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Abstract

In this note we introduce a new class, called F, of linear transformations defined from
the space of real n×n symmetric matrices into itself. Within this new class, we show the
equivalence between Q- and Qb-transformations. We also provide conditions under which
a linear transformation belongs to F. Moreover, this class, when specialized to square
matrices of size n, turns to be the largest class of matrices for which such equivalence
holds true in the context of standard linear complementary problems.
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1 Introduction

This paper is devoted to the study of the existence of solutions of linear complementarity
problems over the cone Sn+ of real n×n symmetric positive semidefinite matrices. The latter
is usually called semidefinite linear complementarity problem (SDLCP). Recall that, given a
linear transformation L, defined from the space of real n × n symmetric matrices Sn into
itself (for short L ∈ L(Sn)), and a matrix Q ∈ Sn, the SDLCP consists in finding a matrix
X̄ such that:

X̄ ∈ Sn+, Ȳ = L(X̄) +Q ∈ Sn+ and 〈Ȳ , X̄〉 = 0. (1.1)

where 〈X,Y 〉 := tr(XY ) =
∑n

i,j=1XijYij denotes the trace of the (matrix) product XY .
In the sequel, this problem will be denoted by SDLCP(L, Sn+, Q), and its solution will be
denoted by S(L, Sn+, Q). Also, its feasible set is defined to be Feas(L, Sn+, Q) := {X ∈ Sn+ :
L(X) +Q ∈ Sn+}.

The SDLCP was first introduced by Kojima et al. [17] and its applications include
primal-dual semidefinite linear programs, control theory, linear and bilinear matrix inequal-
ities, among others. This problem can be seen as a generalization of the (standard) linear
complementarity problem LCP [4]. However, since the cone Sn+ is nonpolyhedral, LCP the-
ory cannot be trivially generalized to the SDLCP context. It is also a particular case of a
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cone complementarity problem, which turns to be a particular case of a variational inequality
problem [16]. Nevertheless, the direct application of existing results does not take advantage
of its rich matrix structure. For more details, see Gowda and Soong [10], Sampagni [20] and
the references therein.

On the other hand, when solving the LCP(M, q) (for some given M ∈ Rn×n and q ∈ Rn):

find x̄ ∈ Rn
+ such that ȳ = Mx̄+ q ∈ Rn

+ and 〈ȳ, x̄〉 = 0

by means of splitting methods, or when taking it as a basis for more sophisticated algorithms
(see, for instance, [4, Chapter 5]), a specific class of matrices naturally emerges. This class,
denoted by Q, contains all matrices M ∈ Rn×n such that LCP(M, q) has solutions indepen-
dently of q. Indeed, its study allows to verify when the mentioned algorithms are well-defined.
This class also plays a relevant role in perturbation theory (see, for instance, [4, 8] and the
references therein). These motivations explain the important effort made in order to charac-
terize the class Q. In particular, it is usual to analyze when the class Q coincides with the
smaller class Qb, where the latter consists of all matrices M ∈ Rn×n such that the solution
set of LCP(M, q) is not empty and bounded for all q. In this context, Flores and López [8]
introduce a new class of matrices (called F1 therein) and prove that Q = Qb holds true within
that class. This result generalizes previous ones of the same kind (e.g. [19, Theorem 1.2]).

Here, our aim is to extend the class F1, and some of the results of [8], to the SDLCP
framework. Actually, we define a large class of linear transformation, called F, for which it
holds that Q = Qb (in the sense of linear transformations in L(Sn))1 2. Then, we study
its relations with LCP’s, which motivates the definition of two subclasses; F1 and F2. This
permits to show that class F, when specialized to matrices, is actually larger than F1. Hence,
as a by-product of our analysis, characterization Q = Qb is now proved in a larger class
than F1, which constitutes a novelty and an improvement of former results in LCP theory.
Then, we provide conditions under which a linear transformation belongs to these subclasses.
Finally, we illustrate these conditions with some well-known linear transformations such as
Lyapunov functions LA(X) := A>X +XA>, among others.

This paper is organized as follows. Section 2 is dedicated to the preliminaries. It is split
into two subsections; first one recalls some basic results on matrix analysis, while second one
summarizes the most important classes of linear transformations in L(Sn) with their respec-
tive connections. In Section 3, we established our main results described in the paragraph
above. For this, in a first subsection, we recall known characterizations of classes Q and Qb

obtained via a recession analysis.

2 Preliminaries

In this section we establish our preliminaries results. They are presented in two subsections;
first one contains notations and some well-known matrix results needed in the sequel, while
the second one recalls existing classes of linear transformations that are frequently used in
the SDLCP theory.

1Recall that classes Q and Qb are word-by-word extended to the SDLCP framework as follows:
A linear transformation L ∈ L(Sn) is said to be a Q-transformation (Qb-transformation) if S(L, Sn

+, Q) 6= ∅
(and bounded), for all Q ∈ Sn. For the sake of notation, we simply say that L ∈ Q (L ∈ Qb).

