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Central Limit Theorem for the Number
of Near-Records
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Near-records in a sequence of random variables Xn� n ≥ 1� are observations
within a fixed distance of the current maximum. More precisely, as defined
by Balakrishnan et al. (2005), Xn is a near-record if Xn ∈ �Mn−1 − a�Mn−1�,
where Mn = max�X1� � � � � Xn� and a > 0 is fixed. In this article we establish
the asymptotic normality of Dn =

∑n
i=1 1�Xi∈�Mi−1−a�Mi−1��

, the number of near-
records among the first n observations, when the underlying random variables are
independent and identically distributed, with common continuous distribution.

Keywords Central limit theorem; Near-record.

Mathematics Subject Classification 60G70; 60F05.

1. Introduction

Let Xn� n ≥ 1, be a sequence of non negative random variables, Mn =
max�X1� � � � � Xn�, for n ≥ 1� and M0 = 0. For a fixed parameter a > 0, let In =
1�Xn∈�Mn−1−a�Mn−1��

, n ≥ 1, be the indicators of near-record observations. The number
of near-records among the first n observations is Dn =

∑n
i=1 Ii, n ≥ 1. In this article,

we prove asymptotic normality for Dn under the assumption that the Xn are
independent and identically distributed, with absolutely continuous distribution F ,
concentrated on �0���.

Near-records are a natural generalization of records and may have applications
in actuarial mathematics, as they can be considered as insurance claims with values
close to record claims. In particular, Balakrishnan et al. (2005) pointed out that the
sum of near-record observations is a quantity of interest to insurance companies.
On the other hand, Teugels (1982) described a procedure based on records to assess
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310 Gouet et al.

the validity of a model for insurance claims, although he warns that refinements
are necessary due to the scarcity of records. We believe that the number and values
of near-records can be used, together with records, to improve on such procedure;
see also Hashorva (2003) and Hashorva and Hüsler (2005), for applications closely
related to near-records. For theory and applications of records, see Arnold et al.
(1998) and Nevzorov (2001).

Another field where near-records can be useful is industrial quality control,
in the so-called destructive stress testing; see Glick (1978) and Gulati and Padgett
(2003) for discussion and statistical procedures related to stress testing. In these
experiments, a common procedure is to observe the sample sequentially and stress
each element only up to the minimum level that some previous element broke at,
thus obtaining a sequence of lower-record values. Again, given the small number
of records relative to the number of trials, an improvement over this scheme
can be achieved by stressing the elements a bit further than the previous record
value (by a fixed factor c > 1, say), which yields a sequence of “multiplicative”
near-records, together with the sequence of lower-records. Finally, taking minus
log of the observations, we obtain the usual records and near-records. Maximum
likelihood estimation using this scheme is introduced in Gouet et al. (2012), with
substantially better performance than that obtained using only records. The results
of the present article are relevant for this type of statistical procedure since they
allow to estimate the number of near-records present in the sample as a function of
the calibration parameter c.

Theoretical studies have focused on the random variable 	n�a�, which counts
near-records associated with the n-th record value. It is shown in Balakrishnan
et al. (2005) that, under mild conditions on F , 	n�a� converges weakly to a random
variable, which is either 0, geometrically distributed or �, depending on the tail
behavior of F . Additional results and refinements are given in Pakes (2007), where
the window size a is allowed to vary with n and limits are related to the maximal
domains of attraction. More recent asymptotic results for Dn can be found in Gouet
et al. (in press). An interesting phenomenon reported there is the a.s. convergence
of Dn to a finite limit D�, for heavy-tailed distributions, with square-integrable
hazard function. For such distributions, the convergence in probability of 	n�a�
to 0 (obtained in Balakrishnan et al., 2005) is strengthened to 	n�a� = 0 a.s., for
sufficiently large n. Also, weak and strong laws of large numbers are presented in
Gouet et al. (in press), for distributions with divergent Dn.

Our goal here is to complement the laws of large numbers with corresponding
central limit theorems. As in Gouet et al. (in press), we work with sequences
of nonnegative, independent and identically distributed random variables Xn� n ≥
1� with common distribution F and density function f , continuous on �0���.
We assume that rF 
= sup�x ≥ 0 
 F�x� < 1� = � because, otherwise, Dn behaves
ultimately as a binomial random variable, with success probability 1− F�rF − a�
and so, the asymptotic normality of Dn is readily obtained. Finally we suppose that
f is strictly decreasing on �0���, which implies f positive and F strictly increasing
on �0���. Observe that, because upper extremes diverge to rF = �, our results
remain valid for distributions with ultimately decreasing density.

Our notation is explained below. Convergence in probability and in distribution
are denoted by the superscripted arrows

P−→ and
D−→ respectively. The equivalence

an ∼ bn between real sequences means that either both an and bn tend to infinity or
zero, with limn an/bn = 1 or both converge to non zero finite limits. The equivalence
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Central Limit Theorem for the Number of Near-Records 311

∼ between functions is interpreted analogously and, when applied to random
sequences, is understood in the almost sure (a.s.) sense. Inequalities among random
variables are also in the a.s. sense. The survival, hazard, cumulative hazard, and
quantile functions associated to a distribution F are, respectively, defined by �F�t� =
1− F�t�, ��t� = f�t�/�F�t�, ��t� = ∫ t

0 ��s�ds, for t ≥ 0, and m�t� = �F−1�1/t�, for t ≥
1. Observe that �F�t� = 1� f�t� = 0, and ��t� = 0, for t < 0.

