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Abstract

A new histogram-based mutual information estimator using data-driven tree-structured partitions (TSP) is pre-

sented in this work. The derived TSP is a solution to a complexity regularized empirical information maximization

(EIM), with the objective of finding a good tradeoff between the known estimation and approximation errors. A

distribution-free concentration inequality for this tree-structured learning problem as well as finite sample performance

bounds for the proposed histogram-based solution are derived. It is shown that this solution is density-free strongly

consistent and, that it provides, with an arbitrary high probability, an optimal balance between the mentioned estimation

and approximation errors. Finally for the emblematic scenario of independence, I(X;Y ) = 0, it is shown that the

TSP estimate converges to zero with O(e−n1/3+log logn).

Index Terms

Mutual information, histogram-based estimates, data-dependent partitions, tree-structured partitions, complexity

regularization, strong consistency, Vapnik and Chervonenkis inequality, minimum cost tree pruning.

I. INTRODUCTION

Let X and Y be two random vectors taking values in X = R
p and Y = R

q , respectively, with a joint distribution

PX,Y defined on (Rd,B(Rd)), where d = p+ q) and B(Rd) denotes the Borel sigma field. The mutual information

(MI) between X and Y can be expressed by [1], [2],

I(X;Y ) = D(PX,Y ||PX × PY ), (1)

where PX ×PY is the probability distribution on (Rd,B(Rd)) induced by multiplication of the marginals of X and

Y (distribution where X and Y are independent), and D(P ||Q) denotes the Kullback-Leibler divergence (KLD) or

information divergence [2], [3],

D(P ||Q) =

∫
log

dP

dQ
(x) · dP (x). (2)
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I(X;Y ) is an indicator of the level of statistical dependency between X and Y , i.e., how PX,Y differs from

PX × PY in the KLD sense [2], [3]. In fact, I(X;Y ) = 0 is a necessary and sufficient condition for X and Y to

be independent.

Mutual information (MI) has a fundamental role in information theory and statistics [1]–[3], which justifies its

large adoption in statistical learning applications [4]–[11]. A particularly crucial need for these applications is to

have a distribution-free estimate of I(X,Y ), based on independent and identically distributed (i.i.d.) realizations

of (X,Y ), as the distribution in these settings is unknown. An important requirement is that the estimate has to

converge to I(X;Y ) as the number of sample points tend to infinity with probability one (strong consistency) [12].

In this learning context, the MI estimation scenario relates with the problem of distribution (density) estimation as

MI is a functional of the joint distribution of (X,Y ). In this classical problem strong consistency in the L1 sense is

well known [13], in particular for histogram-based estimates [13], [14]. More recent extensions on histogram-based

estimator (the Barron-type of estimator [15]) has considered consistency under topologically stronger notions, such

as consistency in direct information divergence by Barron et al. [15] and Györfi et al. [16], χ2-divergence and

expected χ2-divergence by Györfi et al. [17] and Vajda et al. [18] and the general family of Csiszár’s φ-divergence

by Beirlant et al. [19].

In the context of estimating functionals of probability distributions, the differential entropy estimation has been

systematically addressed for distributions defined on a finite dimensional Euclidean space (Rd,B(Rd)). In particular,

consistency results are well known for histogram-based and kernel plug-in estimates, see Beirlant et al. [12] and

references therein. These constructions and results extend to the case of MI estimation, since MI can be expressed

in terms of differences of differential entropies [2]. However, for the important case of histogram-based estimation,

which is the focus of this work, these results usually consider non-adaptive and product type of partitions of the

space. In this setting every coordinate of the space is partitioned independently to form the full partition of Rd

(a product partition), and the partition is made only of a function of the amount of data and independent of how

the data is distributed in the space. In contrast, non-product data-driven partitions [20]–[23] can approximate the

nature of the empirical distribution better with few quantization bins and provide the flexibility to improve the

approximation quality of histogram-based estimates [20], [21], see Figure 1. This has been shown theoretically in a

number of learning problems, including density estimation, regression and classification [20], [24], [25]. Their full

potential, however, remains to be studied for the estimation of MI.

In addressing this problem, Darbellay et al. [21] proposed an histogram-based approach based on a non-product

adaptive tree-structured partitions (TSP), where the inductive nature of TSP was used to dynamically increase

the resolution of the quantization in areas of the space that provide higher empirical MI gains. This adaptive

TSP estimate shows promising empirical evidence, although ensuring strong consistency remains an open problem.

Alternatively, Wang et al. [22], [23] and more recently Silva et al. [26]–[29] have studied the role of a more general

family of data-driven partitions based on partition schemes [20], [24] in the context of MI and the KLD estimation.

For MI estimation, these results are summarized in the next section.
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Fig. 1. A: A product type of partition of the space with 9 cells. Every coordinate is partitioned independently to form the full partition. B:

Non-product data-driven tree-structured partition (TSP) with 9 cells and its binary tree representation. The space is partitioned by axis-parallel

hyper-planes with a statistically equivalent splitting criterion. This splitting process is conducted inductively in a binary tree structured way,

starting from the full space indexed by the node (0, 0).

A. Histogram-Based MI Estimation based on Partition Schemes

For a finite measurable partition of Rd, we mean a finite collection {A1, .., Ak} of elements in B(Rd), such that

Ai ∩ Aj = ∅ if i 6= j and
⋃k
l=1Al = R

d. Every element of {A1, .., Ak} is called a cell, or partition cell, and

|{A1, .., Ak}| denotes its cardinality. In this context, Q denotes the collection of finite measurable partitions of Rd.

A partition scheme Π = {πn(·) : n ∈ N} [20] is collection of functions where, for each n, πn(·) maps the elements

in R
d·n (the sequences of length n in R

d) to Q. In this context, we say that πn(·) is a partition rule of length n

[20] .

Let Zn1 = Z1, .., Zn be i.i.d. realizations of Z = (X,Y ) drawn from PX,Y and let us consider a partition scheme

Π = {πn(·) : n ∈ N}. In our learning scenario, πn(·) receives the empirical data Zn1 and creates a partition of the

space πn(Zn1 ) ∈ Q. In addition, we impose that Π has a Cartesian product structure, in the sense that each element

A ∈ πn(zn1 ) can be expressed by [21]

A = A1 ×A2, (3)

where A1 ∈ B(Rp) and A2 ∈ B(Rq). With this, the learning-estimation process involves three phases: first, to use

the empirical data to partition Rd by πn(Zn1 ); second, to use again the data to estimate PX,Y and PX×PY restricted

to the sigma field σ(πn(Zn1 ))1; and finally, to consider the plug-in technique to get an empirical MI estimate on

(Rd, σ(πn(Zn1 ))) [28]. Concerning the phase 2, the product bin condition in (3) is required to estimate PX,Y as

well as the reference measure PX × PY only based on the i.i.d. realizations of the joint distribution PX,Y [21],

[28]. More precisely, let P denote the joint distribution and Pn its empirical version, i.e.,

Pn(A) =
1

n

n∑
i=1

IA(Zi), ∀A ∈ B(Rd), (4)

1Given a collection of sets A, we denote by σ(A) the smallest sigma field that contains A [30], [31]. When A is a finite partition, σ(A) is

the collection of elements written as unions of element of A.
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hence, the histogram-based MI estimate is given by

În(πn(Zn1 )) =
∑

A∈πn(Zn1 )

Pn(A) · log
Pn(A)

Pn(A1 × Rq) · Pn(Rp ×A2)
, (5)

where A1 × A2 denotes the product form of the event A ∈ πn(Zn1 ). Note that În(πn(Zn1 )) can be interpreted as

the KLD restricted to the sigma field σ(πn(Zn1 )), between the empirical joint distribution and its empirical product

counterpart [21].

Silva et al. [28] particularized this construction to statistically equivalent blocks [32] and to a data-driven tree-

structured partition (TSP), where conditions were shown for strong consistency. These conditions were derived from a

theorem that stipulates sufficient conditions on Π to guarantee that the estimation and approximation error associated

with În(πn(Zn1 )) individually converge to zero almost-surely (a.s.). The work presented in this paper builds upon

this formulation, where the learning and adaptation attributes of TSPs [24], [33]–[35] are further explored. In

particular, we investigate a complexity-regularized type of learning principle [33] previously unexplored in this

inference problem. With this learning criterion the idea is not only to obtain conditions under which the estimation

and the approximation errors vanish asymptotically, but, with an arbitrarily high probability, provide an optimal

balance between these two errors [34]–[36]. In this context, the partition is induced from Zn1 in two stages. In the

first, the space is partitioned in a binary tree-structured way using the idea of statistically equivalent splits [14],

while in the second, the induced full tree is pruned back in order to find a good balance between the estimation

and the approximation errors [33]–[35], [37].