2In order to avoid misunderstandings, bold letters (such as Q) will denote classes of linear transformation
in L(Sn), whereas roman-type letters (such as Q) will denote classes of matrices in Rn×n.
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2.1 Notation and basic results on matrix analysis

Some matrix operations are extensively used throughout this paper. For instance, we mention
the trace and the diagonal of a square matrix X = (Xij) ∈ Rn×n, defined by tr(X) :=∑n

i=1Xii and diag(X) := (X11, X22, ..., Xnn)>, respectively. The notion of a submatrix is also
very useful in the sequel. For an n×n matrix X = (Xij) and index sets α, β ⊆ {1, . . . , n}, we
write Xαβ to denote the submatrix of X whose entries are Xij with i ∈ α and j ∈ β. When
α = β, Xαα is usually called the principal submatrix of X corresponding to α. In particular,
when α = {1, . . . , k} (1 ≤ k ≤ n), Xαα is called the leading principal submatrix of X.

Additionally, the Hadamard product has an important role in our approach. We recall
that this operation is defined by X ◦ Y := (XijYij) ∈ Rm×n for all X = (Xij), Y = (Yij) ∈
Rm×n.

It is well-known that the set Sn of real n× n symmetric matrices is a finite dimensional
real Hilbert space when it is equipped with the inner product 〈X,Y 〉 = tr(XY ). As usual,
this product defines a (Frobenius) norm ‖X‖F :=

√
〈X,X〉 =

√∑n
i=1 λi(X)2, where λi(X)

stands for the i-th eigenvalue (arranged in nonincreasing order) of X. Thus, ‖X‖F = ‖λ(X)‖
for all X ∈ Sn, where ‖ · ‖ denotes the Euclidian norm in Rn and we have set λ(X) :=
(λ1(X), . . . , λn(X))>. Also, 0n and In denote the zero and the identity matrices, respectively,
of size n, but index n will be omitted if the size is clear from the context. Similarly, 11n (or
11) denotes the n× n matrix whose entries are all equal to 1.

Finally, for a vector q ∈ Rn, we define Diag(q) as the diagonal matrix of size n whose
diagonal entries are given by the entries of q.

We end this subsection by recalling matrix properties that we shall employ throughout
this paper. Their proofs and more details can be found in [2, 14, 15].

Proposition 2.1. The following results hold:

(a) For any X ∈ Rn×n and any orthogonal matrix U ∈ Rn×n, it holds that tr(X) = tr(X>) =
tr(UXU>). Moreover, when X is a symmetric matrix with the following block structure

X =
(

A B
B> C

)
∈ Sn+, then it holds that tr(A)tr(C) ≥ tr(BB>);

(b) (Von Neumman-Theobald’s inequality) For any X,Y ∈ Sn+, it holds that 〈X,Y 〉 ≤
diag(X)>diag(Y ), with equality if and only if X and Y are simultaneously diagonaliz-
able (that is, there exists an orthogonal matrix U such that X = U Diag(λ(X))U> and
Y = U Diag(λ(Y ))U>);

(c) (Fejer’s theorem) For any X ∈ Sn, it holds that 〈X,Y 〉 ≥ 0 for all Y ∈ Sn+ if and only
if X ∈ Sn+. Moreover, 〈X,Y 〉 > 0 for all Y ∈ Sn+ \ {0} if and only if X ∈ Sn++, where
Sn++ denotes the cone of real n× n symmetric positive definite matrices;

(d) Let X,Y ∈ Sn+. If 〈X,Y 〉 = 0, then X and Y commute (that is XY = Y X);

(e) (Simultaneous diagonalization) Let X,Y ∈ Sn+. If X and Y commute, then X and Y are
simultaneously diagonalizable;

(f) As a direct corollary of (d) and (e), if follows that for any X,Y ∈ Sn+ such that 〈X,Y 〉 =
0, X and Y are simultaneously diagonalizable;

(g) If X,Y ∈ Sn+, then X ◦ Y ∈ Sn+.
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2.2 Linear transformations review

The literature on SDLCP (see [3, 10, 11, 12, 18]) has already extended, from the LCP theory,
most of the well-known classes of matrices used in that context. We list these classes here
below. Let L ∈ L(Sn), we say that:

• L is a R-transformation with respect to D (where D ∈ Sn++ is fixed), or simply L ∈
R(D), if S(L, Sn+, τD) = {0} for all τ ≥ 0.

• L is regular or L ∈ R if there exists D ∈ Sn++ such that L is a R-transformation with
respect to D. Clearly R = ∪D∈Sn

++
R(D).

• L is an R0-transformation if S(L, Sn+, 0) = {0}.

• L is copositive (resp. strictly copositive) if 〈L(X), X〉 ≥ 0 (resp. > 0) for all X ∈ Sn+
(resp. for all X ∈ Sn+, X 6= 0).

• L is monotone (resp. strongly or strictly monotone) if 〈L(X), X〉 ≥ 0 (resp. > 0) for
all X ∈ Sn (resp. for all X ∈ Sn, X 6= 0).

• L has the P-property if [XL(X) = L(X)X ∈ −Sn+ ⇒ X = 0].

• L has the P0-property if L(·) + εI ∈ P, ∀ε > 0 where I denotes here the identity
transformation3 in L(Sn).

• L has the P2-property if [X,Y ∈ Sn+, (X − Y )L(X − Y )(X + Y ) ∈ −Sn+ ⇒ X = Y ].

• L has the P′2-property if [X ∈ Sn+, XL(X)X ∈ −Sn+ ⇒ X = 0].

• L is strictly semimonotone SSM or L ∈ E if
X ∈ Sn+, XL(X) = L(X)X ∈ −Sn+ ⇒ X = 0.

