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Abstract. In this article the classical self-localization approach is improved by 

estimating, independently from the robot’s pose, the robot’s odometric error 

and the landmarks’ poses. This allows using, in addition to fixed landmarks, 

dynamic landmarks such as temporally local objects (mobile objects) and 

spatially local objects (view-dependent objects or textures), for estimating the 

odometric error, and therefore improving the robot’s localization. Moreover, the 

estimation or tracking of the fixed-landmarks’ poses allows the robot to 

accomplish successfully certain tasks, even when having high uncertainty in its 

localization estimation (e.g. determining the goal position in a soccer 

environment without directly seeing the goal and with high localization 

uncertainty). Furthermore, the estimation of the fixed-landmarks’ pose allows 

having global measures of the robot’s localization accuracy, by comparing the 

real map, given by the real (a priori known) position of the fixed-landmarks, 

with the estimated map, given by the estimated position of these landmarks. 

Based on this new approach we propose an improved self-localization system 

for AIBO robots playing in a RoboCup soccer environment, where the 

odometric error estimation is implemented using Particle Filters, and the robot’s 

and landmarks’ poses are estimated using Extended Kalman Filters. Preliminary 

results of the system’s operation are presented. 

1   Introduction 

Localization is a key feature of a mobile robotic system, which has been deeply 

investigated over the last years. Commonly a localization module is expected to filter 

two sources of error: (i) observational errors that are produced by the imperfections of 

the sensors and their models, and (ii) odometric errors that are produced by flaws in 

the modeling of the actuators and by events that are very difficult to model as slipping 

and collisions. It is not the aim of this paper to compare or to analyze different 

localization methods -as it is a very largely discussed matter- but to discuss how to 

improve the localization process. 

Existent localization approaches filter simultaneously both sources of error, 

observational and odometric, making use of what we call global information, 

perceptions of objects with fixed and known global pose. However, we believe that, 
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in addition to the global information, additional sources of information, what we call 

local information, can be exploited by localization methods. We use the word “local” 

in its temporal and spatial meanings. Spatially local information corresponds to 

information that is only useful in a reduced region of the space, while temporally local 

information corresponds to information only valid in a short period of time. 

Temporally local information corresponds mainly to mobile objects, whose poses’ 

estimates are valid for a short period of time. Spatially local information corresponds 

mainly to view-dependent objects or textures, whose perceptions are valid in a 

reduced neighborhood. The spatially restricted utility may be at least due to three 

reasons: (i) the object is only observable from a restricted region of the space, for 

example a design in the floor or a visual feature or detail only perceptible from close 

positions, (ii) its appearance changes from different points of view (most of the 

natural objects do not have a radial symmetry and also non isotropic light may make 

them appear different from different points of view), and/or (iii) several identical -or 

difficult to distinguish- objects are present in different places in the space, which 

could easily lead to confusion, for example, a tree in a forest, a tile or texture in the 

floor, or a chair in a classroom. SLAM approaches can deal with objects locally 

observable or with non-symmetric appearance by creating and maintaining a pose 

estimate for each of them, or of their different appearances treated as different objects. 

However, this could lead a system to maintain millions of estimates, which is 

computationally infeasible and practically senseless. Nevertheless, it is possible to 

think in a SLAM-like approach that maintains locally relevant information with the 

purpose of estimating the odometric error. We believe such an approach is more 

biologically inspired. For instance, humans are able to correct their odometry even 

when they have no knowledge of the environment. 