In the next section, we present the main result of the article and examples.
Proofs and intermediate results are given in Sec. 3. The Appendix contains technical
lemmas and two important theorems, which are central in our approach and are
presented for the sake of completeness.

2. Main Result and Example

Theorem 2.1. Let

an =
∫ m�n�

a

f�x − a�− f�x�

�F�x� dx� b2n =
∫ m�n�

a
�x���x�/�F�x�dx� (1)

for n such that m�n� ≥ a, where

�t� =
∫ �

max�a�t�
�f�x − a�− f�x��

(
2
�F�x − a�

�F�x� − 1
)
dx� (2)

for t ≥ 0. If
∫ �
0 ��x�2dx = � and any of the following hypotheses hold:

(H1) There exists a constant C > 0 such that ��x� ≤ C, for all x ≥ 0,
(H2) limx→� ��x� = � and � is differentiable, with limx→� �′�x� = �, for some � ≥ 0.

Then �Dn − an�/bn
D−→ N�0� 1�.

Remark 2.1. It follows from the proof of Proposition 3.1 that, under (H2), all the
moments of X1 exist (see (6) below).

Example 2.1. Theorem 2.1 is valid for any distribution with ultimately decreasing
density, such that

∫ �
0 ��x�2dx = �. This example is based on a family of

distributions which contains heavy-, medium-, and light-tailed distributions. For
� > 0 and r ∈ �−1/2� 1�, let ��x� = �xr , for x > 0. Then F is heavy-tailed for r < 0,
has an exponential tail for r = 0 and is light-tailed for r > 0. For these distributions,
the hypotheses of Theorem 2.1 hold, so we obtain �Dn − an�/bn

D−→ N�0� 1�. In most
cases, we calculate explicit formulas for the normalizing sequences an� bn, in terms

of parameters �� r, as shown below. First note that m�n� =
(

r+1
�

log n
)1/�r+1�

.

(a) r = −1/2 ⇒ an = 2�2a log log n, b2n = an.

(b) r ∈ �−1/2� 0� ⇒ b2n = a�2

2r+1

(
r+1
�

log n
) 2r+1

r+1
.

(c) r = 0 ⇒ an = �ea� − 1� log n, b2n = �2ea� − 1�an.
(d) r ∈ �0� 1� ⇒ b2n = m�n�

ar
e2�am�n�r .

(e) r = 1 ⇒ an = 1
a
e−�a2/2e�am�n�

(
m�n�− �a+ 1

�a
�
)
, b2n = 1

a
e−�a2m�n�e2�am�n�.
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312 Gouet et al.

Remark 2.2. Note that r < −1/2 is not included in the example above because, in
this case,

∫ �
0 ��x�2dx < � and so Dn converges a.s. to a finite random variable; see

Gouet et al. (in press) for details.

3. Intermediate Results and Proofs

The basis of our main result is a version of the well-known martingale central limit
theorem (CLT), presented in the Appendix as Theorem A.1. We must therefore
construct a martingale by finding an “appropriate” compensator for Dn, in the sense
that conditions of Theorem A.1 can be verified and the random centering process
can be replaced by a deterministic sequence. This requires more than just subtracting
conditional expectations from Dn. On the other hand, it is interesting to see that
both conditions for the martingale CLT can be stated in terms of sums of minima
of iid random variables, which is quite advantageous because detailed results for
such processes are available in the literature; see Theorem A.2, in the Appendix, and
other results in Deheuvels (1974). This approach has already been successfully used
in Gouet et al. (2007), to prove the asymptotic normality of record-like statistics in
a discrete setting.

The martingale in the following Proposition is defined with respect to the
natural filtration � = ��n�, which is the increasing family of �-algebras generated
by the observations. In other words, �n = ��X1� � � � � Xn�� n ≥ 1 and �0 is the trivial
�-algebra.

Proposition 3.1. Suppose (H1) or (H2) holds and let, for t ≥ 0,

��t� =
∫ t

0

f�x − a�− f�x�

�F�x� dx� (3)

Then Dn − ��Mn�� n ≥ 1, is a cubic integrable �-martingale.

Proof. Clearly, Dn − ��Mn� is adapted to �. For cubic integrability, it suffices to
check that E�
��Mn�
3� < �, for all n ≥ 1, which is implied by

E�
��X1�
3� ≤
∫ �

0

(∫ t

0


f�x − a�− f�x�

�F�x� dx

)3

f�t�dt < ��

The integral above is finite if and only if
∫ �
a

(∫ t

a

f�x−a�−f�x�
�F�x� dx

)3
f�t�dt < � and this

is implied by �1 < �, with �1 
=
∫ �
a

(∫ t

a

f�x−a�
�F�x� dx

)3
f�t�dt.

Assume (H1). Then, from (22) in the Appendix we have∫ t

a

f�x − a�

�F�x� dx ≤ D
∫ t+a

a
��x − a�dx = −D log�F�t��

So �1 ≤
∫ �
a
�−D log�F�t��3f�t�dt < �.