• L is semimonotone or L ∈ E0 if L(·) + εI ∈ E for all ε > 0.

• L is positive or L ≥ 0 (resp. negative or L ≤ 0) if L(X) ∈ Sn+ (resp. L(X) ∈ −Sn+) for
all X ∈ Sn+.

• L is nondegenerate if [X L(X) = 0 ⇒ X = 0].

• L has the Q0-property if [Feas(L, Sn+, Q) 6= ∅ ⇒ S(L, Sn+, Q) 6= ∅].

• L has the globally uniquely solvable property or L ∈ GUS if S(L, Sn+, Q) has a unique
solution for all Q ∈ Sn.

• L has the S-property if there is X ∈ Sn+ such that L(X) ∈ Sn++, or equivalently, there
is X ∈ Sn++ such that L(X) ∈ Sn++.

• L self-adjoint if L> = L, where L> stands for the transpose (or adjoint) transformation
of L.

• L is normal if L commutes with L>.
3Since the context is clear, symbol I is used as the identity matrix in Sn as well as the identity transfor-

mation in L(Sn) throughout this paper. Symbol 0 is similarly treated.
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• L is a star-transformation if [V ∈ S(L, Sn+, 0)⇒ L>(V ) ∈ −Sn+].

• L has the Z-property if [X,Y ∈ Sn+, 〈X,Y 〉 = 0⇒ 〈L(X), Y 〉 ≤ 0].

• a Q-pseudomonotone (for a given Q ∈ Sn) if

X,Y ∈ Sn+, 〈L(X) +Q,Y −X〉 ≥ 0⇒ 〈L(Y ) +Q,Y −X〉 ≥ 0.

• L is Q-quasimonotone (for a given Q ∈ Sn) if

X,Y ∈ Sn+, 〈L(X) +Q,Y −X〉 > 0⇒ 〈L(Y ) +Q,Y −X〉 ≥ 0.

The next proposition establishes the most important links between the classes mentioned
above.

Proposition 2.2. Let L ∈ L(Sn) and Q ∈ Sn be given. The following relations hold:

(a) L is monotone =⇒ L is copositive;

(b) L is copositive and L ∈ R0 =⇒ L ∈ R(D) for all D ∈ Sn++;

(c) L is nondegenerate =⇒ L ∈ R0;

(d) L is strongly monotone or L is an isomorphism =⇒ L ∈ P =⇒ L ∈ E =⇒ L ∈ R0;

(e) L ∈ P0 or L is copositive =⇒ L ∈ E0;

(f) L ∈ P2 =⇒ L ∈ P′2 =⇒ L ∈ E =⇒ L ∈ R(I).

(g) L is strongly monotone =⇒ L ∈ P2 =⇒ L ∈ GUS =⇒ L ∈ P;

(h) L is monotone =⇒ L is Q-pseudomonotone =⇒ L is Q-quasimonotone for all Q ∈ Sn;

(i) L is Q-pseudomonotone and Feas(L, Sn+, Q) 6= ∅ =⇒ L is copositive.

(j) L is Q-quasimonotone and Q 6= 0 =⇒ L is Q-pseudomonotone. Moreover, if L is Q-
quasimonotone but is not monotone and there exists X ∈ Sn+ such that L(X) +Q ∈ Sn+
and L(X) +Q 6= 0, then L is copositive.

(k) L ∈ S ⇐⇒ Feas(L, Sn+, Q) 6= ∅ for all Q ∈ Sn;

(l) L is 0-pseudomonotone (in particular, if L is monotone) or L ≤ 0 =⇒ L is a star-
transformation;

(m) Q = Q0 ∩ S, and GUS ⊆ Qb;

(n) L ∈ E0 ∩R0 (in particular, if L ∈ P or L ∈ E) =⇒ L ∈ Qb;

(o) Let L ∈ Z. Then

[L ∈ Q ⇐⇒ ∃L−1 and L−1(Sn+) ⊆ Sn+ (equivalently, L−1(Sn++) ⊆ Sn++) ⇐⇒ L ∈ S

⇐⇒ L> ∈ Q ⇐⇒ ∃(L>)−1 and (L>)−1(Sn+) ⊆ Sn+ (equivalently, (L>)−1(Sn+) ⊆ Sn+)
⇐⇒ L> ∈ S];
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Proof. Statements (a), (c) and (h) are direct from the definitions. Statement (d) is proven in
[10]. Relation in (e) when L ∈ P0 is trivial. When L is copositive, the result can be found in
[18, Theorem 5(i)]. The first implication of (g) is given in [20, Theorem 4], while the others
appear in [10]. Statement (i) is shown in [7, Remark 4.1]. Statement (j) is demonstrated in
[13, Propositions 4.1 and 5.4]. The first equality in (m) follows from (k) and the inclusion
in (m) is trivial. Relation (n) can be seen [10, Theorem 4]. Finally, statement (o) has been
proved in [12, Theorem 6]. The remaining relations need some adaptations of previous results.
Thus, they are explained with more details here below.