In this context we propose improving the classical self-localization approach by 

estimating, independently from the robot’s pose, the robot’s odometric error and the 

landmarks’ poses. This allows using, in addition to fixed landmarks, dynamic 

landmarks such as temporally local objects (mobile objects) and spatially local objects 

(view-dependent objects or textures), for estimating the odometric error, and therefore 

improving the robot’s localization. Moreover, the estimation or tracking of the fixed-

landmarks’ poses allows the robot to carry out certain tasks, even when having high 

uncertainty in the localization estimation. This is especially valuable when performing 

attention demanding tasks, like pursuing a ball, which forbid the use of active vision 

in order to get more (standard) landmarks’ perceptions. Another nice feature of the 

proposed system is that the robot is able to correct its odometry even when it is totally 

lost. The latter ability may be useful in several situations as for example, when 

shooting the ball to a recently seen goal, by correcting the relative robot’s pose 

estimation with only observations of the ball. In this sense, we believe our approach 

also goes in the direction towards performing tasks with much less use of global 

localization, as certainly humans do. 

Furthermore, the estimation of the fixed-landmarks’ pose allows having global 

measures of the robot’s localization accuracy, by comparing the real map, given by 

the real (a priori known) position of the fixed-landmarks, with the estimated map, 

given by the estimated position of these landmarks.  

Based on the described new self-localization approach, we propose an improved 

self-localization system for AIBO robots playing in a RoboCup soccer environment, 



that implements odometric error estimation using Particle Filters, and robot’s and 

landmarks’ poses estimation using Extended Kalman Filters.  

How and when to select spatially local observations as valid landmarks is a topic 

not addressed in this article. In the current implementation we consider temporally 

local observations, mobile objects, such as the ball and robot players in a soccer 

environment. 

This paper is organized as follows. In section 2 is presented some related work. 

The improved self-localization approach is described in section 3. In section 4 some 

features of the proposed approach are discussed. In section 5, preliminary results are 

presented. Finally, in section 6 some conclusions and future work are given. 

2   Related work 

Standard Bayesian-based robot self-localization fuses odometric information with 

perceptual information coming from different sensors. Thus, odometry is employed 

for predicting the next robot pose state using a cinematic model of the robot, while 

perceptual information from landmarks is employed for correcting this prediction 

using an observational model. For implementing these two steps, the most employed 

Bayesian filters are Kalman [6] and Particle Filters [3][5]. Kalman Filtering is a very 

well-known technique for parameter estimation, its main drawback being the linearity 

and Gaussianity assumptions. EKF extends the Kalman Filtering idea by linearizing 

the measurement and plant (in this case the robot) models, but still has the assumption 

of Gaussianity [4]. On the other hand, particle filters overcome the drawbacks of 

assuming linearity and Gaussianity, by implementing a “factored sampling” of the 

processes’ conditional densities [5]. Particle Filtering is very popular in the Computer 

Vision community where the most employed implementation is called Condensation 

[5], while in the mobile robotics community the most used implementation is the 

Monte Carlo Localization – MCL algorithm. However, particle filters have an 

important drawback, their performance depends strongly on the number of particles. 

In specific applications as robot soccer, in which the computational resources are 

limited, the number of employed particles may not be very high (normally between 50 

and 200), and therefore particle filters do not clearly outperforms EKF. As a fact, in 

the RoboCup soccer leagues successful teams use either EKF, MCL, or mixtures of 

both (see for example [8] or [9]). 

Nevertheless, it is not our intention to analyze or to compare different Bayesian 

filters and their application to the robot self-localization problem, but to improve the 

standard Bayesian-based robot self-localization by including new independent stages 

for estimating the robot’s odometric error and the landmarks’ poses. To the best of 

our knowledge this idea is novel, and has not being implemented before in robot 

localization systems. Although decoupling the odometry estimation from the 

landmark position estimation has been proposed in the SLAM literature [10], there is 

a strong implicit assumption in these works, which is that all the landmarks will 

remain static forever. In some SLAM approaches detected objects are tracked and 

characterized as mobile or static [11]. However the mobile object’s information is not 

used for estimating the odometric error. 



In visual odometry approaches (see for example [12][13]) local visual features (e.g. 

Harris or SIFT features) are employed for estimating the robot relative movements 

(the odometry) by detecting and matching the features between consecutive frames. 

