out (remove) the mean, the nugget effect,
and/or other basic nested structures in the predictions
(Wackernagel, 2003). For instance one can filter out the
nugget effect in order to avoid discontinuities in the predic-
tion maps when a target location coincidentally matches a
data point. Filtering out all the nested structures of the linear
coregionalization model (including the nugget effect) allows
predicting the mean value of the vector random field.
(8)
 An option to apply cross-validation. In the unique neighbor-
hood case, the program code is based on the results presented
by Dubrule (1983) and Emery (2009).
The user can input the parameters in the MATLAB workspace
or be prompted for an ASCII parameter file. A default parameter
file (COKRIGE.PAR, see Table 1) is created if the specified input file
does not exist. The output of program COKRIGE is an external
ASCII file with the prediction of the vector random field at the
target locations (first N columns) and the associated prediction
variances (last N columns).
3. Case studies

3.1. First case study: total and soluble copper grade data in an exotic

copper deposit

The first case study deals with the prediction of mineral
resources in the oxide zone of an exotic copper deposit mined



Table 1
Default parameter file for program COKRIGE.

Parameters for COKRIGE

nnnnnnnnnnnnnnnnnnnnnn

Start of parameters:

0 % type of cokriging: 0¼gridded locations; 1¼scattered locations

locations.prn % if ¼1: file with coordinates of locations for cokriging

1 2 3 % columns for location coordinates

5.0 5.0 655.0 % if ¼0: x0, y0, z0

52 42 20 % nx, ny, nz

10.0 10.0 10.0 % dx, dy, dz

4 4 3 % block discretization (1 1 1 for point-support cokriging)

grades.dat % file with conditioning data

1 2 3 % columns for coordinates

4 5 % columns for data values

-1 1e21 % trimming limits for data values

1 % number of constraints on the mean values of the form sum{a_kinm_i}¼b_k

0.9 –1 0 % 1st constraint: coefficients a_ki and b_k for k¼1

2 % number of nested structures

1 35 35 35 0 0 0 1 % 1st structure: it a1 a2 a3 ang1 ang2 ang3 b

0.16 0.20 0.20 0.29 % variance–covariance matrix

2 35 35 15 0 0 0 1 % 2nd structure: it a1 a2 a3 ang1 ang2 ang3 b

2.74 2.51 2.51 2.34 % variance–covariance matrix

2.15 1.89 1.89 1.84 % nugget effect variance–covariance matrix

0 0 0 % filter out mean, nugget and/or other nested structures? 1¼yes, 0¼no

0 % cross-validation? 1¼yes, 0¼no

100 100 50 % maximum search radii in the rotated system

0 0 0 % angles for search ellipsoid

1 % divide into octants? 1¼yes, 0¼no

8 % optimal number of data per octant (if octant¼1) or in total (if 0)

cokrige.out % name of output file

3 % number of decimals for values in the output file

1 % create a header in the output file? 1¼yes, 0¼no

Available model types:

1: spherical

2: exponential

3: gamma (parameter b40)

4: stable (parameter bo2)

5: cubic

6: Gaussian

7: cardinal sine

8: J-Bessel (parameter b40.5)

9: K-Bessel (parameter b40)

10: generalized Cauchy (parameter b40)

11: exponential sine
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by open pit. Since the ore material is processed by heap leaching,
the total copper grade (tCu) is not necessarily representative of
the recoverable resources, as there are variations in the metal
recovery depending on the mineralogy of the ore material
(mainly, chrysocolla, atacamite, and malaquite). In this context,
it is of interest to predict the acid-soluble copper (sCu), which
corresponds to the fraction of total copper that is likely to be
recoverable by heap leaching. The predictions of soluble copper
grade (primary variable) and total copper grade (secondary
variable) provide the data for economic analyses, mine design,
and planning.