(b): Let D ∈ Sn++ be fixed. If X ∈ S(L, Sn+, τD) for some τ > 0, then L(X)+τD ∈ Sn+ and
〈L(X)+τD,X〉 = 0. By copositivity the latter can be written as 0 ≤ 〈L(X), X〉 = −τ〈D,X〉.
Due to Fejer’s theorem (Proposition 2.1, Part (c)), this is a contradiction if X 6= 0. Therefore,
S(L, Sn+, τD) = {0}. But since L ∈ R0, it follows that L ∈ R(D). A different proof of this
relation is given in [18, Theorem 5(iii)] in a different framework.

(f): See [3, Theorem 2.2]. Here we have just added the implication L ∈ E ⇒ L ∈ R(I)
which is implicitly shown in the proof of the referenced theorem.

(k): (⇐) Let D ∈ Sn++. By hypothesis Feas(L, Sn+,−D) 6= ∅, that is, there exists X ∈ Sn+
such that Y = L(X)−D ∈ Sn+. From this we get L(X) = Y +D ∈ Sn++. Hence L ∈ S.
(⇒) By hypothesis there is X ∈ Sn+ such that L(X) ∈ Sn++. Fix Q ∈ Sn. It is clear
that for t > 0 large enough, the matrix tL(X) +Q is symmetric positive definite. But, since
tL(X) = L(tX), the latter implies that tX ∈ Feas(L, Sn+, Q). The desired equivalence follows.

(l): Let V ∈ S(L, Sn+, 0), that is, V,L(V ) ∈ Sn+ and 〈L(V ), V 〉 = 0. It follows that
〈L(V ), tX − V 〉 ≥ 0 for every X ∈ Sn+ and t > 0. Suppose that L is 0-pseudomonotone. We
have that 〈L(tX), tX − V 〉 ≥ 0 for every X ∈ Sn+ and t > 0. From this, after dividing by
t and taking limit t ↘ 0, we get 0 ≥ 〈L(X), V 〉 for every X ∈ Sn+. Thus, Fejer’s theorem
(Proposition 2.1, Part (c)) implies that L>(V ) ∈ −Sn+. Hence, L is a star-transformation. In
the case when L ≤ 0, the desired result is a direct consequence of Fejer’s theorem.

Proposition 2.2 shows the rich relations existing among the different classes defined in
L(Sn). However, at this stage of the analysis, it is worth to point out that these relations
are not necessarily the same we find for matrices in the LCP theory. We illustrate some
differences here below through two enlightening examples. They can be found in [10] and
[12], respectively.

Example 2.3. It is known that a matrix M with the P -property ensures the existence and
uniqueness of solutions of LCP(M ,q), independently of vector q (see [4, Theorem 3.3.7]).
However, this strong result is not longer true when we deal with linear transformation in
L(Sn). Indeed, consider

A =
(
−1 2
−2 2

)
and Q =

(
2 2
2 4

)
.

So, for the Lyapunov function LA = A>X + XA>, we have that LA ∈ P. However,

S(LA, S2
+, Q) is not longer a singleton because D =

(
1 0
0 0

)
as well as the null ma-

trix are solutions. For this reason, GUS-property is studied separately from Q and Qb-
transformations.

Example 2.4. When we work with matrices, we have Z ⊆ Q0 (see [4, Theorem 3.11.6]).
However, this inclusion is not longer true when we deal with linear transformation in L(Sn).
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Indeed, consider

A =
(

0 1
1 0

)
and Q =

(
1 0.1

0.1 1

)
.

Here we have that LA ∈ Z, Feas(LA, S2
+, Q) 6= ∅, and S(LA, S2

+, Q) = ∅. Hence, LA 6∈ Q0.

3 Characterizations of Q and Qb-transformation

This section is devoted to the characterization of classes Q and Qb. In particular, we are
interested in studying classes of functions in L(Sn) for which Qb behaves similarly as Q.

3.1 Known results based on recession analysis

In finite dimensional spaces, the notion of the asymptotic cone of a set becomes a fundamental
tool in order to characterize its boundedness. For a nonempty set A ⊆ Rn, this notion is
defined as follows (e.g. [1]):

A∞ :=
{
v ∈ Rn : ∃tk → +∞∃{xk} ⊆ A such that

xk

tk
→ v

}
(by convention, we set ∅∞ = {0}). Indeed, it is well known that A is bounded if and only if
A∞ = {0} (e.g. [1, Proposition 2.1.2]). So, the notion of asymptotic cones arises naturally
when we deal with the class Qb. The following technical lemma illustrates this point.

Lemma 3.1. Let L ∈ L(Sn) be given.

(a)
⋃
Q∈Sn S(L, Sn+, Q)∞ = S(L, Sn+, 0);

(b) If L ∈ R0, then S(L, Sn+, Q) is bounded (possibly empty) for all Q ∈ Sn;

(c) L ∈ R0 if and only if there exists a constant c > 0 such that

‖X‖F ≤ c‖Q‖F , for all Q ∈ Sn and X ∈ S(L, Sn+, Q).

Proof. See [6, Proposition 2.5.6].

As a direct consequence of Lemma 3.1 above, we establish the equivalence between the
classes Q and Qb within the class R0.

Corollary 3.2. Let L ∈ R0. Then, L ∈ Qb ⇐⇒ L ∈ Q.

Our main goal is to prove the previous equivalence in a larger class of linear transformation
in L(Sn). In order to do this, we need to recall a second lemma which will be useful in the
sequel.

Lemma 3.3. R ⊆ Qb ⊆ R0. Consequently, Qb = Q ∩R0.