Assume now (H2). Note that, for every x > 0 and some constants K�C�C ′ > 0,∫ x

0

f�t − a�

�F�t� dt =
∫ x

0
��t − a�e

∫ t
t−a ��y�dy ≤ K

∫ x

0
��t − a�eC��t−a�dt

≤ K
∫ x

0
e�C+1���t−a�dt ≤ K

∫ x

0
eC

′tdt�
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Central Limit Theorem for the Number of Near-Records 313

where we have used that �′ is bounded, in the first and third inequalities, and that
t ≤ et, in the second one. Thus,

�1 < E

[∫ X1

0

f�t − a�

�F�t� dt

]3
≤ K′E

[
eMX1

]
� (4)

with K′ = �K/C ′�3, M = 3C ′. Now, since ��x� → �, we have ��t�− �t → � for all
� > 0 so

lim
t→�

�F�t�/e−�t = lim
t→� e−���t�−�t� = 0� (5)

for all � > 0. The conclusion follows from

E
[
eMX1

] = ∫ �

0
P
[
eMX1 > y

]
dy =

∫ �

0

�F
(
log y
M

)
dy ≤ 1+ K′′

∫ �

1
e−2 log ydy < ��

(6)

where, in the last inequality, we have used (5), with � = 2M . The cubic integrability
of Dn − ��Mn� has been established under (H1) and (H2).

Finally, let � be defined as �an = an − an−1. Then, �Dn = In and

���Mn� =
∫ Mn

Mn−1

f�x − a�− f�x�

�F�x� dx� (7)

Also, E�In 
�n−1� = P�Xn ∈ �Mn−1 − a�Mn−1� 
�n−1� =
∫ Mn−1

Mn−1−a
f�x�dx and

E����Mn� 
�n−1� =
∫ �

Mn−1

(∫ t

Mn−1

f�x − a�− f�x�

�F�x� dx

)
f�t�dt

=
∫ �

Mn−1

(∫ �

x
f�t�dt

)
f�x − a�− f�x�

�F�x� dx

=
∫ �

Mn−1

�f�x − a�− f�x��dx =
∫ Mn−1

Mn−1−a
f�x�dx�

We have E���Dn − ��Mn�� 
�n−1� = 0 and so, Dn − ��Mn� is a martingale. �

Proposition 3.2. Assume either (H1) or (H2). Then, for n ≥ 1,

E��In − ���Mn��
2 
�n−1� =

∫ �

Mn−1

�f�x − a�− f�x��

(
2
�F�x − a�

�F�x� − 1
)
dx� (8)

Proof. The calculations below are justified because the martingale is square
integrable, by Proposition 3.1. Note that In���Mn� = 0 because, when Xn is
a near-record (In = 1), then Mn = Mn−1 and so ���Mn� = 0. Therefore, E��In −
���Mn��

2 
�n−1� = E�In 
�n−1�+ E�����Mn��
2 
�n−1�� Moreover,

E�����Mn��
2 
�n−1� =

∫ �

Mn−1

(∫ t

Mn−1

f�x − a�− f�x�

�F�x� dx

)2

f�t�dt

= 2
∫ �

Mn−1

�f�t − a�− f�t��

(∫ t

Mn−1

f�x − a�− f�x�

�F�x� dx

)
dt
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314 Gouet et al.

= 2
∫ �

Mn−1

f�x − a�− f�x�

�F�x�
(∫ �

x
�f�t − a�− f�t��dt

)
dx

= 2
∫ �

Mn−1

f�x − a�− f�x�

�F�x�
�F�x − a�dx − 2E�In 
�n−1��

where the second equality above follows from the integration-by-parts rule, noting
that

lim
t→�

�F�t�
(∫ t

Mn−1

f�x − a�− f�x�

�F�x� dx

)2

= 0�

by Lemma A.4(ii). Collecting terms above we obtain (8). �

For the Lyapunov-type condition of Theorem A.1 we calculate an upper bound
of the third conditional moment of the martingale.

Proposition 3.3. For n large enough, there exist K > 0 such that, if (H1) holds, then

E�
In − ���Mn�
3 
�n−1� ≤ K��F�Mn−1 − a�−�F�Mn−1�� (9)

and, if (H2) holds, then

E�
In − ���Mn�
3 
�n−1� ≤ K��F�Mn−1 − 3a�−�F�Mn−1��� (10)

Proof. Observe that

E�
In − ���Mn�
3 
�n−1� ≤ E�In 
�n−1�+ 3E�In
���Mn�
 
�n−1�

+ 3E�In����Mn��
2 
�n−1�+ E�
���Mn�
3 
�n−1��

As in Proposition 3.2, we have In���Mn� = In����Mn��
2 = 0 and so,

E�
In − ���Mn�
3 
�n−1� ≤ E�In 
�n−1�+ E�
���Mn�
3 
�n−1�� (11)

Given that Mn ↑ � a.s., we assume that n is such that Mn−1 ≥ a. For the second
term in (11) note Mn−1 ≥ a implies ���Mn� ≥ 0 because, in this case, the integrand
in (7) is non negative. So,

E�
���Mn�
3 
�n−1� =
∫ �

Mn−1

(∫ t

Mn−1

f�x − a�− f�x�

�F�x� dx

)3

f�t�dt

= 3
∫ �

Mn−1

�f�t − a�− f�t��

(∫ t

Mn−1

f�x − a�− f�x�

�F�x� dx

)2

dt

= 6
∫ �

Mn−1

f�t − a�− f�t�

�F�t� ��F�t − a�−�F�t��

×
(∫ t

Mn−1

f�x − a�− f�x�

�F�x� dx

)
dt� (12)

The second and third equations above follow from the integration-by-parts rule and
Lemma A.4(ii), with p = 3 and p = 2, respectively.