The database consists of 19,474 exploration drill hole samples,
composited at a length of 1 m. A characteristic of the database is
that soluble copper grade has been assayed only in part of the
samples (preferentially, those for which the total copper grade is
greater than a given cutoff grade) (Fig. 1). Because of this
preferential sampling, the experimental mean soluble copper
grade turns out to be much greater than the experimental mean
total copper grade (Table 2) and is an inaccurate estimator of the
true mean soluble copper grade.

The total and soluble copper grades are regarded as the
components of a second-order stationary vector random field.
Their direct and cross variograms have been calculated using the
locations with data for both components, and then fitted by a
linear coregionalization model with three basic nested structures
(namely a nugget effect, an isotropic spherical with range 35 m,
and an exponential model with practical ranges 35 m along the
horizontal plane and 15 m along the vertical direction):

gtCu gtCu=sCu

gtCu=sCu gsCu

 !
¼

2:15 1:89

1:89 1:84

� �
nugget

þ
0:16 0:20

0:20 0:29

� �
sph35,35þ

2:74 2:51

2:51 2:34

� �
exp35,15: ð12Þ

Based on the scatter plot displayed in Fig. 2, which shows a
proportionality relationship between the total and the soluble
copper grades with a correlation coefficient of 0.96, one assumes
that the mean grades are related in the following fashion:

msCu ¼o mtCu ð13Þ

with 0ooo1 (the intercept is assumed to be zero, insofar as the
inequality sCurtCu implies sCu¼0 when tCu¼0). The propor-
tionality coefficient o (solubility ratio) can be estimated by the
quotient of the mean grades calculated with the samples where
both grade variables are known, which gives oE0.9.

Having modeled the relationship between mean values and
the spatial correlation structure of the vector random field, three
versions of cokriging are used to jointly predict the total and



Fig. 1. Location maps (cross section) of total and soluble copper grade data (exotic copper deposit).

Table 2
Declustered statistics of copper grade data, expressed in % (exotic copper deposit).

Variable Number of

data

Minimum Maximum Mean Standard

deviation

Total copper

grade

19,474 0.05 15.73 1.023 1.742

Soluble

copper grade

5773 0.05 14.63 2.681 2.096

For confidentiality reasons, original grade values have been adjusted by a constant

scale factor. Declustering has been performed with the cell method.

Fig. 2. Scatter plot between total and soluble copper grades (exotic copper deposit).

Table 3
Statistics for predicted total copper grades (exotic copper deposit).

Cokriging type Minimum Maximum Mean Standard

deviation

Simple 0.081 7.332 1.026 0.628

Ordinary 0.058 7.580 0.893 0.824

With linearly dependent

means

0.062 7.580 0.900 0.827
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soluble copper grades: simple cokriging, using the mean value
indicated in Table 2 for total copper grade (1.023%) and 0.9 times
this mean value for soluble copper grade (i.e., 0.921%); ordinary
cokriging; and cokriging with linearly dependent means, based on
Eq. (13). In each case, block cokriging is used to predict the
average grade on a regular grid containing 52�42�20 blocks of
size 10�10�10 m, with a block discretization of 4�4�3. A
moving neighborhood with up to 64 data (8 per octant) is used to
select the data for cokriging (Table 1).

The statistics of predicted block grades are indicated in
Tables 3–6. The following comments can be made.
(1)
 Unlike the other two approaches, ordinary cokriging only
predicts the grades of 35,655 out of the 43,680 grid blocks.
This can be explained by the undersampling of soluble copper
grade (primary variable): for the grid blocks with no neigh-
boring primary data, it is not possible to solve the ordinary
cokriging equations because of the unbiasedness constraint
on the primary cokriging weights. In Tables 3–6, the statistics
are calculated on the 35,655 blocks that have been predicted
with all three cokriging approaches.
(2)
 The average of the simple cokriging predictions are close to
the assumed mean values of the vector random field compo-
nents (1.023% for total copper grade; 0.921% for soluble
copper grade). However, these assumed mean values have
been defined on the basis of the experimental mean total
copper grade and do not necessarily match the true
mean grades over the volume enclosed in the target grid,
presumably because the sampling mesh might be denser in
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high-grade areas. In other words, the assumption that the
mean values of the vector components are perfectly known is
questionable. This is corroborated by observing that the
average predicted grades are significantly greater with simple
cokriging than with the other two approaches (Table 3).
(3)
 The predictions of total copper grade are not significantly
different between ordinary cokriging and cokriging with
linearly dependent means (Tables 3 and 5). This is explained
because the total copper grade is known at all the data points
e 4
stics for predicted soluble copper grades (exotic copper deposit).