Concerning the pruning stage, we address the problem of deciding the optimal TSP for the MI estimation as

a complexity regularization problem. Here we have adopted the ideas of structural risk minimization (SRM) by

Vapnik [38], [39], and complexity regularized learning by Barron [40], Barron and Cover [41] and others [42],

where the learning principle is designed to obtain the optimal balance between an empirical fidelity indicator (the

empirical MI) and a notion of learning complexity. For this last part, we have adopted the concentration inequalities

by Vapnik-Chervonenkis [24], [39], [43], which offer closed forms for TSP [24], [35], [36]. Based on that, Theorem

1 derives an analytical expression for the penalization term (no resampling or cross validation is needed), which

ends up being proportional to the square root of the size of the tree. Adopting this penalty in a complexity penalized

criterion, Theorem 2 shows that the solution of this problem is able to find a nearly-optimal balance between the

estimation and the approximation errors. As expected, Theorem 3 shows that our estimator is density-free strongly

consistent, refining the results presented for TSP in [28]. Finally, for the important case when I(X;Y ) = 0 (X and

Y are independent), Theorem 4 shows that the proposed estimate is able to converge to zero at a rate faster than

any finite polynomial order decay, i.e., E(În(πn(Zn1 ))) is O(e−n
1/3+log logn) density-free. Concluding, we present

two concrete algorithms to solve the main complexity regularization problem. These are derived from dynamic

programing and offer polynomial time solutions with respect to the sampling length n.

The rest of the paper is organized as follows. Section II introduces the basic notations for TSP. Section III presents

the complexity penalized tree learning formulation. Section V reports the minimax-oracle result and Section VI

shows the conditions for density-free strong consistency. Section VIII presents some algorithmic solutions for the
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optimal tree-pruning problem. Finally, Section IX provides concluding comments. Some of the proofs are presented

in the Appendix section.

II. BINARY-TREES AND TREE-STRUCTURED PARTITIONS

Let us first introduce some conventions and notations for binary trees to facilitate the description of the proposed

TSP scheme. Adopting Breiman et al. [33] conventions, a binary tree T is a collection of nodes with one node of

degree 2 (the root), and the remaining nodes of degree 3 (internal nodes) or degree 1 (leaf or terminal nodes). Let

I(T ) and L(T ) be the collection of internal and terminal nodes of T , respectively, and |T | be the size of a tree T ,

given by the cardinality of L(T ). If T̄ ⊂ T and T̄ is a binary tree by itself, we say that T̄ is a subtree of T and

moreover, if both have the same root we say that T̄ is a pruned version of T , denoted by T̄ � T .

A tree-structured partition (TSP) can be represented by a pair (T, τ(·)) [35], with T a binary tree and τ(·) a

function from T to H, with H denoting the collection of closed halfspaces of the form H =
{
x : x†w ≥ α

}
, for

some w ∈ R
d and α ∈ R. Then for any t ∈ I(T ) (internal nodes), τ(t) corresponds to the closed halfspace that

dichotomizes the cell associated with t, denoted by Ut, in two components Ur(t) = Ut∩τ(t) and Ul(t) = Ut∩τ(t)c.

These resulting cells are associated with the left and right child of t, denoted by r(t) and l(t), respectively, in the case

when t ∈ I(T ). If we denote by t0 the root node of T , then initializing the cell of t0 by Ut0 = R
d, τ(·) : I(T )→ H

provides a way to characterize Ut, ∀t ∈ T . In particular, the partition indexed by T is denoted and constructed by

πT ≡ {Ut : t ∈ L(T )} ∈ Q. (6)

If (T, τ(·)) is a TSP and T̄ � T , then there is a unique TSP associated with T̄ by restricting τ(·) to the domain

I(T̄ ). Note that if T̄ � T , πT is a refinement of πT̄ by (6), that we denote consistently by πT̄ � πT . For the sake

of simplicity, we will use the binary tree notation T to refer to both (T, τ(·)) and, more frequently, the partition

πT .

Finally, a n-sample TSP rule Tn(·) is a function from the space of finite sequences Rd·n to the space of TSP with

halfspace splitting rules, and the resulting TSP partition scheme is the collection of TSP rules, i.e., Π = {T1, T2, · · · }.

In the scope of this work, we focus on the family of TSP induced by axis-parallel hyperplane cuts [24], presented

in Section III-A.

III. THE COMPLEXITY PENALIZED TREE-STRUCTURED PARTITION SCHEME

Adopting the ideas of classification and regression trees (CART) [33], we propose a scheme that uses the empirical

data Zn1 to construct a TSP of Rd in two consecutive stages that involve a growing and a pruning phase. In the

growing phase, Zn1 is used to iteratively split the space and create a large TSP that we denote by T fulln (Zn1 ).

T fulln (Zn1 ) has, in general, few or no sample points of Zn1 in each of its cells [33]. In this context, the deviation

of Pn with respect to P on the measurable events of T fulln (Zn1 ), more precisely, supA∈π
T
full
n (Zn1 )

|P (A)− Pn(A)|,

is expected to be large. This motivates the second stage of pruning, where the idea is to prune-back T fulln (Zn1 ) in

such a way that we find a good balance between a notion of estimation error (cost) and an approximation error

(fidelity), both to be defined for our problem.
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A. Statistically Equivalent Splitting Criterion

For the growing stage, we consider a modified version of what is known as balanced search tree [24, Chapter

20.3]. Here, the idea is to split the space in a non-product way (by axis-parallel hyper-planes) adopting a statistically

equivalent splitting criterion. More precisely, let to be the root of the tree and Uto = R
d. Considering Zn1 =

(Z1, .., Zn) as the i.i.d. realizations of Z = (X,Y ), this scheme choses a coordinate axis of the space in a

sequential order, let us say the dimension i for the first step, and then the i axis-parallel halfspace by

τ(to) = Hi(Z
n
1 ) =

{
x ∈ Rd : x(i) ≤ Z(dn/2e)(i)

}
, (7)

where Z(1)(i) < Z(2)(i) <, .., < Z(n)(i) denotes the order statistics [14] obtained by a permutation of the sample

points {Z1, .., Zn} projected into the target dimension i. Note that this permutation exists with probability one

as the i-marginal distribution of P has a density [20], [24]. Using Hi(Z
n
1 ) in (7), Uto = R

d is divided into two

rectangles Ul(to) = Uto ∩Hi(Z
n
1 ) and Ur(to) = Uto ∩Hi(Z

n
1 )c, in the coordinate axis i. By construction Ul(to) and

Ur(to) induces a partition of Rd with almost the same empirical mass, in fact
∣∣Pn(Ul(to))− Pn(Ur(to))

∣∣ ≤ 1
n and

this quantity is zero when n is an even number. Assigning the sample points {Z1, .., Zn} to their belonging cell in{
Ul(to), Ur(to)

}
∈ Q, we can choose a new coordinate axis in the mentioned sequential order and continue with

the aforementioned splitting process, independently in each of the two intermediate cells. Then we keep with this

process in an inductive fashion, where as a stopping rule, we propose a criterion that finishes the refinement of the

cells to guarantee a critical number of sample points, threshold denoted by kn ∈ N \ {0}, in each element of the

resulting data-driven partition. Hence, for a given intermediate cell Ut we split Ut, by the aforementioned process, if

Pn(Ut) ≥ 2kn, otherwise we stop the refinement process and t is, consequently, a leaf node of T fulln (Zn1 ). Finally,

we get a full-tree T fullbn
(Zn1 ) and the associated partition πT fullbn

(Zn1 ) ∈ Q, where a minimum magnitude for Pn on

the events of σ(πT fullbn

(Zn1 )) is guaranteed. More precisely,

Pn(A) ≥ bn, ∀A ∈ σ(πT fullbn

(Zn1 )), (8)

with bn ≡ kn/n ∈ (0, 1) for all n > 0. This stopping criterion was originally proposed by the authors for the

problem of KLD estimation in [26], [27]. A graphical illustration of this process is presented in Fig. 1.

As pointed out by Darbellay et al. [21], this binary splitting criterion provides a non-product adaptive partition

of the space with good approximation to the underlying structure of the data, Fig 1. On the other hand, the adopted

critical mass stopping criterion is the key to derive concentration inequalities for our problem [26]–[28]. Based on

this, we formulate pruning stage presented next. For the rest of the paper, the full tree will be denoted by T fullbn

considering implicit its dependency on Zn1 .