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

id
ad

 d
e 

C
hi

le
] 

at
 1

2:
32

 1
7 

M
ay

 2
01

2 



Central Limit Theorem for the Number of Near-Records 315

Suppose (H1) holds. Then, from (22), (12) is bounded by

6D
∫ �

Mn−1

�f�t − a�− f�t��

(∫ t

Mn−1

f�x − a�− f�x�

�F�x� dx

)
dt

= 6D
∫ �

Mn−1

f�x − a�− f�x�

�F�x� ��F�x − a�−�F�x��dx

< 6D2
∫ �

Mn−1

�f�x − a�− f�x��dx = 6D2��F�Mn−1 − a�−�F�Mn−1���

Finally, recalling that E�In 
�n−1� = �F�Mn−1 − a�−�F�Mn−1�, the result follows
from (11).

Suppose (H2) holds and let h�y� = ∫ �
y

f�t−a�
�F�t� �F�t − a�

(∫ t

y

f�x−a�
�F�x� dx

)
dt. Then the

last member of (12) is bounded by 6h�Mn−1� on �Mn−1 ≥ a�. Also, by Tonelli’s
theorem, by (27) and (24),

h�y� =
∫ �

y

(∫ �

x

f�t − a�

�F�t�
�F�t − a�dt

)
f�x − a�

�F�x� dx

∼ K′
∫ �

y

�F�x − 2a�
f�x − a�

�F�x� dx

∼ K′′�F�y − 3a� ∼ K′′��F�y − 3a�−�F�y���

for some K′� K′′ > 0, as y → �. So, for n large enough and some K′′′ > 0,

E�
���Mn�
3 
�n−1� ≤ K′′′��F�Mn−1 − 3a�−�F�Mn−1���

Hence, from (11), for n large enough,

E�
In − ���Mn�
3 
�n−1� ≤ �F�Mn−1 − a�−�F�Mn−1�+ K′′′��F�Mn−1 − 3a�−�F�Mn−1��

≤ �K′′′ + 1���F�Mn−1 − 3a�−�F�Mn−1��� �

Proposition 3.4. Assume (H1) or (H2) and
∫ �
0 ��x�2dx = �. Let b2n be defined as

in (1). Then,

1
b2n

n∑
k=1

E��Ik − ���Mk��
2 
�k−1�

P−→ 1� (13)

Proof. From (8) we have E��Ik − ���Mk��
2 
�k−1� = �Mk−1� on �Mk−1 ≥ a�. Then,

given that Mk ↑ � a.s.,

n∑
k=1

E��Ik − ���Mk��
2 
�k−1� ∼

n∑
k=1

�Mk�� (14)

Moreover, as  is decreasing (see Lemma A.3), we have �Mk� =
min��X1�� � � � � �Xk�� and so, the right-hand side of (14) is a sum of partial
minima of iid random variables, to which Theorem A.2 can be applied.
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316 Gouet et al.

To that end, let Zn = �Xn�� n ≥ 1, whose common distribution G�z� =
P��X1� ≤ z� = �F�−1�z�� for z ∈ �0� �a�� and G��a�� = 1 satisfies the conditions
of Theorem A.2, with b = �a�, � = 1/P�Z1 < �a�� = 1/�F�a�, and

H�log t� =
∫ t

�
�m�z��dz =

∫ m�t�

a
�x���x�/�F�x�dx�

where the last equality follows from the change of variable x = m�z�.
Suppose (H1) holds and observe that, by (29), limt→� H�t� ≥ a

∫ �
a
��t�2dt = �,

so we can proceed to check conditions (34) and (35).
For (34) we must determine a sequence vn ↑ � such that∫ m�nvn�

m�n�
�x���x�/�F�x�dx∫ m�n�

a
�x���x�/�F�x�dx

→ 0� (15)

Observe that the numerator above can be bounded as follows:∫ m�nvn�

m�n�
�x���x�/�F�x�dx ≤ K

∫ m�nvn�

m�n�
��x − a�2dx

≤ KC
∫ m�nvn�

m�n�−a
��x�dx

≤ KC

(
aC +

∫ m�nvn�

m�n�
��x�dx

)
= K1 + K2 log

�F�m�n��

�F�m�nvn��
= K1 + K2 log vn�

where the first inequality is obtained from (29), and the others from the
boundedness of �, with K1� K2 positive constants. So (15) follows with vn = H�log n�.