kriging type Minimum Maximum Mean Standard

deviation

ple �0.737 6.959 0.909 0.591

dinary �2.794 7.188 0.723 0.801

ith linearly

ependent means

�0.730 7.194 0.796 0.754

e 5
elation coefficients between predicted total copper grades (exotic copper

sit).

kriging type Simple Ordinary With linearly

dependent means

ple 1 0.902 0.898

dinary 0.902 1 0.999

ith linearly

pendent means

0.898 0.999 1

e 6
elation coefficients between predicted soluble copper grades (exotic copper

sit).

kriging type Simple Ordinary With linearly

dependent means

ple 1 0.887 0.901

dinary 0.887 1 0.956

ith linearly

pendent means

0.901 0.956 1

3. Scatter plot between total and soluble copper grades predicted at block support, with

ns (exotic copper deposit).
and tends to screen out the influence of the collocated soluble
copper grade data (Goovaerts, 1997).
(4)
 Greater differences are observed for the predictions of soluble
copper grade (Tables 4 and 6). Cokriging with linearly depen-
dent means better reproduces the proportionality relationship
between total and soluble copper grades (Fig. 3c), with a linear
regression close to the expected line y¼0.90x. In contrast,
ordinary cokriging leads to a more dispersed scatter plot, a
larger number of blocks with inconsistent predictions (soluble
copper grade greater than total copper grade or smaller than
zero), and a mean soluble copper grade smaller than 0.9 times
the mean total copper grade (Fig. 3b; Tables 3 and 4). These
poorer results of ordinary cokriging can be explained by the
sampling design of soluble copper grade and by the constraint
on the sum of ordinary cokriging weights.

Indeed, to supply for the lack of information of the primary
variable (soluble copper grade) in undersampled areas, ordin-
ary cokriging uses data of the secondary variable (total copper
grade). On the one hand, because the secondary weights sum
to zero and because of the strong correlation between the
variables, the neighboring secondary data tend to be positively
weighted, while the secondary data located farther away tend
to be negatively weighted. On the other hand, since the
sampling of soluble copper grade is preferential, undersampled
areas are likely to be low-grade areas. As a consequence,
positive secondary weights tend to be assigned to low total
copper grade data, while negative secondary weights tend to
be assigned to data with, on average, a higher total copper
grade. This dependence between data weighting and data
values explains the larger number of blocks with negative
values and the smaller average value for the predictions of
soluble copper grade.
In contrast, simple cokriging and cokriging with linearly
dependent means turn out to be less sensitive to the prefer-
ential sampling pattern, insofar as the weights assigned to the
secondary data are not forced to sum to zero.
Soluble copper grade predictions can be corrected by setting
inconsistent predictions to zero or to the total copper grade,
in order to reproduce the inequalities 0rsCurtCu. This
correction slightly modifies the regression line between the
total and the soluble copper grades predicted by ordinary
cokriging (the intercept and slope become �0.07 and 0.91,
respectively), but this regression line is still poorer than the
one obtained by cokriging with linearly dependent means.
simple cokriging, ordinary cokriging, and cokriging with linearly dependent
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3.2. Second case study: drill hole and blast hole copper grade data in

a porphyry deposit

The second case study corresponds to a porphyry copper
deposit, in which the total copper grade is known on two different
sample types: drill hole (DH) composites and blast holes (BH).
Due to the differences in volumetric supports and in sampling
protocols between drill holes and blast holes, the grades from
these two sources of information are associated with two random
field components with equal mean value, but possibly different
variances and spatial correlation structures (Table 7).