Proof. This is a particular case of [16, Theorem 3.1] where the desired inclusions is obtained
for complementarity problems defined over general solid cones in finite dimensional spaces.
The characterization of Qb follows directly from previous results.
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3.2 The class of F-transformations and its subclasses

In the LCP context, Flores and López [8] introduce the following new class of matrices.

Definition 3.4. A matrix M ∈ Rn×n is said to be an F1-matrix if, for every v ∈ S(M, 0)\{0},
there exists a nonnegative diagonal matrix Γ such that Γv 6= 0 and M>Γv ∈ −Rn

+. Here
S(M, q) denotes, for given M ∈ Rn×n and q ∈ Rn, the solution of problem LCP(M, q).

So, in [8], the equivalence of Corollary 3.2 is proven within the class F1. This class
turns to be larger than R0, which makes the result interesting to be extended to our SDLCP
framework. Inspired by that definition, we introduce the next new class of transformations
in L(Sn).

Definition 3.5. We say that L ∈ L(Sn) is an F-transformation or L ∈ F, if for each
V ∈ S(L, Sn+, 0)\{0} there exists a linear transformation T : Sn → Rn×n such that

(i) T (V ) ∈ Sn+ (ii) 〈T (V ), V 〉 > 0 (iii) L>(T (V )) ∈ −Sn+. (3.1)

We now establish the main properties of the class F. In particular, assertion (b) below
extends Corollary 3.2 to the this larger class.

Theorem 3.6. Let L ∈ L(Sn) be given.

(a) If L ∈ F ∩ S, then L ∈ R0 ;

(b) Let L ∈ F. Then, L ∈ Qb ⇐⇒ L ∈ Q.

Proof. (a): Let L ∈ F ∩ S. We argue by contradiction. Suppose that L 6∈ R0, that is, there
exist V ∈ S(L, Sn+, 0)\{0}. Since L ∈ F, there exists a linear transformation T : Sn →
Rn×n satisfying conditions (i)-(iii) in Definition 3.5. This together with Fejer’s theorem
(Proposition 2.1, Part (c)) implies that 〈L(X)− V, T (V )〉 < 0 for all X ∈ Sn+. Consequently,
L(X)− V /∈ Sn+ for all X ∈ Sn+. Therefore, L 6∈ S (otherwise we can always find t > 0 large
enough such that L(X)− V ∈ Sn+), obtaining a contradiction.

(b): Obviously L ∈ Qb implies L ∈ Q. If L ∈ Q, then L ∈ S (because Proposition 2.2,
Part (m)). Thus, L ∈ F ∩ S. By item (a) above we conclude that L ∈ R0, and consequently
L ∈ Q ∩R0. We thus conclude that L ∈ Qb thanks to equality Qb = Q ∩R0 established in
Proposition 3.3.

Next example, adapted from [8], shows that the inclusion established in Part (a) of The-
orem 3.6 above is strict.

Example 3.7. Consider the matrix M =
(
−1 0
0 1

)
. For M given by (3.3), we have

S(M, S2
+, 0) = {0}. Thus, M ∈ R0. However, it is easy to see that Feas(M, Sn+,M) = ∅.

This together with Proposition 2.2, Part (k), implies that M /∈ S.

To check whenever a linear transformation L belongs to F can be a difficult task. This is
mainly because there is no a clear guide about how to chose, for a given V ∈ S(L, Sn+, 0)\{0},
a linear transformation T : Sn → Rn×n satisfying conditions (i)–(iii) in Definition 3.5. For
this, we focus now our analysis on the subclass of F for which the linear transformation T is
chosen to be of the form:

T (X) = Λ ◦X, for all X ∈ Sn, (3.2)

for some Λ ∈ Sn+. Recall that symbol ◦ denotes the Hadamard product defined in Section
2.1. From now on, this subclass of F will be denoted by F1.
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Remark 3.8. Notice that, thanks to Part (g) of Proposition 2.1, condition (i) in Defini-
tion 3.5 becomes superfluous when L ∈ F1.

The name F1 is justified by the close relation existing between this subclass and the
original class F1 defined in the LCP framework (see Definition 3.4 above). Indeed, it is easy
to verify that

X̄ ∈ S(M, Sn+,Diag(q)) =⇒ x̄ := diag(X̄) ∈ S(M, q)
x̄ ∈ S(M, q) =⇒ X̄ := Diag(x̄) ∈ S(M, Sn+,Diag(q)),

where the linear transformation M : Sn → Sn is defined by

M(X) := Diag(Mdiag(X)). (3.3)

See, for instance, [21]. Thus, the mentioned relation is stated in the next proposition.

Proposition 3.9. Let M ∈ Rn. If M is given by (3.3), then

M ∈ F1 ⇐⇒M ∈ F1.

Proof. We first point out that the transpose ofM is given byM>(X) = Diag(M>diag(X)).
(⇒): Let M ∈ F1. If V ∈ S(M, Sn+, 0)\{0}, then v = diag(V ) ∈ S(M, 0). Clearly

v 6= 0 (otherwise, since V ∈ Sn+, V should be null). So, by hypothesis there exists a nonneg-
ative diagonal matrix Γ such that Γv 6= 0 and M>Γv ∈ −Rn

+. Thus, conditions (i)–(iii) of
Definition 3.5 can be easily verified provided that Λ = Γ ∈ Sn+. We then obtain thatM∈ F1.

