J Intell Robot Syst
DOI 10.1007/s10846-010-9515-7

A Real-Time Hybrid Architecture for Biped
Humanoids with Active Vision Mechanisms

Javier Testart - Javier Ruiz del Solar - Rodrigo Schulz -
Pablo Guerrero - Rodrigo Palma-Amestoy

Received: 14 June 2010 / Accepted: 1 December 2010
© Springer Science+Business Media B.V. 2010

Abstract A real-time hybrid control architecture for biped humanoid robots is pro-
posed. The architecture is modular and hierarchical. The main robot’s functionalities
are organized in four parallel modules: perception, actuation, world-modeling, and
hybrid control. Hybrid control is divided in three behavior-based hierarchical layers:
the planning layer, the deliberative layer, and the reactive layer, which work in
parallel and have very different response speeds and planning capabilities. The ar-
chitecture allows: (1) the coordination of multiple robots and the execution of group
behaviors without disturbing the robot’s reactivity and responsivity, which is very
relevant for biped humanoid robots whose gait control requires real-time processing.
(2) The straightforward management of the robot’s resources using resource multi-
plexers. (3) The integration of active vision mechanisms in the reactive layer under
control of behavior-dependant value functions from the deliberative layer. This adds
flexibility in the implementation of complex functionalities, such as the ones required
for playing soccer in robot teams. The architecture is validated using simulated and
real Nao humanoid robots. Passive and active behaviors are tested in simulated and
real robot soccer setups. In addition, the ability to execute group behaviors in real-
time is tested in international robot soccer competitions.

Keywords Hybrid control architecture - Active vision - Nao humanoid robots -
Robot soccer

1 Introduction

Mobile autonomous robots are becoming complex systems that are able to interact
with humans and other robots in complex, challenging, and often dynamically chang-
ing environments. Examples of such challenging conditions are the ones defined in

J. Testart - J. Ruiz del Solar (<) - R. Schulz - P. Guerrero - R. Palma-Amestoy
Department of Electrical Engineering & Advanced Mining Technology Center,
Universidad de Chile, Santiago, Chile

e-mail: jruizd@cec.uchile.cl

Published online: 30 December 2010 4\ Springer

J Intell Robot Syst

robot soccer competitions (e.g. RoboCup [36]), the Darpa Grand and Urban Chal-
lenge competitions [39], and field robotics applications (e.g. autonomous vehicles in
underground mines). Robots operating in such challenging conditions need to be
controlled appropriately. Robot control is the process of taking information about the
environment through the robot’s sensors, processing it as necessary in order to make
decisions about how to act, and executing actions into the environment [25].

Deliberative, reactive and pure behavior-based control paradigms have been
known for many years (e.g. sense-plan-act, subsumption, and motor schemas, just to
name a few), and combinations of them are often used in today’s applications. Robot
control architectures must incorporate reactivity, planning capabilities, and a modu-
lar and hierarchical design [24]. Hybrid, or tiered control architectures incorporate
dynamic, concurrent, and time-responsive control (reactive control), together with
efficient decision making over long time scales (deliberative control) [25]. In addi-
tion, their clear interface definition has the advantage that the different layers can be
developed and modified in parallel [24].

Taking all these elements into consideration, we have developed a hybrid control
architecture for biped humanoid robots. The architecture is modular and hierarchi-
cal. It organizes the main robot-control functionalities in four parallel modules: per-
ception, actuation, world-modeling, and hybrid control. The hybrid control module
is distributed among three behavior-based hierarchical layers: the planning layer,
the deliberative layer and the reactive layer, which work in parallel and have very
different response speeds and planning capabilities. The architecture allows (1) the
coordination of multiple robots and the execution of group behaviors without dis-
turbing robot reactivity and responsivity, which is very relevant for biped humanoid
robots whose gait control requires real-time processing, (2) the straightforward
management of the robot’s resources using resource multiplexers, and (3) the inte-
gration of active vision mechanisms in the reactive layer, under control of behavior-
dependant value functions from the deliberative layer. This last feature adds
flexibility in the implementation of complex functionalities, such as the ones required
for playing soccer on robot teams.

Although the architecture is designed to be general-purpose, the short-term goal
is to use it in robot soccer applications. For this reason, the descriptions of some
module’s implementations are exemplified for the robot soccer case.

This paper is organized as follows. In Section 2, some related work is presented.
The proposed hybrid control architecture is described in Section 3. In Section 4,
a validation of the architecture using simulated and real Nao humanoid robots is
presented. This validation includes the testing of group behaviors in international ro-
bot soccer competitions. Finally, in Section 5 some conclusions of this work are given.