For (35) note that, from (29),

kG−1�1/k� = k�m�k�� = �m�k��

F�m�k��
≤ L��m�k�− a� ≤ LC�

with L�C positive constants. Hence,∑n
k=�� kG

−1�1/k�2(∑n
k=�� G−1�1/k�

)2 ≤ LC∑n
k=�� G−1�1/k�

→ 0

and (35) is proved. Having checked both conditions of Theorem A.2

under (H1), we conclude that
∑n

k=1 �Mk�/H�log n�
P−→ 1, with H�log n� =∫ m�n�

a
�u���u�/�F�u�du� n ≥ 1. Hence, the result follows from (14).
Assume (H2). Then it is easy to check, using, for instance, L’Hôpital’s rule and

(27), that �t� ∼ 2
∫ �
t

f�x−a�
�F�x� �F�x − a�dx ∼ 2ea

2��F�t − 2a�, as t → �. So, for t large
enough∫ t

a
�x���x�/�F�x�dx ∼ 2ea

2�
∫ t

a

�F�x − 2a���x�/�F�x�dx ≥ 2ea
2�
∫ t

a
��x�dx

and therefore, limt→� H�t� = �.
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Central Limit Theorem for the Number of Near-Records 317

Moreover, by (24) �F�t − 2a� ∼ �F�t − 2a�−�F�t� so, �t� ∼ 2ea
2���F�t − 2a�−

�F�t��, as t → �, and so
∑n

k=1 �Mk� ∼ 2ea
2�
∑n

k=1��F�Mk−1 − 2a�−�F�Mk−1��� as
n → �.

Observe that �F�Mk−1 − 2a�−�F�Mk−1� is the conditional expectation of the
indicator, say I

�2�
k , of near-record with parameter 2a instead of a. Moreover, the

conditional Borel-Cantelli lemma (see p. 152 of Neveu, 1972) implies that

D�2�
n 
=

n∑
k=1

I
�2�
k ∼

n∑
k=1

E�I
�2�
k 
�k−1��

On the other hand, from the law of large numbers for Dn, proved in Theorem

2.2 (ii) of Gouet et al. (in press), we have D�2�
n /d�2�

n

P−→ 1, with d�2�
n ∼ ∫ m�n�

a
�F�x −

2a���x�/�F�x�dx ∼ b2n/�2e
a2��. �

Proposition 3.5. Assume (H1) or (H2) and
∫ �
0 ��x�2dx = �. Let bn be defined as in

(1). Then,

1
b3n

n∑
k=1

E�
Ik − ���Mk�
3 
�k−1�
P−→ 0� (16)

Proof. Assume (H1). Then, noting that E�Ik 
�k−1� = �F�Mk−1 − a�−�F�Mk−1�, k ≥
1, convergence (16) follows from (9) if

∑n
k=1 E�Ik 
�k−1�/b

3
n

P−→ 0�
Furthermore, as in the proof of Proposition 3.4, the conditional Borel-Cantelli

lemma (see p. 152 of Neveu, 1972) implies that Dn =
∑n

k=1 Ik ∼
∑n

k=1 E�Ik 
�k−1�.
Again, from the law of large numbers for Dn, in Theorem 2.2(i) of Gouet et al. (in

press), we have Dn/dn

P−→ 1, with dn =
∫ m�n�

a
g�x���x�/�F�x�dx and g is defined in

the proof of Lemma A.2. So, the conclusion is obtained if we prove that dn/b
3
n → 0.

Indeed, from (31) we have

dn

b3n
=

∫ m�n�

a
g�x���x�/�F�x�dx(∫ m�n�

a
�x���x�/�F�x�dx

)3/2 ≤ 1
bn

→ 0�

Assume (H2). Then convergence (16) follows from (10) if

n∑
k=1

��F�Mk−1 − 3a�−�F�Mk−1��/b
3
n =

n∑
k=1

E�I
�3�
k 
�k−1�/b

3
n

P−→ 0�

where I
�3�
k represents the indicator of a near-record with parameter 3a. We proceed

as above by applying the conditional Borel-Cantelli lemma, which yields D�3�
n =∑n

k=1 I
�3�
k ∼∑n

k=1 E�I
�3�
k 
�k−1��

As in Proposition 3.4, from the law of large numbers for Dn in Theorem 2.2(ii)

of Gouet et al. (in press), we have D�3�
n /d�3�

n

P−→ 1, with d�3�
n ∼ ∫ m�n�

a
�F�x −

3a���x�/�F�x�dx. So, the conclusion is obtained if we prove that d�3�
n /b3n → 0. Indeed,

recalling that under (H2) b2n ∼ 2ea
2�
∫ m�n�

a
�F�x − 2a���x�/�F�x�dx and using (24),

we have

b2n ∼ 2e−a2�
∫ m�n�

a
��x�e2a��x�dx (17)
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318 Gouet et al.

and d�3�
n ∼ e−9a2�/2

∫ m�n�

a
��x�e3a��x�dx. From L’Hôpital’s rule we have

lim
t→�

∫ t

a
��x�e3a��x�dx(∫ t

a
��x�e2a��x�dx�

)3/2 = 2
3
lim
t→�

��t�e3a��t�

��t�e2a��t�
(∫ t

a
��x�e2a��x�dx

)1/2
= 2

3

(
lim
t→�

e2a��t�∫ t

a
��x�e2a��x�dx

)1/2

= 2
3

(
lim
t→�

2a�′�t�e2a��t�

��t�e2a��t�

)1/2

= 0

and the conclusion follows.