(⇐): Let M∈ F1. If v ∈ S(M, 0) \ {0}, then V = Diag(v) ∈ S(M, Sn+, 0), and obviously
V 6= 0. By hypothesis there exists a matrix Λ ∈ Sn+ such that the linear transformation T ,
given by (3.2), satisfies conditions (i)-(iii) in Definition 3.5. Take Γ := Diag(diag(Λ)). Clearly
Γ is a diagonal matrix with nonnegative entries. Moreover, since Γv = diag(Λ ◦ V ) 6= 0 and
M>Γv = diag(M>(Λ ◦ V )) ∈ −Rn

+, it follows that M ∈ F1.

As a consequence of the analysis above we realize that we have also extended the class of
matrices for which the equivalence between Q and Qb (in the LCP framework) holds true.
Indeed, former result in [8] only deals with the class F1, which is smaller than the class F
restricted to linear transformations M of the form (3.3). In other words, it is clear that
M ∈ F allows not only matrices M ∈ F1 (for instance, it allows to chose, in Definition 3.4,
a matrix Γ which is not necessarily diagonal, provided that condition Γv 6= 0 be replaced by
the equivalent condition v>Γv > 0; see example below). Thus, the equivalence established in
Theorem 3.6 constitutes also an improvement of the existing LCP’s theory.

Example 3.10. In this example we show that F1 is properly contained in F. Set

M =
(
−1 0
0 0

)
.

it is not difficult to see that M 6∈ F1. Consequently, by Proposition 3.9, M 6∈ F1 . However,
the linear transformation

T (X) :=
(
z 0
0 z

)
, for all X =

(
x y
y z

)
∈ S2

satisfies, for every V ∈ S(M, S2
+, 0)\{0}, conditions (i)-(iii) in Definition 3.4. Therefore,

M∈ F.
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Another different way to check whenever a linear transformation belongs to F is via the
study of its block structure. The next proposition establishes a criterium based on this
information.

Proposition 3.11. Let L ∈ L(Sn). Suppose that for any orthogonal matrix U ∈ Rn×n and
for any index set α = {1, . . . , k}(1 ≤ k ≤ n), the existence of a solution X ∈ Sn to the system

Xαα ∈ S|α|++, Xij = 0,∀i, j /∈ α, [L̂U (X)]αα = 0, [L̂U (X)]αᾱ = 0, [L̂U (X)]ᾱᾱ ∈ S|ᾱ|+ ,
(3.4)

where L̂U (X) := U>L(UXU>)U and ᾱ = {1, . . . , n} \ α, implies that there is a nonzero
matrix Y ∈ Sn satisfyng

Yαα ∈ S|α|+ , Yij = 0, ∀i, j /∈ α, [L̂>U (Y )]αα = 0, [L̂>U (Y )]αᾱ = 0, [L̂>U (Y )]ᾱᾱ ∈ −S|ᾱ|+ .
(3.5)

Then, L is an F-transformation.

Proof. Let V be a nonzero solution of SDLCP(L, Sn+, 0). Consider an orthonormal matrix
U ∈ Rn×n whose columns are eigenvectors of V . It follows that

U>V U =
(
Z 0
0 0

)
,

for some Z ∈ Sk++ (actually Z is a diagonal matrix containing all positive eigenvalues of V )
and k ∈ {1, ..., n}. Set α := {1, . . . , k}. We proceed to show that X := U>V U is a solution of
(3.4). First, X clearly satisfies first two conditions of (3.4). Also, L̂U (X) = U>L(V )U . So,
since L(V ) ∈ Sn+, it follows that [L̂U (X)]ᾱᾱ ∈ Sn+. Moreover, condition 〈L(V ), V 〉 = 0 implies
that the columns of U can be chosen in order to be also a basis of orthonormal eigenvectors of
L(V ) (cf. Propostion 2.1, Part (f)). This yields, on the one hand, to [L̂U (X)]αᾱ = 0 (because
L̂U (X) = U>L(V )U is actually a diagonal matrix), and, on the other hand, to [L̂U (X)]αα = 0
(because of 〈L(V ), V 〉 = 〈L̂U (X), X〉). Hence, there exists a nonzero solution Y of (3.5).

We claim that the linear transformation T : Sn → Rn×n defined as

T (W ) := U

(
YααZ

−1 0
0 0

)
U>W, ∀W ∈ Sn,

satisfies conditions (i)–(iii) in (3.1). Indeed, since T (V ) = UY U>, it clearly follows that
T (V ) ∈ Sn+. So, due to positive definiteness of Z and Fejer’s theorem (see Proposition 2.1,
Part (c)), we obtain that 〈T (V ), V 〉 = 〈Yαα, Z〉 > 0. Finally, since L̂>U (Y ) = U>L>(T (V ))U
and L̂>U (Y ) ∈ −Sn+ (consequence of (3.5)), it follows that L>(T (V )) ∈ −Sn+. We have thus
deduced that L is an F-transformation.