B. Complexity-Penalized Empirical Information Maximization

In tree-structured learning [33]–[35], [44], the idea of the second stage is to prune the initial tree T fullbn
by

a complexity regularized objective criterion that tries to balance the estimation and approximation errors (or the
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variance-bias tradeoff). For our target problem, we consider the following inequality, ∀T � T fullbn
,∣∣∣În(πT (Zn1 ))− I(X;Y )

∣∣∣ ≤ ∣∣∣În(πT (Zn1 ))− I(πT (Zn1 ))
∣∣∣+ I(X;Y )− I(πT (Zn1 ), (9)

where

I(πT (Zn1 )) ≡
∑

A∈πT (Zn1 )

P (A) · log
P (A)

P (A1 × Rq) · P (Rp ×A2)
, (10)

is the KLD of the true distributions restricted to the sigma field induced by πT (Zn1 ) [2]. The first term on the

right hand side (RHS) of (9) characterizes the estimation error, or the difference in the MI functional between the

adoption of the empirical and real measures. The second term on the RHS of (9) is non-negative and corresponds

to the approximation error, which is a consequence of the well-known fact that quantization reduces the magnitude

of the information divergence and consequently of the MI [1], [2].

Returning to the pruning problem, we propose the following complexity-penalized empirical information maxi-

mization criterion,

T̂n = arg min
T�T fullbn

−În(πT (Zn1 )) + φn(T ). (11)

This regularization criterion attempts to find an optimal balance in
{
T : T � T fullbn

}
between the empirical mutual

information and an indicator of complexity for πT that we denote by φn(T ). The penalization term φn(T ) has to

reflect the estimation error
∣∣∣În(πT (Zn1 ))− I(πT (Zn1 ))

∣∣∣ in (9). However, as the true distribution is unknown, we

consider the approach used in classification trees of characterizing distribution-free expressions to upper bound this

quantity [34]–[36]. The next section elaborates on this idea by considering the Vapnik-Chervonenkis (VC) inequality

[24], [38], [39], [43].

IV. CONCENTRATION RESULTS FOR TREE-STRUCTURED PARTITIONS

Let us first introduce some terminologies. Let (an)n∈N and (bn)n∈N be two sequences of non-negative real

numbers. (an) dominates (bn), denoted by (bn) � (an) (or alternatively (bn) is O(an)), if there exists C > 0 and

k ∈ N such that bn ≤ C · an, ∀n ≥ k. (bn)n∈N and (an)n∈N (both strictly positive) are asymptotically equivalent,

denoted by (bn) ≈ (an), if there exists C > 0 such that limn→∞
an
bn

= C. Finally, (bn) is o(an) (for (an)n∈N

strictly positive) if limn→∞
bn
an

= 0.

THEOREM 1: Let P be a probability measure in (Rd,B(Rd)) and Z1, Z2, · · · be i.i.d. realizations driven by P .

Let T fullbn
be the TSP of Section III-A where (bn)n∈N is the critical empirical mass sequence. In addition, let Gkbn ≡{

T � T fullbn
: |T | = k

}
be the family of pruned TSPs of size k induced from T fullbn

. Then, ∀k ∈
{

1, ..,
∣∣∣T fullbn

∣∣∣},
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∀n > 0, ∀ε ∈ (0, 3),

P

(
sup
T∈Gkbn

∣∣∣În(πT (Zn1 ))− I(πT (Zn1 ))
∣∣∣ > ε

)
≤

(n+ 1)2d ·

[
exp

{
−n

8

(
bn · ε

6

)2
}

+ 2 · exp

{
−n

8

(
bn · ε
12

)2
}]

+ 4 ·
(
2d+1 · nd

)k · exp

{
− n

32
·
(

log(1/bn)−1 · ε
9

)2
}
, (12)

where P refers to the process distribution of Z1, Z2, · · · .

This is the main finite sample concentration inequality considered in our problem to characterize and bound the

estimation error in (9). Note that the bound in (12) is distribution free and is exclusively a function of the size of

the tree, the dimension of the space and the critical empirical mass sequence (bn)n∈N of our TSP construction. It

is important to note that this inequality is only valid for a finite range of values for the variable ε (details about

this condition are in Section IV-A). However, this finite range is sufficient to obtain all the forthcoming results.

The proof of this result is presented at the end of this section.

COROLLARY 1: Under the setting of Theorem 1, if (bn) ≈ (n−l) for some l ∈ (0, 1
2 ), then ∀k ∈

{
1, ..,

∣∣∣T fullbn

∣∣∣},

lim
n→∞

sup
T∈Gkbn

∣∣∣În(πT (Zn1 ))− I(πT (Zn1 ))
∣∣∣ = 0 (13)

P-almost surely. Furthermore, if (bn) ≈ (n−l) for some l ∈ (0, 1
3 ), then with probability one with respect to P,

lim
n→∞

∣∣∣În(πT fullbn

(Zn1 ))− I(πT fullbn

(Zn1 ))
∣∣∣ = 0. (14)

(The arguments to prove these results, derived from Theorem 1, are presented in Appendix I).

Note that these two results in (13) and (14) constrain the rate of how fast (bn)n∈N tends to zero to ensure that the

estimation error vanishes P-almost surely. Rewriting Theorem 1, we can bound the deviation of În(πT (Zn1 )) with

respect to I(πT (Zn1 )) in terms of an interval of confidence: and then, following the ideas proposed in [34]–[36]

we can construct a distribution-free expression for the estimation error.

COROLLARY 2: Under the setting of Theorem 1, if (bn) ≈ (n−l) for some l ∈ (0, 1
3 ), then ∀δ > 0, ∀k ∈ N,

there exists N(δ, k) > 0, such that ∀n > N(δ, k), with probability of at least 1− δ,

sup
T∈Gkbn

∣∣∣În(πT (Zn1 ))− I(πT (Zn1 ))
∣∣∣ <

12

bn
·
√

8

n
· (ln(8/δ) + k · [(d+ 1) · ln(2) + d · ln(n)]). (15)

(The proof is presented in Appendix II).

For the rest of the exposition, we denote the interval of confidence on the RHS of (15) by εc(n, bn, d, δ, k).

It is important to mention that this result is valid for a large sampling regime (∀n > N(δ, k)) to ensure that

εc(n, bn, δ, k) ∈ (0, 3), which is the domain where our concentration inequality in Theorem 1 is valid (see Appendix

II for details).
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A. Arguments to Prove Theorem 1

The argument considers the following consequences of the Vapnik and Chervonenkis inequality [24], [39], [43].

LEMMA 1: (Lugosi and Nobel [20]) Let us consider Gk the family of tree-structure measurable partitions of

R
d with k cells (or terminal nodes), and Z1, Z2, · · · i.i.d. realizations with distribution P in (Rd,B(Rd)). Then,

∀ε > 0, ∀n,

P

(
sup
π∈Gk

∑
A∈π
|Pn(A)− P (A)| > ε

)
≤ 4 · (2d+1 · nd)k exp

{
−nε

2

32

}
.

LEMMA 2: (Vapnik and Chervonenkis [43]) Under the setting of Lemma 1, if we instead consider B the family

of measurable rectangle2 of Rd, then, ∀ε > 0, ∀n,

P

(
sup
A∈B
|Pn(A)− P (A)| > ε

)
≤ (n+ 1)2d · exp

{
−nε

2

8

}
.

Proof of Theorem 1: We use that, ∀T ∈ Gkbn ,∣∣∣În(πT (Zn1 ))− I(πT (Zn1 ))
∣∣∣ ≤ ∑

A∈πT (Zn1 )

|Pn(A)− P (A)| · 3 · log(1/bn)+

sup
A∈πT (Zn1 )

|logP (A)− logPn(A)|+ sup
A∈πT (Zn1 )

|logQ(A)− logQn(A)| , (16)

this bound derived from the triangular inequality and the critical mass criterion of the full tree T fullbn
. In (16), Q

is a short-hand notation for the product of marginal measure, i.e., Q(A) = P (A1 × R
q) · P (Rp × A2), where any

set A ∈ πT (Zn1 ) has a product form denoted by A1 ×A2. On the other hand, Qn is a short hand for the empirical

version of Q, i.e., Qn(A) = Pn(A1 × R
q) · Pn(Rp ×A2), for all A ∈ πT (Zn1 ).

Concerning the first term on the RHS of (16),

P

 sup
T∈Gkbn

∑
A∈πT (Zn1 )

|Pn(A)− P (A)| · 3 · log(1/bn) > ε


≤ 4 · (2d+1 · nd)k exp

{
− n

32
·
(

log(1/bn)−1 · ε
3

)2
}
, (17)

from Lemma 1 and the fact that Gkbn ⊂ G
k. Concerning the second term on the RHS of (16), for an arbitrary A ∈

B(Rd) let us consider the following collection of sequences SA =
{
zn1 ∈ Rd·n : |logP (A)− logPn(A)| > ε

}
. This

can be written as SA = {zn1 : P (A)− Pn(A) > Pn(A) · (eε − 1)} ∪ {zn1 : Pn(A)− P (A) > Pn(A) · (1− e−ε)}.