The assumption of equal mean values can be justified by a
lagged scatter diagram, by pairing drill hole data with blast hole
data at a short distance. For instance, 1455 pairs are found with a
separation distance less than 5 m: the average difference in the
Table 7
Basic statistics of copper grade data, expressed in % (porphyry copper deposit).

Variable Number of

data

Minimum Maximum Mean Standard

deviation

Drill hole

copper grade

5228 0.01 3.78 0.673 0.379

Blast hole

copper grade

27,827 0.01 4.12 0.763 0.436

Overall 33,055 0.01 4.12 0.748 0.429

For confidentiality reasons, original grade values have been adjusted by a constant

scale factor.

Fig. 4. Sample (dots and dashed lines) and modeled (solid lines) direct and pseudo-cro
drill hole and blast hole copper grades is 0.03%, which is not
deemed significant.

Since the sampling scheme is totally heterotopic, the cross
correlation structure of the two random field components is
inferred by calculating their pseudo-cross variogram (Myers,
1991; Papritz et al., 1993; Cressie and Wikle, 1998). The linear
coregionalization model for the direct and pseudo-cross vario-
grams is composed of a nugget effect and nested spherical and
exponential structures (Fig. 4):

gDH gDH�BH

gDH�BH gBH

 !
¼

0:02 0:045

0:045 0:06

� �
nuggetþ

0:05 0:05

0:05 0:05

� �
sph30,30

þ
0:065 0:05

0:05 0:04

� �
sph150,150þ

0:02 0:03

0:03 0:05

� �
exp150,1, ð14Þ

where the figures in subscript indicate the range or practical
range (in meters) along the horizontal and vertical directions

The following comments are pertinent to the linear coregio-
nalization model above:
�

ss va
The direct variograms of the two random field components are
quite similar, except that the blast hole grade variogram has a
greater nugget effect and greater sill than the drill hole grade
variogram. This can be explained by larger sampling errors
(mainly, fundamental, delimitation, extraction, and prepara-
tion errors) for blast holes than for drill holes (Pitard, 2008).
Accordingly, the drill hole copper grade will be considered as
the primary variable (targeted for prediction), while the blast
hole copper grade is viewed as a covariate.
riograms of drill hole and blast hole copper grades (porphyry copper deposit).



Table 8
Statistics of cross-validation errors for drill hole copper grade (porphyry copper

deposit).

Cokriging type Mean error Mean absolute

error

Root mean square

error

Simple �0.008 0.162 0.233

Ordinary �0.002 0.182 0.269

Standardized

ordinary

�0.006 0.161 0.233

Table 9
Statistics of cross-validation standardized errors for drill hole copper grade

(porphyry copper deposit).

Cokriging type Mean error Mean absolute

error

Root mean square

error

Simple �0.034 0.677 0.985

Ordinary �0.004 0.734 1.085

Standardized

ordinary

�0.027 0.674 0.984
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�
 For the nugget effect structure, the sill matrix of the linear
coregionalization model expressed in terms of direct and
pseudo-cross variograms (Eq. (14)) may differ from the sill
matrix of the model expressed in terms of direct and cross
covariance functions, which is the one required for cokriging
(Eq. (9)). Specifically, the sill of the cross structure must be
revised. If one assumes that the nugget effect of the drill hole
grades corresponds to a short-range structure that will also be
present in blast hole grades, and that the extra nugget effect of
blast hole grade is due to sampling errors, the nugget effect of
the cross structure should be only the short-range component,
i.e., its sill should be 0.02.