Remark 3.12. In the implication stated in Proposition 3.11 above, we can chose an index
set α ⊆ {1, ..., n} not necessarily of the form {1, ..., k} for some k ∈ {1, ..., n}. Indeed,
given an orthonormal matrix U ∈ Rn×n and an arbitrary index set α ⊆ {1, ..., n}, let X̃ be
a matrix satisfying (3.4). We write αi to denote the i-th component of α. So, we define
P ∈ Rn×n as the permutation matrix such that the position αi is switched with position i, for
all i ∈ {1, ..., |α|} (that is, if x̃ = Px, then xi = xαi). Set k := |α|. Since any permutation
matrix is orthonormal, it follows that Ũ := UP> is orthonormal. Then, it is easy to note that
X := PX̃P> satisfies (3.4) when α is replaced by {1, ..., k} and U is replaced by Ũ . Thus, if
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the implication stated in Proposition 3.11 holds, we obtain the existence of Y ∈ Sn solution
of (3.5) for the same data (i.e. {1, ..., k} and Ũ). Finally, it suffices to note Ỹ := P>Y P
satisfies (3.5) for the original α and U .

From now on, the class of transformations L such that the implication stated in Propo-
sition 3.11 holds true will be denoted by F2. Clearly, Proposition 3.11 above shows that F2

is a subclass of F.
Once again, this subclass is closely related to the class F1, defined in the LCP framework

(see Definition 3.4). Indeed, it is easy to see that that a matrix M ∈ Rn×n is an F1-matrix if
and only if, for any nonempty set α ⊆ {1, . . . , n}, the existence of a vector xα ∈ R|α| satisfying

xα > 0, Mααxα = 0 and Mᾱαxα ≥ 0, (3.6)

implies that there exists a nonzero vector wα ∈ R|α|+ such that

w>αMαα = 0 and w>αMαᾱ ≤ 0. (3.7)

So, keeping this characterization in mind, we establish the mentioned relation here below.

Proposition 3.13. Let M ∈ Rn and considerM defined in (3.3). IfM∈ F2, then M ∈ F1.

Proof. Thanks to Remark 3.12, we can consider any arbitrary index set α ⊆ {1, . . . , n} in the
definition of F2. Then, it suffices to note that systems (3.4) and (3.5) coincide with (3.6) and
(3.7), respectively, when we consider U = I (the identity matrix), Xαα = Diag(xα), Xij = 0
for all i, j /∈ α, and Yαα = Diag(wα), Yij = 0 for all i, j /∈ α, .

In the following proposition we list various classes of linear transformations that are
contained in the classes F1 and F2.

Proposition 3.14. L ∈ F1 ∩ F2 if any of the following conditions is satisfied:

(a) L is a star-transformation ;

(b) L ∈ Z and

(i) −L is copositive or

(ii) L is normal ;

(c) L ∈ R0.

Proof. In order to prove items (a) and (b), we split the proof into two parts; in the first one
we prove that L ∈ F1 while in the second one we show that L ∈ F2. For both classes, item
(c) is trivially verified by vacuity.

L ∈ F1:
(a): Let V ∈ S(L, Sn+, 0)\{0}. Since L is a star-transformation, we have L>(V ) ∈ −Sn+.

Then, conditions (i)–(iii) of Definition 3.5 can be easily checked provided that T is of the
form (3.2) with Λ = 11 (note that 11 ∈ Sn+). The result follows.

(b): Let V ∈ S(L, Sn+, 0)\{0}, that is, V,L(V ) ∈ Sn+ and 〈L(V ), V 〉 = 0. Since L ∈ Z, we
get 〈L(V ), L(V )〉 ≤ 0, and consequently L(V ) = 0. We proceed to prove both cases.
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(i): If −L is copositive, then 〈L(tX +V ), tX +V 〉 ≤ 0 for all X ∈ Sn+ and for all t > 0. From
this, after dividing by t we get t〈L(X), X〉+ 〈L(X), V 〉 ≤ 0 for all t > 0. Taking limit t↘ 0
we obtain 〈X,L>(V )〉 ≤ 0 for all X ∈ Sn+. From Fejer’s theorem (Theorem 2.2, Part (c)), we
conclude that L>(V ) ∈ −Sn+, that is, L is a star-transformation. The desired result follows
from (a).
(ii): Since L is normal and L(V ) = 0, we obtain that

‖L>(V )‖2F = 〈V,L(L>(V ))〉 = 〈V,L>(L(V ))〉 = 0.

That is, L>(V ) = 0, which is in a particular a matrix in −Sn+. Thus, the desired result follows
again from (a).

L ∈ F2:
(a): Let U be an orthonormal matrix of size n, α = {1, . . . , k} (1 ≤ k ≤ n) be a nonempty

index set, and X ∈ Sn a solution of the system (3.4). It is easy to show that

V = UXU> = U

(
Xαα 0

0 0

)
U>

is a nonzero solution of SDLCP(L, Sn+, 0). Indeed, V = UXU>, L(V ) = UL̂U (X)U> ∈
Sn+ (because X, L̂U (X) ∈ Sn+) and 〈L(V ), V 〉 = 〈L̂U (X), X〉 = 0. Since L is a star-
transformation, we have that L>(V ) ∈ −Sn+. Consequently, L̂>U (X) = U>L>(V )U ∈ −Sn+.
On the other hand, since Xαα ∈ S|α|++ and [L̂>U (X)]αα ∈ −S|α|+ and the equality