2The shatter coefficient SB(n) associated with this family of events is bounded by (n+ 1)2d (see details in [24], [43]).
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Using Taylor expansion, ∀ε ∈ (0, 1), max {eε − 1, 1− e−ε} > ε
2 , then ∀ε ∈ (0, 1), ∀n ∈ N,

P

({
zn1 : sup

T∈Gkbn

sup
A∈πT

|logP (A)− logPn(A)| > ε

})
≤

P

 ⋃
T∈Gkbn

⋃
A∈πT

{
zn1 : |Pn(A)− P (A)| > Pn(A) · ε

2

} ≤
P

({
zn1 : sup

T∈Gkbn

sup
A∈πT

|Pn(A)− P (A)| > bn ·
ε

2

})
≤

P

({
zn1 : sup

A∈B
|Pn(A)− P (A)| > bn ·

ε

2

})
≤

(n+ 1)2d · exp

{
−n

8

(
bn · ε

2

)2
}
, (18)

where the last two inequalities are obtained from the fact that ∀T � T fullbn
the cells of πT are rectangles in B, and

Lemma 2, respectively.

Concerning the last term in the RHS of (16), by definition we have that Q(A) = P (A1 × R
q) · P (Rp × A2),

∀A ∈ πT (Zn1 ). Hence,

sup
A∈πT (Zn1 )

|logQ(A)− logQn(A)| ≤ sup
A∈πT (Zn1 )

|logP (A1 × R
q)− logPn(A1 × R

q)|+

sup
A∈πT (Zn1 )

|logP (Rp ×A2)− logPn(Rp ×A2)| . (19)

From the same inequalities shown in (18),

P

(
sup
T∈Gkbn

sup
A∈πT

|logP (A1 × R
q)− logPn(A1 × R

q)| > ε

2

)

≤ (n+ 1)2d · exp

{
−n

8

(
bn · ε

4

)2
}
. (20)

The same bound in (20) is obtained for the term

P

(
sup
T∈Gkbn

sup
A∈πT

|logP (Rp ×A2)− logPn(Rp ×A2)| > ε

2

)
,

and from (19), ∀ε ∈ (0, 2),

P

(
sup
T∈Gkbn

sup
A∈πT

|logQ(A)− logQn(A)| > ε

)
≤ 2 · (n+ 1)2d · exp

{
−n

8

(
bn · ε

4

)2
}
. (21)
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To conclude, considering the inequality in (16) and the distribution free bounds obtained for its RHS terms (in

(17), (18) and (21), respectively), ∀ε ∈ (0, 3), we obtain

P

(
sup
T∈Gkbn

∣∣∣În(πT (Zn1 ))− I(πT (Zn1 ))
∣∣∣ > ε

)
≤

(n+ 1)2d

[
exp

{
−n

8

(
bn · ε

6

)2
}

+ 2 · exp

{
−n

8

(
bn · ε
12

)2
}]

+ 4 · (2d+1 · nd)k exp

{
− n

32
·
(

log(1/bn)−1 · ε
9

)2
}
. (22)

V. AN ORACLE RESULT

Returning to our central problem in (11), we propose the following expression for the penalization term derived

from Corollary 2, ∀n > 0, ∀T � T fullbn
,

φn(|T |) = εc (n, bn, d, δn · bn, |T |) , (23)

for a sequence (δn)n∈N of confidence probabilities in (0, 1] such that (δn) is o(1). Here εc (n, bn, d, δn · bn, |T |)

is the short-hand notation for the confidence interval given in the RHS of (15) (see also (57) in the Appendix II).

Hence φn(|T |) is obtained from the confidence interval expression derived in Corollary 2, as a way to upper bound

the magnitude of the estimation error with asymptotically high probability. Note that from the inequality in Theorem

1, φn(|T |) exclusively depends on the size of the tree and not on its structure. Loosely speaking, the motivation of

this choice is justified by the concentration results presented in Section IV, but substantiated rigorously from the

oracle result presented next. Interestingly, as in the case of classification trees [35], [36], [42], the complexity term

is proportional to the square root of the tree size, i.e., φn(|T |) ∝
√
|T | log(n)/n from (15) and (23).

Let

Ĩn(πT (Zn1 )) ≡ În(πT (Zn1 ))− φn(|T |), (24)

be the penalized fidelity criterion ∀T � T fullbn
. We can express (11) by

T̂n = arg max
k∈{1,···|T fullbn

|}
Ĩn(πT̂n,k(Zn1 )), (25)

where

T̂n,k ≡ arg max
T∈Gkbn

În(πT (Zn1 )) (26)

is the solution of the empirical information maximization (EIM) constrained to the collection of pruned trees of size

k, for all k ∈
{

1, · · ·
∣∣∣T fullbn

∣∣∣}. The next result shows that T̂n offers a nearly optimal solution for the estimation of

I(X;Y ) with respect to an oracle solution.

THEOREM 2: Under the problem formulation of Theorem 1, if

• (bn) ≈ (n−l) for some l ∈ (0, 1/3) and,

• (δn) is o(1) and (1/δn) is O(en
1/3

),
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then ∀δ > 0 there exists Nc(δ) > 0, such that ∀n > Nc(δ) with probability 1− δ (with respect to P),

0 ≤I(X;Y )− Ĩn(πT̂n(Zn1 )) (27)

≤ min
T�T fullbn

{[I(X;Y )− I(πT (Zn1 ))] + 2φn(|T |)} , (28)

and consequently, with probability 1− δ (with respect to P),

− sup
k∈{1,..,|T fullbn

|}
φn(k) ≤ I(X;Y )− În(πT̂n(Zn1 ))

≤ min
T�T fullbn

{[I(X;Y )− I(πT (Zn1 ))] + 2φn(|T |)} − φn(1). (29)

The result says two important things. (27) shows that with an arbitrary high probability our penalized indicator

Ĩn(πT̂n(Zn1 )) is an underestimation of I(πT̂n(Zn1 )), which ratifies the correctness of the penalization term in

(23). More importantly, (28) shows that, with an arbitrary high probability, the deviation of the penalized quantity

Ĩn(πT̂n(Zn1 ) from I(X;Y ) is upper bounded by an expression that reflects the optimal balance between our

estimation error bound in (23) and the true approximation error (first term from left to right in (28)). In fact, we can

see the optimization in (28) as an oracle error bound, in the sense that it is the performance of an ideal observer

that has access to the true distribution to balance the two error sources in the learning problem, i.e., the selection

of the oracle tree

Tn ≡ arg min
T�T fullbn

{[I(X;Y )− I(πT (Zn1 ))] + 2φn(|T |)} . (30)

Overall, this result is along the lines of the related oracle results obtained in the context of complexity-based pruning

schemes for classification trees [34]–[36] and concept learning using structural risk minimization [42].

It is important to emphasize that Ĩn(πT̂n(Zn1 ) is nearly optimal with respect to our oracle solution Tn in (30),

which used a distribution-free upper bound to quantify the estimation error. The true estimation error is unaccessible

given the learning nature of the problem: and consequently, the tightness of the adopted concentration inequalities

are crucial to obtain good estimation error expressions and results. This was one of the reason to consider the VC

concentration inequalities as the driven tool, given its non-parametric nature and its recognized goodness to model

estimation errors for tree-structured partitions in other learning settings, see for instances [20], [24], [34]–[36].

From the conditions on (bn)n∈N stated in Theorem 2, we have that limn→∞ supk∈{1,..,|T fullbn
|} φn(k) = 0 (the

argument is presented in Section V-A). Consequently the oracle error bound in (28) is governed by the asymptotic

trend of limn→∞

[
I(X;Y )− I(πT fullbn

(Zn1 ))
]

associated with the approximation goodness of the full tree. In fact,

the consistency of the two estimate candidates, Ĩn(πT̂n(Zn1 )) and În(πT̂n(Zn1 )), depends upon the analysis of

limn→∞

[
I(X;Y )− I(πT fullbn

(Zn1 ))
]
. Section VI formalizes this observation and shows sufficient conditions where

both Ĩn(πT̂n(Zn1 )) and În(πT̂n(Zn1 )) are strongly consistent estimates of I(X;Y ).