The main differences with our approach are: (1) In our approach the estimated 

odometry is used in the robot localization process, and also for updating the high-

level tracking of landmarks. Traditional visual odometry approaches do not include 

high-level tracking of landmarks, therefore the use of the estimated odometry is much 

simpler; (2) Visual odometry approaches use local features, while in our case high-

level fixed or moving landmarks are employed (e.g. a ball or a goal in a soccer 

environment). We believe that using high-level landmarks is more robust because: (i) 

local features cannot be detected in any environment or moment (e.g. in a robot 

soccer carpet no local features can be detected), and (ii) when analyzing images 

corresponding to real-world environments the process of matching local features can 

produce a larger number of false matches (due to shadows, highlights, symmetry 

problems, too many detected features, etc.) than the one of matching high-level 

feature. 

3   Proposed Self-Localization using Landmarks’ Tracking and 

Odometry Error Estimation 

As already mentioned the basic idea of the proposed approach is to estimate, 

independently from the robot’s pose, the robot’s odometric error and the landmarks’ 

poses. For achieving this two new processes are included High-Level Tracking (HL-

Tracking module) and Odometry Error Estimation (OEE module). As can be observed 

in figure 1, the operation of all process is tightly interconnected. First, in the HL-

Tracking module the pose of the observed landmark ( x l* ,k
−− ), either static or mobile, is 

early predicted using the odometry information ( u k−1). Then, the odometric error ( ek ) 

is estimated in the OEE module using the information of current observations 

(coming from Vision) ( zk ), and the corresponding landmark’s early estimated pose. 

Afterwards, in the HL-Tracking module the estimated odometric error is used for 

estimating the new landmarks’ poses ( {x
li ,k

}). Finally, the corrected odometry and 

the landmarks’ poses are employed for estimating the robot’s localization ( xR,k ). 

In the next sections the operation of all modules is described in detail for the case 

of a RoboCup four-legged environment using AIBO robots. The pseudo code and 

equations are detailed in tables 1-3. 



 

Fig. 1. Block diagram of the system. Two stages are added between vision and localization: 

HL-Tracking and Odometry Error Estimation. 

3.1   Vision 

Our vision system (RoboCup four-legged league scenario) is based on color 

segmentation of the images, and rule based perceptors for the relevant objects (ball, 

robots, beacons and goals) (see detailed description in [1]). The vision system also 

includes a recently proposed context filter, which takes into account the coherence 

between current and past detections, as well as scene and situation contexts, to filter 

incoherent detections [2]. 

3.2   HL-Tracking 

In this module the state of every detected and coherent object/landmark ( x
li ,k

) is 

tracked (estimated). For the fixed objects, the state corresponds to their 2D pose, 

relative to the robot, for the mobile ones, a relative velocity is also added (see figure 

2). The pose of any object includes a 2D position, and may include a relative 

orientation, if this is distinguishable (for objects with radial symmetry as ball and 

beacons it is not possible to notice their orientation). 

The current implementation of the HL-Tracking stage consists of one independent 

EKF for each object. The prediction of each EKF has two stages: (i) early prediction 

(step (1) in pseudo code shown in table1), where the pose of the l*  landmark 

associated with the current observation zk , is predicted using the last executed 

odometry u k−1, and (ii) a standard prediction stage (step (6) in pseudo code), where 

the poses of all landmarks ( {x
li ,k

}) is predicted using the corrected odometry 

( u k −1 + e k ). The correction stage is standard and considers only the observed 
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landmark l*  (step (7) in pseudo code). In the case of mobile objects, the correction 

that the filter takes is standard and very straightforward, since the predicted 

observation may be extracted directly from the state -the observation model Jacobian 

H is equal to the identity or some submatrix-. 

For the system to be able to quickly detect and recover from kidnaps, all tracked 

estimates of objects’ poses in HL-Tracking has a smoothed object coherence indicator 

(see [2] for details). 

 
Fig. 2. Tracked objects and their state in the HL-Tracking stage. Static objects are 

represented by their relative pose, which includes a position and may include a relative 

orientation (blue goal). For mobile objects, a relative velocity is also added (orange ball). 