In the following Propositions we prove tightness results needed for changing the
stochastic centering sequence of the martingale by a deterministic one.

Proposition 3.6. Assume (H1). Then, for any sequence of positive numbers cn → �,

��Mn�− ��m�n��

cn

P−→ 0� (18)

Proof. We establish first

���Mn�−��m�n���/cn
P−→ 0� (19)

where ��t� = ∫ t

0 ��s�ds� t ≥ 0. To that end observe that ��Mn�−��m�n�� =
− log�F�Mn�+ log�F�m�n�� = −�log�F�Mn�+ log n�� Hence, (19) is equivalent to
both

P�log�F�Mn�+ log n > �cn� → 0 and P�log�F�Mn�+ log n < −�cn� → 0�

for all � > 0. We have

P�log�F�Mn�+ log n > �cn� = P�Mn < �F−1�e�cn/n��

= P�X1 < �F−1�e�cn/n��n = �1− e�cn/n�n 1�e�cn≤n� → 0

and

P�log�F�Mn�+ log n < −�cn� = P�Mn > �F−1�e−�cn/n��

= 1− P�X1 < �F−1�e−�cn/n��n = 1− �1− e−�cn/n�n → 0�

Thus, (19) follows.
On the other hand, let u� v such that a < u ≤ v. Then, by (22),

��v�− ��u� ≤
∫ v

u

f�x − a�

�F�x� dx ≤ D
∫ v−a

u−a
��x�dx ≤ D

∫ v

u
��x�dx + K�
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Central Limit Theorem for the Number of Near-Records 319

for some K > 0. Hence,


��Mn�− ��m�n��
/cn ≤ D
��Mn�−��m�n��
/cn + K/cn
P−→ 0�

where the convergence follows from (19).

Proposition 3.7. Assume (H2) and let bn be defined as in (1). Then,

��Mn�− ��m�n��

bn

P−→ 0� (20)

Proof. By (24) and (26), there exists K > 0 such that, for a < u ≤ v,

��v�− ��u� ≤
∫ v

u

f�x − a�

�F�x� dx ≤ K
∫ v

u
��x�ea��x�dx�

Let ��t� = ∫ t

0 ��x�e
a��x�dx and ��t� = ∫ t

0 ��x�e
2a��x�dx, for t ≥ 0. Observe that


��Mn�− ��m�n��
 ≤ K
��Mn�− ��m�n��
 and b2n ∼ 2e−a2���m�n�� by (17). Then,
(20) follows if we prove

��Mn�− ��m�n��

��m�n��1/2
P−→ 0� (21)

which is equivalent to both limits: P���Mn� > ��m�n��+ ���m�n��1/2� → 0 and
P���Mn� < ��m�n��− ���m�n��1/2� → 0, for all � > 0. Using a well-known result
from extreme-value theory, we find that the limits above are, respectively,
equivalent to

�F��−1���m�n��+ ���m�n��1/2��

�F�m�n��
→ 0�

�F��−1���m�n��− ���m�n��1/2��

�F�m�n��
→ ��

Let us consider first the limit of l�t� 
= �F��−1���t�+ ���t�1/2��/�F�t�, as t → �. We
require the existence of a bounded positive function � such that, for sufficiently
large t, �−1���t�+ ���t�1/2� > t + ��t� (a condition which is implied by ���t + ��t��−
��t��/��t�1/2 → 0) and such that �F�t + ��t��/�F�t� → 0. If such � exists, then l�t� ≤
�F�t + ��t��/�F�t� → 0.

Since � is bounded, then, from the mean-value theorem we have∫ t+��t�

t
��x�ea��x�dx = ��t���	�t��ea��	�t��� for 	�t� ∈ �t� t + ��t��. Moreover, given that

� has a bounded derivative, there exists a constant K > 0 such that ��	�t��ea��	�t�� ≤
K��t�ea��t� and so

lim sup
t→�

(∫ t+��t�

t
��x�ea��x�dx

)2
∫ t

0 ��x�e
2a��x�dx

≤ K2 lim
t→�

���t���t�ea��t��2∫ t

0 ��x�e
2a��x�dx

�

We choose ��t� = ��t�−3/4 and show that the limit of the r.h.s. above is 0. Applying
L’Hôpital’s rule we obtain

lim
t→�

��t�1/2e2a��t�∫ t

0 ��x�e
2a��x�dx

= lim
t→����t�

−3/2/2+ 2a��t�−1/2��′�t� = 0�
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320 Gouet et al.

We have thus checked the first requirement for �. For the second we
observe that �F�t + ��t��/�F�t� = e−

∫ t+��t�
t ��x�dx = e−��	�t����t�� where 	�t� ∈ �t� t + ��t��.

Again, because � and �′ are bounded, the limit of e−��	�t����t� is equivalent to
limt→� e−��t���t� = limt→� e−��t�1/4 = 0.