〈[L̂>U (X)]αα, Xαα〉 = 〈L̂>U (X), X〉 = 〈X, L̂U (X)〉 = 0,

it follows that [L̂>U (X)]αα = 0. This together with condition −L̂>U (X) ∈ Sn+ implies that
[L̂>U (X)]αᾱ = [L̂>U (X)]ᾱα = 0 (because of Proposition 2.2, Part (a)). Hence, Y = X solves
(3.5). We have thus conclude that L ∈ F2

(b): Let U be an orthonormal matrix of size n, α = {1, . . . , k} (1 ≤ k ≤ n) be a nonempty
index set, and X ∈ Sn a solution of the system (3.4). As before, V = UXU> is a nonzero
solution of SDLCP(L, Sn+, 0). Since L ∈ Z, we get 〈L(V ), L(V )〉 ≤ 0 and consequently
L(V ) = 0. Hence, L̂U (X) = U>L(V )U = 0. Moreover, −L̂U is copositive when −L is
copositive and L̂U is normal when L is normal. Thus, the arguments given in order to prove
that L ∈ F1, but applied to L̂U instead of L, imply that L ∈ F2.

Remark 3.15. Proposition 2.2, Part (l), provides classes included in the class of star
transformations. Part (i) of the same proposition do the same for the class of copositive
transformations. On the other hand, self-adjoint transformations are examples of normal
transformations. Finally, Proposition 2.2, Part (d), provides situations when a linear func-
tion is an R0-transformation.

3.3 Examples: Lyapunov, multiplicative, and Stein transformations

Some linear transformations in L(Sn) arises naturally in matrix theory and its applications.
This is the case of Lyapunov, multiplicative and Stein transformations, that are defined, for
a given A ∈ Rn×n, as follows:

• LA(X) = AX +XA>,
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• MA(X) = AXA>,

• SA(X) = X −AXA>.

We recall some properties of these transformations.

Proposition 3.16. Let A ∈ Rn×n be given.

(a) L>A = LA>, M>A = MA>, and S>A = SA> ;

(b) If A is normal (i.e. AA> = A>A) if and only if LA, MA and SA are normal;

(c) If A is symmetric, then LA, MA and SA are self-adjoint. If A is skew-symmetric, then
MA and SA are self-adjoint;

(d) LA, SA ∈ Z for all A ∈ Rn×n.

Proof. See [11, 12].

We want to study conditions on A that ensure that previous transformations belong to
class F1. For this, we need to recall the following well-known equivalences.

Theorem 3.17. Let A ∈ Rn×n be given.

(a) A is positive definite (i.e. 〈Ax, x〉 > 0 for all nonzero x ∈ Rn) ⇐⇒ LA is strongly
monotone ⇐⇒ LA ∈ P2 ⇐⇒ LA ∈ P′2 ;

(b) A is positive stable (i.e. all the eigenvalues of A have a positive real part) ⇐⇒ LA ∈ P
⇐⇒ LA ∈ E ⇐⇒ LA ∈ E0 ∩R0 ⇐⇒ LA ∈ Q ⇐⇒ Sn++ ⊆ LA(Sn++) ⇐⇒ LA(Sn++) ∩
Sn++ 6= ∅ ;

(c) A is positive definite or negative definite ⇐⇒ MA ∈ P2 ⇐⇒ MA ∈ GUS ⇐⇒ MA ∈ P
⇐⇒ MA ∈ R0 ⇐⇒ MA ∈ P′2 ;

(d) A is Schur stable (i.e. all the eigenvalues of A lie in the open unit disk) ⇐⇒ SA ∈ P
⇐⇒ SA ∈ GUS ⇐⇒ Sn++ ⊆ SA(Sn++) ⇐⇒ SA(Sn++) ∩ Sn++ 6= ∅.

Proof. Statement (a) is proven in [20, Theorem 5] and [3, Theorem 3.3]. Statement (b) is
demonstrated in [10, Theorem 5]. Statement (c) is proven [3, Theorem 4.2] and [21]. Finally,
statement (d) is shown in [9, Theorem 11 and Remark 4].

As a consequence of Proposition 3.14, Proposition 3.16, and Theorem 3.17 we obtain the
next result.

Corollary 3.18. Let A ∈ Rn×n be given.

(a) If A is normal, then LA, SA ∈ F1 ∩ F2;

(b) If A is positive definite or positive stable, then LA ∈ F1 ∩ F2;

(c) If A is positive definite or negative definite, then MA ∈ F1 ∩ F2;

(d) If A is Schur stable, then SA ∈ F1 ∩ F2;
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Proof. (a): By Proposition 3.16 we have that LA and SA are normal and Z-transformations.
The result follows from Proposition 3.14, Part (b).

(b): Let A be positive definite. Theorem 3.17, Part (a), says that this is equivalent to LA
being strongly monotone, which in turn by Proposition 2.2, Part (d), implies that LA ∈ R0.
Let A be positive stable. Theorem 3.17, Part (b), implies that LA ∈ R0. In both cases, the
result follows from Proposition 3.14, Part (c).

(c): By Theorem 3.17, Part (c), the hypothesis is equivalent to MA ∈ R0. The result
follows from Proposition 3.14, Part (c).

(d): By Theorem 3.17, Part (d), the hypothesis is equivalent to SA ∈ P. Thus, Proposi-
tion 2.2, Part (d), implies that SA ∈ R0. The result also follows from Proposition 3.14, Part
(c).
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