3.3   Odometry Error Estimation 

The odometry error estimation (OEE) stage is implemented using a particle filter, 

as in MCL, but in this case each particle represents a hypothesis for the accumulated 

odometric error (instead of the global pose of the robot, as in MCL). Consequently, 

the state of each particle is a pose (x, y, θ) relative to a coordinate system centered in 

an odometry error-free pose. Then, the particles are drawn over the same coordinate 

system shown in figure 2. 

In the sampling stage of the OEE (step (3) in pseudo code), it is considered that the 

expected odometric error is zero, thus, we only add noise covariance to the particles, 

coming from the standard odometry. Given any odometry u k−1, an a priori odometry 

error covariance Qk−1 is used to scatter the particles. The weighting stage consists in 

the calculation of weights for each particle (step (4) in pseudo code). A particle will 

have a higher weight when it better explains the difference between the observed and 

estimated poses of the observed objects. Finally, in the Resampling Stage (step (2) in 

pseudo code), particles are resampled according to their weights. A particle is copied 

a number of times that has an expected value proportional to its weight. As 

Resampling is the first stage in our implementation, it considers the weights 

calculated in the previous iteration of the system. 



Every time an observation arrives, the system executes these three steps, and 

finally the estimated odometric error ( ek ) and its covariance ( Q e ,k ) are statistically 

calculated over the particles (step (5) in pseudo code), and used as additional 

predictive inputs for the HL-Tracking and Localization stages. Finally, the odometric 

error estimate is subtracted from each particle, to set the new odometry error estimate 

to zero. 

3.4   Localization 

We have implementations of standard robot’s localization modules based on EKF, 

MCL, and mixtures of them [1]. However, for the proposed approach, we have 

implemented the robot’s localization using a standard EKF filter (see pseudo code in 

table 2). The main new features are: (i) the corrected odometry ( u k −1 + e k ) is used for 

predicting the new robot’s pose (step (8) in the pseudo code), and (ii) the filtered 

relative poses of all landmarks, fixed and mobile, are employed as the filter’s 

observations in the correction stage (step (9) and (10) in pseudo code). 

4   Discussion 

4.1   Is it good for a robot to be egocentric? 

A clear difference between the proposed approach and most of the existent 

approaches for localization is that, in this one, all the analysis is made in reference to 

the robot instead of making it from a global point of view. One could argue that all 

the previous formulation could be transported to a global approach by representing all 

the local information in a global coordinate system. We believe that being egocentric 

(taking a self-centered coordinate system for most of the calculations) is a good 

decision because: (i) many (may be most) of the tasks a robot must perform can be 

executed with only local information, for example, a robot does not need to know its 

global pose neither the global pose of the ball to approach to it, and (ii) even high 

level tasks that need global information normally result in low-level tasks that can be 

performed locally. 



Table 1.  HL-Tracking and OEE pseudo code and equations. See definition in table 3. 

(1) High-Level Tracking Early Prediction Stage // Early prediction using odometry 

x l* ,k
− −

= f l (x l* ,k −1 , u k −1 , 0 )  // l*  the landmark associated with the current observation zk , 

and u k−1 the last executed odometry 

(2) Odometry Error Resampling Stage 

Resample ′ x p j ,k{ } according to x p j ,k−1,ω p j ,k−1{ }, j = 1,...,T //T: total number of particles 

(3) Odometry Error Sampling Stage 

Qk−1 = Q u k−1( ) // a priori odometry error covariance 

For each particle p j , j = 1,...,T  do: 

u p j ,k ~ N 0,Q k −1( )  //Normal distribution with zero mean and Q k −1  covariance 

x p j ,k = f p ( ′ x p j ,k , u p j ,k , 0 )  