A. Proof of Theorem 2

By definition in (23)

φn(k) =
12

bn
·
√

8

n
· (ln(8) + ln(n)− ln(δn · bn) + k · [(d+ 1) · ln(2) + d · ln(n)]),
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then considering that
∣∣∣T fullbn

∣∣∣ ≤ (1/bn), it is simple to check that (bn) ≈ (n−l) with l ∈ (0, 1/3) and (1/δn) being

O(en
1/3

) are the weakest set of sufficient conditions to obtain that

lim
n→∞

sup
k∈{1,···|T fullbn

|}
φn(k) = lim

n→∞
φn(
∣∣∣T fullbn

∣∣∣) = 0. (31)

This is crucial for the rest of the proof, as the inequality in Theorem 1 is valid only for ε ∈ (0, 3), represented in

this case by the intervals of deviation φn(k), ∀k ∈
{

1, · · ·
∣∣∣T fullbn

∣∣∣}. Let

Sn,k ≡

{
zn1 ∈ Rd·n : sup

T∈Gkbn

∣∣∣În(πT (Zn1 ))− I(πT (Zn1 ))
∣∣∣ ≤ φn(k)

}
,

be the k-typical set, well defined for all n such that k ≤
∣∣∣T fullbn

∣∣∣. From Corollary 2, if φn(k) ∈ (0, 3), then

P(Sn,k) > 1− bnδn. Consequently from (31), there exists Nc > 0 such that ∀k ∈
{

1, · · · ,
∣∣∣T fullbn

∣∣∣} and ∀n > Nc,

P(Sn,k) > 1 − bnδn. Hence, defining Sn ≡
⋂
k∈{1,···|T fullbn

|} S
n,k, we have that P(Sn) > 1 − δn, ∀n > Nc.

By definition, if zn1 ∈ Sn, then supT∈Gkbn

∣∣∣În(πT (zn1 ))− I(πT (zn1 ))
∣∣∣ ≤ φn(k), ∀k ∈

{
1, · · ·

∣∣∣T fullbn

∣∣∣}, which also

implies that [24], ∣∣∣∣∣ sup
T∈Gkbn

În(πT (zn1 ))− sup
T∈Gkbn

I(πT (zn1 ))

∣∣∣∣∣ ≤ φn(k), (32)

∀k ∈
{

1, · · ·
∣∣∣T fullbn

∣∣∣}. Then for an arbitrary zn1 ∈ Sn

−Ĩn(πT̂n(zn1 )) = −În(πT̂n(zn1 )) + φn(
∣∣∣T̂n∣∣∣)

≤ −În(πT̂nk
(zn1 )) + φn(k),

≤ −I(πTnk (zn1 )) + 2 · φn(k), ∀k ∈
{

1, · · ·
∣∣∣T fullbn

∣∣∣} ,
where Tnk ≡ arg maxT∈Gkbn

I(πT (zn1 )) is the oracle solution that maximizes the MI on Gkbn . Also it is clear that

∀zn1 ∈ Sn, Ĩn(πT̂n(zn1 )) = În(πT̂n(zn1 ))− φn(
∣∣∣T̂n∣∣∣) ≤ I(πT̂n(zn1 )) ≤ I(X;Y ), and consequently we have that,

0 ≤ I(X;Y )− Ĩn(πT̂n(zn1 )) ≤ min
k∈{1,···|T fullbn

|}
(I(X;Y )− I(πTnk (zn1 ))) + φn(k). (33)

The argument concludes from the fact that Sn has probability of at least 1− δn, ∀n > Nc and that (δn) is o(1).

VI. DENSITY-FREE STRONG CONSISTENCY

Here, we restrict to the case where P is equipped with a probability density function (pdf).

THEOREM 3: Let
{
T fullbn

: n > 0
}

be the TSP scheme indexed by full trees and driven by the i.i.d. process

Z1, Z2, · · · with Zi ∼ P for all i > 0. If P is absolutely continuous with respect to the Lebesque measure

in (Rd,B(Rd)) and we impose the conditions on (bn) and (δn) stipulated in Theorem 2, then the MI estimates

obtained from T̂n satisfy:

lim
n→∞

În(πT̂n(Zn1 )) = I(X;Y ), (34)

lim
n→∞

Ĩn(πT̂n(Zn1 )) = I(X;Y ), (35)
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P-almost surely (P-a.s.).

The proof of this theorem reduces to showing that the estimation and approximation errors in (7) converge to

zero P-almost surely. We introduce three results to bound the estimation and approximation errors. We begin with

the approximation error, and for that we introduce the following definition.

Definition 1: (Darbellay et al. [21]) Let P be a probability measure absolutely continuous with respect to

the Lebesgue measure λ in R
d and let Π = {π1(·), π2(·), ...} be a partition scheme driven by Z1, Z2, · · · , i.i.d.

realizations with Zi ∼ P . Π said to be asymptotically sufficient for I(X;Y ) if,

lim
n→∞

I(πn(Zn1 )) = I(X,Y )

P-a.s.

LEMMA 3: (Asymptotic sufficiency of T fullbn
) Under the setting of Theorem 3, if (bn) ≈ (n−l) for some l ∈

(0, 1/3), then
{
πT fullbn

(·) : n ≥ 0
}

is asymptotically sufficient for I(X;Y ), i.e., limn→∞ I(πT fullbn

(Zn1 )) = I(X;Y ),

P-a.s. (The proof is presented in Appendix III)

LEMMA 4: Under the setting of Theorem 3, if (bn) ≈ (n−l) with l ∈ (0, 1/3), then

lim
n→∞

∣∣∣În(πT̂n(Zn1 ))− I(πT̂n(Zn1 ))
∣∣∣ = 0 (36)

P-a.s. (The proof is presented in Appendix IV)

LEMMA 5: (Asymptotic sufficiency of T̂n) Under the setting of Theorem 3, if (bn) ≈ o(n−l) with l ∈ (0, 1/3),

(δn) = o(1) and (1/δn) = O(en
1/3

), then ∀ε > 0 there exists Nc(ε) such that ∀n > Nc and ∀k ∈
{

1, ..,
∣∣∣T fullbn

∣∣∣},

P

(
sup
T∈Gkbn

I(πT (Zn1 ))− I(πT̂n(Zn1 )) > ε

)
≤

exp

{
−n

8
·
(
ε · bn
24

)2
}

+ 8 · (2d+1 · nd)k exp

{
−n

8
·
(
ε · bn
48

)2
}
,

and consequently P-almost everywhere,

lim
n→∞

I(πT fullbn

(Zn1 )) = I(πT̂n(Zn1 )). (37)

(The proof is presented in Appendix V)

Proof of Theorem 3: The proof comes from the following inequality,∣∣∣I(X;Y )− În(πT̂n(ZN1 ))
∣∣∣ ≤ I(X;Y )− I(πT fullbn

(ZN1 ))+

I(πT fullbn

(ZN1 ))− I(πT̂n(ZN1 )) +
∣∣∣I(πT̂n(ZN1 ))− În(πT̂n(ZN1 ))

∣∣∣ , (38)

where these RHS terms tend to zero P-almost surely from Lemma 3, Lemma 5 and Lemma 4, respectively. Finally,

the same result is obtained for the regularized estimate Ĩn(πT̂n(ZN1 )), as by definition

lim
n→∞

∣∣∣Ĩn(πT̂n(ZN1 ))− În(πT̂n(ZN1 ))
∣∣∣ ≤ lim

n→∞
sup

k∈{1,..,|T fullbn
|}
φn(k) = 0.
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VII. CASE OF STUDY: I(X;Y ) = 0

An interesting scenario to study is when X and Y are independent. In this context, only the estimation error plays

a role and, from Theorem 2, we can guarantee a rate of convergence of În(πT̂n(Zn1 ) to its true value I(X;Y ) = 0.

THEOREM 4: Let X and Y be two independent random vectors and Z1, Z2 · · · be i.i.d. realizations of

the distribution P . Under the assumptions of Theorem 3, and specifically considering that (1/δn) ≈ (en
1/3

),

E(În(πT̂n(Zn1 ))) is O(e−n
1/3+log logn).

Theorem 4 implies that În(πT̂n(Zn1 ) converges to zero faster than any decreasing polynomial order P-a.s. More

formally, we have the following result.

COROLLARY 3: Under the setting of Theorem 4, În(πT̂n(Zn1 ) is o(n−p) P-a.s. for any finite p > 0.