For the second limit let l�t� = �F��−1���t�− ���t�1/2��/�F�t�. Then, we choose
��t� > 0 such that, for sufficiently large t, �−1���t�− ���t�1/2� < t − ��t� (implied by
���t�− ��t − ��t���/��t�1/2 → 0) and such that �F�t − ��t��/�F�t� → �. Then l�t� ≥
�F�t − ��t��/�F�t� → �. Details are similar to the first case and are omitted.

Proof of main result. Conditions (32) and (33) of Theorem A.1 have been checked
for the martingale Dn − ��Mn�, in Propositions 3.4 and 3.5, respectively, under

conditions (H1) and (H2). Hence, we have Dn−��Mn�

bn

D−→ N�0� 1�, with bn defined in
Proposition 3.4. The final result follows from Propositions 3.6 and 3.7.

Appendix

We collect here some useful technical facts about functions related to distributions
satisfying hypothesis (H1) or (H2) of Theorem 2.1. See Sec. 1 for notation. Recall
that a is a fixed positive constant.

Lemma A.1. Suppose (H1) holds. Then there exists a positive constant D such that,
for t ≥ a,

�F�t − a�−�F�t� < �F�t − a� = �F�t� exp
(∫ t

t−a
��s�ds

)
≤ D�F�t�� (22)

Proof. It follows from the well-known formula �F�t� = e−��t� and (H1). �

Lemma A.2. Suppose (H2) holds. Then, as t → �, for any integer p ≥ 1 and some
Kp > 0:

�i�
�F�t − a�

�F�t� ∼ ea
2�
�F�t − 2a�
�F�t − a�

� (23)

�ii�
�F�t − a�

�F�t� ∼ e−a2�/2ea��t�� (24)

�iii� �F�t�
(�F�t − a�

�F�t�
)p

∼ Kp
�F�t − pa�� (25)

�iv�
��t + a�

��t�
→ 1� (26)

�v�
f�t − a�

�F�t�
�F�t − pa� ∼ epa

2�f�t − �p+ 1�a�� (27)

Proof. (i) Note that

�F�t − a�2

�F�t��F�t − 2a�
= e��t�a�� (28)

where ��t� a� = −2��t − a�+��t�+��t − 2a�.

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

id
ad

 d
e 

C
hi

le
] 

at
 1

2:
32

 1
7 

M
ay

 2
01

2 



Central Limit Theorem for the Number of Near-Records 321

We show that ��t� a� → �2a as t → �. To that end, consider the following
expansions, for t ≥ 2a:

��t − a� = ��t − 2a�+�′�t − 2a�a+�′′���t��a2/2�

��t� = ��t − 2a�+�′�t − 2a�2a+�′′ �̃��t��4a2/2�

with ��t� ∈ �t − 2a� t − a� and �̃�t� ∈ �t − 2a� t�. Then, noting that �′′ = �′, we
have ��t� a� = 2a2�′′ �̃��t��− a2�′′���t�� = a2�2�′ �̃��t��− �′���t���, which converges
to a2�� as t → �.

(ii) �F�t − a�/�F�t� = e��t�−��t−a� = e��t�−���t�−a�′�t�+�′′���t��a2/2� ∼ e−a2�/2ea��t�,
where ��t� ∈ �t − a� t�.

(iii) We reason inductively as follows:

�F�t�
(�F�t − a�

�F�t�
)p+1

∼ Kp
�F�t − pa�

�F�t − a�

�F�t�

∼ Kp
�F�t − pa�epa

2�
�F�t − �p+ 1�a�

�F�t − pa�
= Kp+1

�F�t − �p+ 1�a��

as t → �, where the second equivalence follows from (23) applied p times.

(iv) The limit follows from the expansion ��t + a� = ��t�+ a�′���t��, with
��t� ∈ �t� t + a�. Then, (H2) implies ��t + a�/��t� = 1+ a�′���t��/��t� → 1.

(v)

lim
t→�

f�t − a��F�t − pa�

�F�t�f�t − �p+ 1�a�
= lim

t→�
��t − a��F�t − a��F�t − pa�

�F�t���t − �p+ 1�a��F�t − �p+ 1�a�

= lim
t→�

�F�t − a��F�t − pa�

�F�t��F�t − �p+ 1�a�
�

The second equality above was obtained from (26) and the result follows from the
application of (23) p times.

Lemma A.3. Let �t� be defined as in (2). Then:

(i) If (H1) or (H2) hold,  is well defined (finite), is decreasing on �0��� and is strictly
decreasing on �a���.

(ii) If (H1) holds, there exist positive constants K1� K2 such that, for t ≥ a,

a��t�2 ≤ �t���t�

F�t�
≤ K1��t − a�2 and �t�/�F�t� ≤ K2��t − a�� (29)

Proof. (i) Observe that �t� ≤ 2
∫ �
t

f�x−a�
�F�x� �F�x − a�dx, t ≥ a. Then, if (H1) holds we

use (22) to obtain �t� ≤ 2D
∫ �
t
f�x − a�dx < �. If (H2) holds, �t� < � follows

from Lemma A.2(v). Finally,  is constant on �0� a� and, since f is continuous and
strictly decreasing, the integrand in (2) is positive on �a��� and so,  is strictly
decreasing on �a���.
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322 Gouet et al.