The results from three forms of cokriging are compared by the
use of leave-one-out cross-validation: simple cokriging, with the
overall mean value (0.748%) for the two random field compo-
nents; ordinary cokriging; and cokriging with linearly dependent
means, as per Eqs. (5)–(10), which in this case study reduces to
standardized ordinary cokriging. The basic statistics on prediction
errors and standardized errors are presented in Tables 8 and 9,
showing that ordinary cokriging leads to poorer predictions,
while there is no significant difference between the other two
approaches. As for the first case study, these results indicate
that not incorporating the linear dependence of the means of the
respective components may affect the accuracy of cokriging
predictions.
4. Conclusions

The prediction of a second-order stationary vector random field
by cokriging relies on the modeling of its mean vector (constant in
space) and of its direct and cross covariance functions. Quite often,
the latter are fitted via a linear coregionalization model, while the
mean values of the vector random field components are assumed
either perfectly known (simple cokriging) or unknown and unre-
lated to each other (ordinary cokriging).

In some cases, however, there may exist linear combinations
with known coefficients between the mean values of the vector
components, even if these means are unknown. The cokriging
equations can be modified to take these linear combinations into
account. The applicability and versatility of this approach have
been illustrated with case studies in ore body evaluation, in which
the prediction by cokriging with linearly dependent means is
shown to outperform that of ordinary cokriging.

Possible extensions of the presented work include the cases of
components with linearly dependent drifts (universal cokriging),
factorial kriging analysis, and multivariate Gaussian cosimulation.
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Appendix A. Second-order stationary vector random field
with linearly dependent components

Assume that there exists a linear relationship between the
components of Z:

aZ¼ 0 ðA1Þ

for some nonzero vector a of size 1�N.
On the one hand, the linear relationship also holds for the

vector of mean values:

am¼ 0 ðA2Þ

This implies that a is a row of matrix A defined in Eq. (2). By
writing a¼(a1 a2), where a1 and a2 are subvectors of respective
sizes 1� (N�K) and 1�K, and by accounting for the definition of
F (Eqs. (3) and (4)), it follows that

aF¼ a1�a2A�1
2 A1 ¼ 0 ðA3Þ

On the other hand, for any pair of locations {xa, xb}, one has

aCðxa�xbÞ ¼ aEfZðxaÞZðxbÞ
T
g ¼ EfaZðxaÞZðxbÞ

T
g ¼ 0 ðA4Þ

Consider the following submatrices extracted from the
cokriging matrix (Eq. (9)):

8aAf1,. . .,ng, Ga ¼ ðC ðxa�x1Þ � � �C ðxa�xnÞFÞ ðA5Þ

From Eqs. (A3) and (A4), it follows that

8aAf1,. . .,ng,aGa ¼ 0 ðA6Þ

Accordingly, for any a¼1,y,n, Ga is not a full rank matrix and
the cokriging matrix (Eq. (9)) is singular.
Appendix B. Supplementary Material

Supplementary data associated with this article can be found
in the online version at doi:10.1016/j.cageo.2011.06.001.
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A.G., Maréchal, A. (Eds.), Geostatistics for Natural Resources Characterization.
Reidel, Dordrecht, The Netherlands, pp. 295–305.

Myers, D.E., 1991. Pseudo-cross variograms, positive definiteness, and cokriging.
Mathematical Geology 23 (6), 805–816.

Pan, G., Gaard, D., Moss, K., Heiner, T., 1993. A comparison between cokriging and
ordinary kriging: case study with a polymetallic deposit. Mathematical
Geology 25 (3), 377–398.

Pan, G., Moss, K., Heiner, T., Carr, J.R., 1992. A FORTRAN program for three-
dimensional cokriging with case demonstration. Computers & Geosciences 18
(5), 557–578.
Papritz, A., 2008. Standardized vs. customary ordinary cokriging: some comments
on the article ‘‘The geostatistical analysis of experiments at the landscape-
scale’’ by T.F.A. Bishop and R.M. Lark. Geoderma 146 (1–2), 291–396.
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