(The proof is presented in Appendix VI)

A. Proof of Theorem 4

Let δ > 0 and let us define φn(k, δ) ≡ εc(n, bn, d, δ · bn, k) from (15). Let

Sn,kδ ≡

{
zn1 ∈ Rd·n : sup

T∈Gkbn

∣∣∣În(πT (Zn1 ))− I(πT (Zn1 ))
∣∣∣ ≤ φn(k, δ)

}
,

be the collection of δ-typical sequences associated with Gkbn ∀k ∈
{

1, · · ·
∣∣∣T fullbn

∣∣∣} and Snδ ≡
⋂
k∈{1,···|T fullbn

|} S
n,k

be the general collection of δ-typical sequences ∀n > 0. In this context we can impose φn(1, δ) = 0, ∀δ > 0,

because for k = 1 we only have the trivial partition
{
R
d
}

in G1
bn

, and in this domain În(πT (zn1 )) = I(πT (zn1 )) = 0,

∀zn1 ∈ Rd·n. In fact, even with this stronger definition Sn,1δ = R
d·n, ∀δ > 0 and ∀n > 0.

Let zn1 ∈ Snδ be a δ-typical sequence. From the arguments presented in the proof of Theorem 2, if T̂n is the

solution of the complexity-penalized problem in (25), considering our more specific penalization term φn(k, δ),

then

0 ≤I(X;Y )− Ĩn(πT̂n(zn1 )) ≤

min
k∈{1,···|T fullbn

|}
(I(X;Y )− I(πTnk (zn1 ))) + φn(k, δ) = 0,

where the last equality is from I(X,Y ) = 0 and the fact that φn(1, δ) = 0. Consequently Ĩn(πT̂n(zn1 ) = 0 and from

the construction of Snδ it is simple to show that
∣∣∣T̂n∣∣∣ = 1, which implies that În(πT̂n(zn1 ) = 0. Then, restricted to

the collection of δ-typical sequences we have a zero-error empirical estimate.

On the other hand, for an arbitrary sequence zn1 ∈ R
d·n we have that În(πT̂n(zn1 )) ≤ log(1/bn). This last

inequality is obtained from the fact that În(πT̂n(zn1 )) is bounded by the entropy of Pn restricted to (Rd, σ(T̂n(zn1 ))),

which is upper bounded by the entropy of the uniform distribution with critical probability mass bn. In addition

from the Corollary 2, if supk∈{1,···|T fullbn
|} φn(k, δ) < 3, then P(Snδ ) ≥ 1− δ, which implies that

E(În(πT̂n(Zn1 ))) ≤ δ · log(1/bn). (39)
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The rest of the proof reduces to finding a sequence (δn)n∈N that tends to zero at the fastest possible rate while

guaranteeing

lim
n→∞

sup
k∈{1,···|T fullbn

|}
φn(k, δn) = 0, (40)

which from (39) allows us to show that ∃Nc > 0 such that ∀n > Nc,

E(În(πT̂n(Zn1 ))) ≤ δn · log(1/bn). (41)

Note that in this context we have that φn(k) = φn(k, δn), then we reduce to the original complexity regularized

problem in (25). Finally, from the construction of φn(k, δn) and (15), it is simple to show that (δn) ≈ (e−n
1/3

)

satisfies (40) considering that (bn) ≈ (n−l) with l ∈ (0, 1/3), which concludes the proof.

VIII. ALGORITHMIC SOLUTIONS

We conclude this work by connecting the main learning-decision problem in (25) with some results and algorithmic

solutions of well-understood complexity-regularized tree pruning problems [33], [37], [44]. We first rewrite (25) in

the following form

T̂n = arg min
T�T fullbn

−ρ(T ) + φ(|T |), (42)

where ρ(T ) = În(πT (Zn1 )) and φ(|T |) = Cn
√
|T |, with Cn = 12/bn

√
((d+ 1) ln(2) + d ln(n)) 8

n . In this context

ρ(T ) is a non-decreasing and additive function of the tree. It is non-decreasing in the sense that ρ(T2) ≥ ρ(T1)

when T1 � T2 [2], [21], and it is additive (see definition in [37]) because it is written as the sum of terms indexed

with the leaves of T (from (10) and (6)). Concerning the additivity, let Tv denote the branch of a tree T rooted

at v ∈ I(T ), and let ∆ρ(v|Uv) be the conditional MI gain obtained by partitioning Uv in terms of
{
Ul(v), Ur(v)

}
,

i.e.,

∆ρ(v|Uv) =
Pn(Ul(v))

Pn(Uv)
log

Pn(Ul(v))/Pn(Uv)

Qn(Ul(v))/Qn(Uv)
+
Pn(Ur(v))

Pn(Uv)
log

Pn(Ur(v))/Pn(Uv)

Qn(Ur(v))/Qn(Uv)
, (43)

which is well defined for all v ∈ I(T bnfull). In this last expression, Qn is a short-hand notation for the product

of marginal empirical measures, i.e., Qn(A) = Pn(A1 × R
q) · Pn(Rp × A2), which is well characterized when

its argument A has a product form A1 × A2. In addition, l(v) and r(v) denote the left and right children of v,

respectively. In the same way, we can define the conditional mutual information (CMI) associated to a branch of

T rooted at v ∈ T (or equivalently, the CMI gain of partitioning Uv in terms of {Ut : t ∈ L(Tv)}) by

ρ(Tv|Uv) ≡
∑

t∈L(Tv)

Pn(Ut)

Pn(Uv)
log

Pn(Ut)/Pn(Uv)

Qn(Ut)/Qn(Uv)
, (44)

where, in particular, ρ(T ) = ρ(Troot|Uroot) ∀T � T fullbn
, with root denoting the root of T fullbn

. With these definitions

it is simple to show that, ∀T � T fullbn
such that |T | ≥ 2 and ∀v ∈ I(T ),

ρ(Tv|Uv) = ∆ρ(v|Uv) +
Pn(Ul(u))

Pn(Uv)
· ρ(Tl(v)|Ul(v)) +

Pn(Ur(u))

Pn(Uv)
· ρ(Tr(v)|Ur(v)). (45)
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A. Minimum Cost Tree Pruning Algorithm

It is known that T̂n belongs to
{
T̂n,k : k ∈

{
1, ..,

∣∣∣T fullbn

∣∣∣}} [37], which is the family of the minimum cost trees

given by

T̂n,k ≡ arg max
{T�T fullbn

:|T |=k}
ρ(T ), (46)

for all k ∈
{

1, · · ·
∣∣∣T fullbn

∣∣∣}. Let Tv denote the brach of T fullbn
rooted at v ∈ T fullbn

(i.e., Tv = (T fullbn
)v). Then we

can generalize the family of trees in (46) as follows, ∀v ∈ T fullbn
,

T̂n,kv ≡ arg max
{T�Tv :|T |=k}

ρ(T |Uv), (47)

∀k ∈ {1, · · · |Tv|}, where in particular T̂n,k = T̂n,kroot. Dynamic programing can be used to solve (47) by using the

additive structure of ρ(T ) in (45).

PROPOSITION 1: (Scott [37]) For all v ∈ I(T fullbn
) and ∀k ∈ {2, . . . , |Tv|}, we have that

T̂n,kv =
[[
v, T̂

n,k∗1
l(v) , T̂

n,k∗2
r(v)

]]
, (48)

where3

(k∗1 ,k
∗
2) = arg max(k1,k2)∈{1,..,|Tl(v)|}×{1,..,|Tr(v)|}

k1+k2=k

[
Pn(Ul(u))

Pn(Uv)
ρ(T̂n,k1l(v) |Ul(v)) +

Pn(Ur(u))

Pn(Uv)
ρ(T̂n,k2r(v) |Ur(v))

]
.

(49)

This result offers a bottom-up algorithm to solve
{
T̂n,k : k ∈

{
1, ..,

∣∣∣T fullbn

∣∣∣}} (a pseudo code is presented in

[37]) and, by an exhaustive search on this family, a way to find T̂n. Bohanec et al. [45] showed that the computational

complexity of this methodology is O(
∣∣∣T fullbn

∣∣∣2) = O(1/bn
2) = O(n2/3) for our case of balanced trees.

B. Family Pruning Algorithm

An alternative solution can be derived from the analysis of the more general problem

T̂n(α) = arg min
T�T fullbn

−ρ(T ) + α · φ(|T |), (50)

for all α ≥ 0, where in particular T̂n = T̂n(1). Scott [37] showed the following result for the case of a sub-additive

penalty (Definition 1 in [37]), which is our case as φ(|T |) ∝
√
|T |.