(4) Odometry Error Weighting Stage 

For each particle p j , j = 1,...,T  do: 

v p j ,k = zk − h l*
( f l (x l* ,k

−−
,u(x p j ,k ),0),0)  // zk  the current observation, and l*  the 

corresponding landmark  

˜ ω p j ,k = e
−

v p j ,k
T R l j ,k

−1 v p j ,k

2   

ω p j ,k =
˜ ω p j ,k

˜ ω p n ,k

n

∑
 // weights normalization 

(5) Odometry Error Statistics Calculation 

ek = ω p j ,kx p j ,k

j

∑  // estimated odometry error 

∑=
j

T
kpkpkpk jjj ,,,, xxQ e ω  // estimated odometry error covariance 

For each particle p j , j = 1,...,T  do: 

x p j ,k = x p j ,k − e k  

(6) High-Level Tracking Odometry Prediction Stage  

For each landmark li ,i = 1,...,L  do: // The new poses of all landmarks are predicted 

x l i ,k
−

= f l (x l i ,k −1 , (u k −1 + e k ), 0 ) // Prediction using the corrected odometry  

Pli ,k
−

= A l,kPli ,k−1A l,k
T

+ Wli ,kQe,kWli ,k   

(7) High-Level Tracking Correction Stage // Only the observed-landmark’s pose is corrected 

v v ,k = z k − h l*
( x l* ,k

−
, 0 )  // zk  the current observation, and l*  the corresponding landmark 

Ml* ,k = Hl* ,kPl* ,k
−

H
l* ,k
T

+ Vl* ,kR l* ,kV
l* ,k
T

 

K l* ,k = Pl* ,k
−

H
l* ,k
T

M
l* ,k
−1  

x l* ,k = x l* ,k
−

+K l* ,kv v,k  

Pl* ,k = (I−K l* ,kHl* ,k )Pl* ,k
−  

 

 



Table 2.  EKF Localization pseudo code and equations. See definition in table 3. 

(8) Localization Prediction Stage // Robot pose prediction using the corrected odometry  

x R ,k
−

= f R (x R ,k −1 , (u k −1 + e k ), 0 )   

PR,k
−

= AR,kPR,k−1A R,k
T

+ WR,kQe,kWR,k
T

 

(9) Localization Data Association Stage  

v l,k = ∅  

For each landmark li ,i = 1,...,L  do: //Landmarks are filtered out using an innovation 

threshold g 

v l i ,k = x l i ,k − h R , l i
(x R

−
, 0 )  

MR,li ,k = HR,li ,kPR
−
H

R,li ,k
T

+ VR,li ,kPli ,kV
R,li ,k
T

 

if (v li ,kMR,li ,kv
li ,k
T

≤ g
2

)  then  v l,k = v l,k ∪v li ,k  

(10) Localization Correction Stage // Robot pose correction 

KR,k = PR,k
−

HR,k
T

MR,k
−1  

x R,k = x R ,k
−

+K R,kv l,k  

PR,k = (I−KR,kHR,k )PR,k
−  

 

Table 3. Variables, matrices and functions definitions. 

Variable/Matrix Definition 

x
li ,k

, P
li ,k

 Landmark li  state vector and covariance matrix. 

xR,k , PR,k  Robot state vector and covariance matrix. 

Qk  A priori odometry error covariance 

f l , fR  Landmarks and robot process models. 

u k−1 Robot odometry. 

ek  and Q e ,k  Estimated odometric error and its covariance. 

x p j ,k  and ω p j ,k  Position and weigh of particle p j  (odometry error estimation) 

f p  Cinematic model of the particles (odometry error estimation) 

AR,k /WR,k  The Jacobian matrix of the partial derivatives of fR  with respect to the 

state vector and process noise, respectively. 

Al,k /Wl,k  The Jacobian matrix of the partial derivatives of f l  with respect to the state 

vector and process noise, respectively. 

H R,k /VR,k  The Jacobian matrix of the partial derivatives of hR  with respect to the 

state vector and observational noise, respectively. 

HR,li ,k /VR,li ,k  The Jacobian submatrix, corresponding to the landmark li , of the partial 

derivatives of hR  with respect to the state vector and observational noise, 

respectively. 