(ii) Observe that g�t� 
= �F�t − a�−�F�t� = ∫ t

t−a
f�x�dx, hence, since f is

decreasing,

af�t� ≤ g�t� ≤ af�t − a�� (30)

for t ≥ a. On the other hand, from (22) we have 1 ≤ �F�t − a�/�F�t� ≤ D, for t ≥ a,
and therefore,

g�t� ≤ �t� ≤ Kg�t�� (31)

for t ≥ a, with K = 2D − 1. Now, from (30) and (31),

a��t�2 = af�t�2/�F�t�2 ≤ �t���t�/�F�t��

Similarly, for the upper bound we have

�t���t�/�F�t� ≤ Kg�t���t�/�F�t� ≤ Kaf�t − a�2/�F�t�2 ≤ K1��t − a�2�

with K1 = KaD2. The last inequality in (29) follows from

�t�/�F�t� ≤ Kg�t�/�F�t� ≤ Kaf�t − a�/�F�t� ≤ K2��t − a��

with K2 = KaD.

Lemma A.4. Suppose that either (H1) or (H2) hold. Let � be defined as in (3) and
wp�t� = �F�t − a���t�p, for t ≥ 0 and p ≥ 1 integer. Then:

(i) ��t� → �, as t → �, if
∫ �
0 ��x�2dx = �;

(ii) limt→� wp�t� = limt→��F�t − a�
∫ t

0 f�x − a�/�F�x�dx = 0�

Proof. (i) Note first that ��t� = ∫ t

0 ���x − a�e
∫ x
x−a ��y�dy − ��x��dx. From the mean

value theorem, there exists ��x� ∈ �x − a� x� such that
∫ x

x−a
��y�dy = a����x��.

Assume (H1), then

��t� =
∫ t

0
���x − a�ea����x�� − ��x��dx ≥

∫ t

0
���x − a��1+ a����x���− ��x��dx

≥
∫ t

0
���x − a�− ��x��dx + C1

∫ t

0
��x�����x��dx

≥ log�
�F�t�

�F�t − a�
�+ C1

∫ t

0
��x�2

�F�x�
�F���x��dx ≥ C2 + C3

∫ t

0
��x�2dx → ��

where C1� C2� C3 are positive constants. The second inequality above follows from
(29) and the third because f is decreasing. Finally, for the last inequality observe
that, by (22), �F�x�/�F���x�� ≥ �F�x�/�F�x − a� ≥ D−1, for all x ≥ a.

Suppose now (H2) holds. Then, it is easy to see that, as t → �,

��t� ∼
∫ t

0
f�x − a�/�F�x�dx ≥

∫ t

0
��x�dx → ��
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Central Limit Theorem for the Number of Near-Records 323

(ii) Observe that −��a� ≤ ��t� ≤ ∫ �
0 f�x − a�/�F�x�dx. On the other hand,

under (H1),∫ t

0
f�x − a�/�F�x�dx =

∫ t

0
��x − a�e

∫ x
x−a ��y�dydx ≤ −C1 log�F�t − a��

for a positive constant C1 and all t ≥ 0. Therefore, 0 ≤ limt→�w1/p
p �t� ≤

−C1 limt→��F 1/p�t − a� log�F�t − a� = 0� Finally, if (H2) holds, from (25) we obtain

�F�t − a�

(∫ t

0
f�x − a�/�F�x�dx

)p

≤ �F�t�
(�F�t − a�

�F�t�
)p+1

∼ Kp+1
�F�t − �p+ 1�a� → 0�

as t → �, which yields limt→� wp�t� = 0.

Theorem A.1. Let 	i� i ≥ 1� be a sequence of random variables, adapted to a filtration
�i� i ≥ 0� such that E�	i 
�i−1� = 0 and E�
	i
2+�� < �, for some � > 0 and all i ≥ 1.
Let bn� n ≥ 1� be an increasing sequence of positive real numbers, diverging to �. Then∑n

i=1 	i/bn
D−→ N�0� 1� if

∑n
i=1 E�	

2
i 
�i−1�/b

2
n

P−→ 1 and (32)∑n
i=1 E�
	i
2+� 
�i−1�/b

2+�
n

P−→ 0� (33)

Proof. See p. 58 of Hall and Heyde (1980) for a version using Lindeberg’s
condition.

The following Theorem, which contains results for sums of partial minima, is
adapted from Deheuvels (1974). We use this result in the proof of Proposition 3.4
about the rate of growth of the conditional variance process.

Theorem A.2. Let Zn� n ≥ 1, be a sequence of nonnegative iid random variables,
whose common distribution function G is continuous and strictly increasing on the
interval �0� b�, for some b > 0. Let G−1 be the inverse of G on �0�G�b�� and H�t� =∫ et

�
G−1�1/x�dx, for t ≥ log �, where � = 1/P�Z1 < b�. Let �� denote the least integer

strictly greater than �.
If limt→� H�t� = � and there exists xn ↑ � such that

limn→� H�xn + log n�/H�log n� = 1 and (34)

limn→�
∑n

k=�� kG
−1�1/k�2

/(∑n
k=�� G

−1�1/k�
)2 = 0� (35)

then
∑n

k=1 min�Z1� � � � � Zk�/H�log n�
P−→ 1�
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