THEOREM 5: (Scott [37, Theorem 2]) For the case when φ(T ) is sub-additive and ρ(T ) is an additive and

non-decreasing function of the tree, there exists m ∈
{

1, ..,
∣∣∣T fullbn

∣∣∣}, a strictly increasing sequence of real numbers,

0 = α0 < α1 < . . . < αm = ∞, and a nested family of trees R1 = T fullbn
� R2 � . . . � Rm = {root}, such

that: ∀i ∈ {1, ..,m}, ∀α ∈ [αi−1, αi),

T̂n(α) = Ri. (51)

The fact that the family of solutions
{
T̂n(α) : α ≥ 0

}
is nested, allows to find {R1, .., Rm} and {α1, .., αm−1}

efficiently. Algorithms to solve this problem have been proposed by Breiman et al. [33], Chou et al. [44] and more

3Using Scott’s nomenclature [37], [[v, T1, T2]] denotes a binary tree T with root v, and branches Tl(v) = T1 and Tr(v) = T2.
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recently by Scott [37]. The computational complexity for our case of balanced trees is O(
∣∣∣T fullbn

∣∣∣ log
∣∣∣T fullbn

∣∣∣) =

O(1/bn · log(1/bn)) = O(n1/3 log n) [33], [44].

IX. CONCLUDING COMMENTS

The conditions on (bn)n∈N to ensure that the complexity-regularized tree T̂n induces strongly consistent estimates

for I(X;Y ) (Theorem 3), match the one stipulated on the full tree, i.e., T fullbn
, to obtain that În(πT fullbn

(Zn1 )) is

strongly consistent. This last result was presented by the authors in [28]. In other words, we have that the full tree

obtained from the growing phase induces a strongly consistent estimate as well. At this point, it is important to

highlight the adaptation character of our complexity regularized solution. This solution finds the tree’s topology that

offers a nearly optimal balance between our developed estimation and approximation error expressions (Theorem

2) as a function of the data and not only its size. To illustrate the idea, if the target value I(X;Y ) is high then we

get a less conservative (or bigger) complexity regularized tree T̂n, than in the case of a moderate MI magnitude

(in particular the case of independent random variables), this from the oracle results of Theorem 2. In contrast, the

full tree solution does not allow for this tree structure adaptation to the problem. Furthermore, the fact that the size

of T̂n is able to adapt to the underlying magnitude of I(X;Y ) is what is crucial to obtain the rate of convergence

result stated in Theorem 4.

Concerning Theorem 4, the rate of convergence obtained for the independent scenario suggests that În(πT̂n(Zn1 ))

can be used as an attractive statistic to construct a test of independence between continuous random variables of the

form: decide H0 when În(πT̂n(Zn1 )) < τ (with H0 the hypothesis of independence). Statistical tests of independence

usually require the characterization of a significant level (probability of rejecting H0 when it is true) using asymptotic

distributions, which are only valid for the large sampling regime. An advantage of our setting is the existence of

distribution-free concentration inequalities that can be used to define accurate significant levels, and consequently

to construct a test with performance bounds for any finite sampling length.

Finally from the analysis of some empirical results for the case when X and Y are independent, it is observed

that our solution is able to detect this condition and get a zero-error estimate (associated with the trivial partition

πT̂n(Zn1 ) =
{
R
d
}

) with a finite number of samples. Consequently the empirical evidence shows that the estimate

behaves better than what the theory predicts in Theorem 4. This suggests that the rate of convergence obtained in

Section VII can be improved on the lines of a result that guarantees an error-free estimate for a finite number of

sampling points almost surely. This conjecture is an interesting direction to explore and it is left as a future work.
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APPENDIX I

PROOF OF COROLLARY 1

From the distribution-free bound of P
(

supT∈Gkbn

∣∣∣În(πT (Zn1 ))− I(πT (Zn1 ))
∣∣∣ > ε

)
in Theorem 1, ∀ε ∈ (0, 3)

we have two distinctive terms proportional to

≈ (n+ 1)d · exp
{
−n(bn · ε)2

}
+

[(2n)d · 2]k · exp
{
−n
(
log(1/bn)−1 · ε

)2}
. (52)

It is sufficient to check that these two last expressions are dominated by (e−n
τ

)n∈N, for some τ ∈ (0, 1). As

(1/bn) ≈ (n−l) for some l ∈ (0, 1
2 ) then there exits τ ∈ (0, 1), such that (bn) � (n− 1−τ

2 ). Working with

1

nτ
log
[
(n+ 1)d · exp

{
−n(bn · ε)2

}]
=

d · log n+ 1

nτ
− n1−τ (bn)2ε2, (53)

limn→∞
1
nτ log

[
(n+ 1)d · exp

{
−n(bn · ε)2

}]
< 0 and consequently ((n + 1)d · exp

{
−n(bn · ε)2

}
)n∈N �

(e−n
τ

)n∈N. For the second term in (52),

1

nτ
log
[
[(2n)d · 2]k · exp

{
−n
(
log(1/bn)−1 · ε

)2}]
=

k · (d log n+ log 2)

nτ
− n1−τ (log(1/bn)−1ε)2. (54)

and considering that log(1/bn)−1 ≥ bn, ∀n (because by definition (1/bn) ≥ 1), we also

have that, limn→∞
1
nτ log

[
[(2n)d · 2]k · exp

{
−n
(
log(1/bn)−1 · ε

)2}]
< 0. Consequently, we obtain that

P

(
supT∈Gkbn

∣∣∣În(πT (Zn1 ))− I(πT (Zn1 ))
∣∣∣ > ε

)
is dominated by (e−n

τ

)n∈N which from the Borel Cantelli lemma

[30] proves the result in (13).

Concerning the second part, from Theorem 1, P
(∣∣∣În(πT fullbn

(Zn1 ))− I(πT fullbn

(Zn1 ))
∣∣∣ > ε

)
is bounded by an

expression dominated by (n+ 1)d · exp
{
−n(bn · ε)2

}
+ [(2n)d · 2]|T

full
bn
| · exp

{
−n
(
log(1/bn)−1 · ε

)2}
. As in this

case (1/bn) ≈ (nl) for some l ∈ (0, 1
3 ) ⊂ (0, 1

2 ), we just need to concentrate on the analysis of the second term,

i.e., on getting a negative asymptotic value for

1

nτ
log
[
[(2n)d · 2]|T

full
bn
| · exp

{
−n
(
log(1/bn)−1 · ε

)2}]
=∣∣∣T fullbn

∣∣∣ · (d log n+ (d+ 1) log 2)

nτ
− n1−τ (log(1/bn)−1ε)2, (55)

for some τ ∈ (0, 1). Note that by construction
∣∣∣T fullbn

∣∣∣ ≤ 1
bn

. Using this, the positive term of the RHS of (55) tends to

zero if (1/bn) is o(nτ/ log n). On the other hand, using again that log(1/bn)−1 ≥ bn, the second term of the RHS of

(55) tends to negative infinity if (1/bn) is o(n
1−τ
2 ). Finally, noting that 1

3 = maxτ∈(0,1)(τ,
1−τ

2 ), from the assumption

about (bn) we obtain that there exists τo ∈ (0, 1
3 ) such that ([(2n)d ·2]|T

full
bn
| · exp

{
−n
(
log(1/bn)−1 · ε

)2}
)n∈N �

(e−n
τo

)n∈N, which proves (14).
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APPENDIX II

PROOF OF COROLLARY 2

Note that the distribution-free bound of Theorem 1 can be upper bounded by the following simpler expression,

8 ·
(
2d+1 · nd

)k · exp

{
−n

8

(
bn · ε
12

)2
}
. (56)

Consequently, for an arbitrary δ > 0 and k ∈ N, the critical ε such that (56) is equal to δ is

εc(n, bn, d, δ, k) =
12

bn
·
√

8

n
· (ln(8/δ) + k · [(d+ 1) · ln(2) + d · ln(n)]). (57)

This is the probability 1− δ. confidence interval of the estimation error deviant. However, this is valid as long as

εc(n, bn, d, δ, k) < 3, from Theorem 1. Here is where (1/bn) ≈ (nl) with l ∈ (0, 1/3) comes into play, because

this condition implies that ∀δ > 0 and ∀k ∈ N,

lim
n→∞

εc(n, bn, d, δ, k) = 0.

APPENDIX III

PROOF OF LEMMA 3

We need to first introduce some definitions and two results.

Let us state a sufficient condition to get that a partition scheme is asymptotically sufficient for I(X;Y ).

THEOREM 6: (Silva and Narayanan [28, Th. 2]) Let PX,Y be absolutely continuous with respect to the

Lebesgue measure λ in R
d and let Π = {π1(·), π2(·), ...} be a partition scheme driven by Z1, Z2, · · · , i.i.d.

realizations with Zi ∼ PX,Y for all i. If ∀δ > 0,

lim
n→∞

PX,Y
({
z ∈ Rd : diam(πn(z|Zn1 )) > δ

})
→ 0, (58)

P-almost surely (a.s.), then,

lim
n→∞

I(πn(Zn1 )) = I(X,Y ), P− a.s. (59)

Definition 2: Let T be a binary tree. For all t ∈ T let depth(t) denote the depth of t — the number of arcs

that connect t with the root of T . In this context, let T (r) denote the truncated version of T , formally given by

T (r) = {t ∈ T : depth(t) ≤ r}, where by construction T (r) � T .