H li ,k /Vli ,k  The Jacobian matrix of the partial derivatives of hli
 with respect to the 

state vector and observational noise, respectively. 

R li ,k  Landmarks observational noise covariance. 

  



4.2   Towards playing soccer with much less use of localization 

Human soccer players can effectively perform most of their tasks with a very poor 

estimation of their global pose in the field. They make extensive use of local 

information to: go to the ball, shoot to the goal, pass, keep close to the goal (in the 

case of the goalie), keep the ball inside of the field, mark opponents, etc. Even 

strategically positioning, which could be argued to be a localization-dependent task is 

performed with extensive use of local information; players do not only tend to be 

close to one static part of the field, they also (and may be more important) tend to 

maintain certain positions relative to their teammates, opponents and the ball. We 

believe our work is a step towards that direction, because it allows a robot to correct 

its odometry, and thus its relative estimates of non-seen objects, with local 

information. 

5   Results 

Preliminary results that illustrate the operation of the system are presented. Figure 

3 shows a sequence of egocentric local maps, relative to the robot (coordinate system 

shown in figure 2), in selected moments of a real movement’s sequence (data are 

collected from the robot and displayed in a visualization software). The sequence 

corresponds to the following situation: the robot walks from the yellow goal area to 

the center of the field, while panning its camera. In colors are shown the blue goal and 

the beacons (with exaggerated radiuses) estimations carried out by HL-Tracking. In 

the center of each map, the OEE particles appear, where lighter ones corresponds to 

those having a higher score. In order to make the functioning of the OEE visible, the 

particles’ positions, relative to the center of the egocentric map, are zoomed ~4x with 

respect to the HL-Tracking estimation. In the tested sequence, the odometry was 

specially poorly calibrated, with a high bias (the accumulated odometry was of 

~600cm, while the actual movement of the robot was of ~240cm). However OEE 

combined with HL-Tracking was able to keep tracking of the observed objects and 

correct the non-seen ones (yellow landmarks after they are left behind). 

We have performed several experiments as the one already illustrated. In these 

experiments we have seen that when the robot perceives the fixed landmarks (the ones 

defining the map) regularly, the accuracy of the proposed robot’s localization 

approach is similar that the one obtained when using a standard EKF, and no OEE or 

HL-Tracking stages (variations are less than 1% in accuracy). However, when the 

robot executes attention demanding tasks as approaching the ball without active 

vision behaviors for looking for the fixed landmarks, or turning with the ball while 

preparing a goal-kick, the accuracy of the robot’s odometry estimation is 14% better 

than in the case when the OEE and HL-Tracking stages are not used, while the robot’s 

localization is 6% more accurate. 
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Fig. 3. Egocentric local maps in selected moments of a movement sequence: the robot walks 

from the yellow goal area to the center of the field, while panning its camera. a) The robot 

starts with a perception of the blue goal, all particles are together, with a high score. b) As 

odometry arrives, the particles start scattering, which allows the odometry correction. c) The 

robot is walking, in an intermediate point, d) The robot arrives to the center of the field. 

 

6   Conclusions and Future Work 

In this article, an improvement over the classical robot’s localization approach was 

proposed, in which, in addition to the robot’s pose, the robot’s odometric error and the 



landmarks’ poses are estimated. Based on this new approach, we developed an 

improved self-localization system for AIBO robots playing in a RoboCup soccer 

environment. In this system odometric error estimation is implemented using Particle 

Filters, while robot’s and landmarks’ poses are estimated using Extended Kalman 

Filters. Preliminary results show that, when the robot executes attention-demanding 

tasks, the accuracy of the robot’s odometry estimation is 14% better than in the case 

when the new estimation modules are not used, while the robot’s localization is 6% 

more accurate. 

Currently we are carrying out a better characterization of the proposed system. In 

addition, we are developing an extension to the presented system, which consists in 

using the robot’s odometric error for modeling and correcting the permanent 

odometric error using an on-line trained neural network. 
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