Definition 3: Let T be a binary tree, we say that T is a balanced tree of height r if ∀t ∈ L(T ), depth(t) = r.

Definition 4: A TSP scheme Π = {T1, T2, · · · } is a uniform balanced tree-structured scheme (UBTSS), if each

partition rule Tn(·) forms a balanced tree of height dn (only function of n).

In the context of uniform balanced tree-structured scheme we have the following result.

LEMMA 6: (Silva [46]) Let Π = {T1, T2, · · · } be a UBTSS induced by the statistically equivalent splitting

process presented in Section III. Let (dn)n∈N denote its height sequence, then Π satisfies the shrinking cell condition

of Theorem 6, if there exists a non-negative real sequence (qn) ≈ (nθ), for some θ > 0, such that

n

dn2dn
− qn
dn
→∞ and dn →∞, as n tends to infinity.
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The result derives from the ideas presented by Devroye et al. [24, Theorem 20.2], and the proof can be found in

[46, Ch. 4, Lemma 4.3].

Proof of Lemma 3: From Theorem 6 the proof reduces to checking the shrinking cell condition in (58). If we

define r(n) = mint∈L(T fullbn
(Zn1 )) depth(t), by construction of T fullbn

we have that

log2 1/bn ≥ r(n) ≥ log2 1/bn − 1.

Let d̄n ≡ blog2
1
bn
c − 1 for all n, then we can define the UBTSS Π̄ =

{
T̄1, T̄2, · · ·

}
, by T̄n ≡ (T fullbn

)(d̄n) for

all n > 0. By construction, T̄n � T fullbn
(and consequently πT fullbn

(Zn1 ) is a refined version of πT̄n(Zn1 )), then the

shrinking cell condition of Π̄ implies the property for Π. For Π̄ we can check the sufficient conditions of Lemma

6. Considering that (bn) ≈ (n−l) for some l ∈ (0, 1/3), then d̄n →∞ as n tends to infinity and, furthermore, we

can consider an arbitrary non-negative sequence (qn) ≈ (nθ) with θ ∈
(
0, 2

3

]
, where

n

d̄n2d̄n
− qn
d̄n
≥ n

dn · 2log2(1/bn)
− qn
d̄n

=
bn · n− qn

d̄n
→∞ (60)

as n→∞, because (dn) � (log2(n)) and (qn) is o(bn · n), which concludes the proof.

APPENDIX IV

PROOF OF LEMMA 4

Proof: Note that {
zn1 ∈ Rd·n :

∣∣∣În(πT̂n(Zn1 ))− I(πT̂n(Zn1 ))
∣∣∣ > ε

}
⊂

|T fullbn
|⋃

k=1

{
zn1 ∈ Rd·n :

∣∣∣În(πT̂nk
(Zn1 ))− I(πT̂nk

(Zn1 ))
∣∣∣ > ε

}
⊂

|T fullbn
|⋃

k=1

{
zn1 ∈ Rd·n : sup

T∈Gkbn

∣∣∣În(πT (Zn1 ))− I(πT (Zn1 ))
∣∣∣ > ε

}
,

consequently from the estimation error expression in (56) (see Appendix II),

P

(∣∣∣În(πT̂n(Zn1 ))− I(πT̂n(Zn1 ))
∣∣∣ > ε

)
≤∣∣∣T fullbn

∣∣∣ · 8 · (2d+1 · nd
)|T fullbn

| · exp

{
−n

8

(
bn · ε
12

)2
}
. (61)

Finally using the same arguments adopted to bound the RHS expression of (55) in Corollary 1 (see details in

Appendix I), we have that there exists τo ∈ (0, 1/3) such that ∀ε > 0, P
(∣∣∣În(πT̂n(Zn1 ))− I(πT̂n(Zn1 ))

∣∣∣ > ε
)

is

dominated by the sequence (e−n
τo

)n∈N, which proves the result from the Borel-Cantelli lemma [30].
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APPENDIX V

PROOF OF LEMMA 5

Proof: By triangular inequality,

P

(
sup
T∈Gkbn

I(πT (Zn1 ))− I(πT̂n(Zn1 )) > ε

)
≤P

(
sup
T∈Gkbn

I(πT (Zn1 ))− sup
T∈Gkbn

Ĩn(πT (Zn1 )) > ε/2

)
+

P

(
sup
T∈Gkbn

Ĩn(πT (Zn1 ))− I(πT̂n(Zn1 )) > ε/2

)
. (62)

Without loss of generality let us consider ε < 1. As limn→∞ supk∈{1,..,|T fullbn
|} φn(k) = 0 (see proof of Theorem

2), there exists Nc(ε) such that ∀n > Nc(ε), supk∈{1,..,|T fullbn
|} φn(k) < ε/4, then for the first term in (62),

P

(
sup
T∈Gkbn

I(πT (Zn1 ))− sup
T∈Gkbn

În(πT (Zn1 )) + φn(k) > ε/2

)
≤

P

(
sup
T∈Gkbn

I(πT (Zn1 ))− sup
T∈Gkbn

În(πT (Zn1 )) > ε/4

)
≤

P

(
sup
T∈Gkbn

∣∣∣I(πT (Zn1 ))− În(πT (Zn1 ))
∣∣∣ > ε/4

)
≤

8 · (2d+1 · nd)k exp

{
−n

8
·
(
ε · bn
48

)2
}
. (63)

For the second term in (62), ∀n > Nc(ε)

P

(
sup
T∈Gkbn

Ĩn(πT (Zn1 ))− I(πT̂n(Zn1 )) > ε/2

)
≤

P

(
Ĩn(πT̂n(Zn1 ))− I(πT̂n(Zn1 )) > ε/2

)
≤

|T fullbn
|∑

k=1

P

(
sup
T∈Gkbn

∣∣∣În(πT (Zn1 ))− I(πT (Zn1 ))
∣∣∣ > ε/2 + φn(k)

)
≤

|T fullbn
|∑

k=1

8
(
2d+1nd

)k
exp

{
−n

8

(
bn · (ε/2 + φn(k))

12

)2
}
≤

|T fullbn
|∑

k=1

8
(
2d+1nd

)k
exp

{
−n

8

(
bn · ε
24

)2
}

exp

{
−n

8

(
bnφn(k)

12

)2
}

≤
|T fullbn

|∑
k=1

δnbn · exp

{
−n

8

(
bn · ε
24

)2
}

≤ exp

{
−n

8

(
bn · ε
24

)2
}
, (64)

where the first inequality comes from the definition of T̂n, the third inequality uses the estimation error expression

in (56) (Appendix II), the fourth uses that (ε/2+φn(k))2 ≥ (ε/2)2 +φn(k)2, the fifth is by the definition of φn(k)

in (23) and the fact that supk∈{1,..,|T fullbn
|} φn(k) < ε/4 < 3, and the last uses that

∣∣∣T fullbn

∣∣∣ ≤ (1/bn) and δn ≤ 1.
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Then from (62), (63) and (64) we get the inequality. Note that this inequality is valid uniformly in k ∈{
1, ..,

∣∣∣T fullbn

∣∣∣} and in particular for kn =
∣∣∣T fullbn

∣∣∣ ≤ 1/bn. Finally evaluating this distribution free bound in

kn = (1/bn) this expression is asymptotically dominated by (e−n
τo

)n∈N for some τo ∈ (0, 1/3), by the same

arguments adopted to bound the RHS expression of (55) in Corollary 1 (see details in Appendix I). Consequently

we prove (37).

APPENDIX VI

PROOF OF COROLLARY 3

Proof: Let us consider ε > 0 and a sequence (n−p)n∈N for some p > 0. To show the result we need to

analyze the asymptotic decay of P(În(πT̂n(Zn1 ) > ε · n−p), with P the probability measure of Z1, Z2, . . .. From

the Markov‘s inequality [31],

P(În(πT̂n(Zn1 ) > ε · n−p) ≤
E(În(πT̂n(Zn1 )))

n−p · ε
,

≤ np · log n

en1/3 · ε
.

Note that
∑
n≥0

np·logn

en
1/3 ·ε

<∞, ∀ε > 0, then the Borel-Cantelli lemma implies that În(πT̂n(Zn1 ) is o(n−p) P-almost

surely.
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