2 Related Work

The development of robot control architectures for mobile robots started in the
late 60’s with the development of the Shakey robot, whose control architecture was
known later as the sense-plan-act paradigm. Some of the limitations of this “full”
deliberative architecture were tackled in the seminal works of Brooks (subsumption
architecture) [3] and Arkin (motor schemas, AuRA architecture) [1], who developed
the reactive control and behavior-based control paradigms, respectively. In both

@ Springer

J Intell Robot Syst

views the real-time coupling between sensing and action is maintained. However,
behavior-based systems can store representations, while reactive systems cannot
[25]. The hybrid control paradigm incorporates different layers of reactive,
deliberative and behavior-based control [24], i.e. the 3T architecture defines the
following layers: planning, executive, and behavioral control [26]. Currently, hybrid
control architectures incorporate dynamic, concurrent, and time-responsive control,
together with efficient decision-making over long time scales [25]. In addition,
their clear interface definition has the advantage that the different layers can be
developed and modified in parallel [24].

In the last years, several works have reported interesting hybrid architectures and
applications of hybrid architectures [5, 8, 11-13, 16-18, 20, 22, 27], as well as related
approaches, such as the dual-dynamics one [4]. It is beyond the scope of this paper
to make an extensive review of hybrid control architectures, however, an overview
of the state of the art in behavior-based, hybrid, and behavior-based hybrid control
architectures can be found in [24, 25].

Of special interest for this work are approaches devoted to describing control
systems for legged robots [2, 10, 14, 15], legged soccer robots [6, 7, 19, 21], and
simulated soccer robots [9, 23]. In [2, 10, 14, 15], the EGO (Emotionally GrOunded)
control architecture for QRIO humanoids is described, as well as some of their
main variants and extensions to AIBO robots. The architecture is related to the
one being proposed in this work, but it includes an emotional model, and short-
term and long-term memory. In our case we do not include emotional functionality,
but we do include short-term memory of the objects of interest, and active vision
mechanisms, which are not included in the EGO architecture. In [6, 7] a robot control
architecture for wheel-based soccer robots, which was later extended to humanoid
robots, is proposed. As in our case, this architecture defines three hierarchical
organization levels that are called team, player, and body. However, that architecture
is not able to manage active vision behaviors, and it does not define specific robot’s
resources managers. In [9], a control architecture for simulated robot soccer players
is proposed. Main modules include a deliberator, an executor, a hierarchical behavior
model, and a context pool. In [23], the DAlInamite framework combines reactive
and deliberative control with learning in the case of simulated soccer robots. The
main difference of our architecture from the ones proposed in [9, 23] is that ours
takes into account the real-time control requirements of real humanoid robots,
and it includes active vision mechanisms at the reactive level. The hybrid control
architecture proposed in [19] is intended for AIBO robots, and therefore it does
not incorporate some of the functionalities required in biped humanoids, or active
behaviors. Finally, in [21], a behavior-based control architecture for humanoid robots
is proposed. This architecture is simpler than the one proposed here, and it doesn’t
have the flexibility of layered architectures, or active vision mechanisms.

3 A Real-Time Hybrid Architecture for Humanoid Robots
3.1 Architecture Overview
The architecture is modular and hierarchical. The robot’s main functionalities are

organized in four parallel modules: perception, actuation, world-modeling, and
hybrid control. Figure 1 shows a block diagram of the architecture.

@ Springer

J Intell Robot Syst

—_—_—— e — e — — — = —
Comunication to Hybrid Control
other Agents -
<« Planning Layer
Enviroment ::':: Multi-Agent Multi-Agent

N i Mission s Mission
Information —I—» Coordinator Selector }
World-Modeling I A

Agent Role
L 1 > Selector
i

A

Object Pose Self
Estimation Localization

-

Sensors

I

I

I

I

I

1

I

Joints " I
e
I

I

I

I

I

I

1

I

Inhibition———@)
@m—core Busmmlge- Value function

-Command—m
Odometry.) Primitive -

Behavior

Perceptors——-

Local Map——p Muton -
ultiplexer

Global Map———jm= P

m Deliberative
Inactive Behavior -
Behavior @

Fig.1 Block diagram of the proposed hybrid architecture

Perception and actuation are the modules that interact directly with the robot
hardware (sensors and motors). Perception is in charge of acquiring, processing
and analyzing all data coming from the robot’s external and internal sensors. In
a humanoid robot, perceptual data typically includes inertial (e.g. accelerometer
and gyroscope sensors) and visual data. Any given vision algorithm can be used in
this module, for instance color-based or SIFT-based vision. The perceptual data is
transmitted to the lowest level of the hybrid control module (reactive layer), and
to the world-modeling module where it is further processed. Actuation is in charge
of translating orders generated in the reactive layer (e.g. looking at a given position)
into orders to be sent directly to the robot’s motors. In addition, actuation is in charge
of reading encoders’ data, which is transmitted back to the reactive layer and to the
world-modeling module.

World-modeling maintains a representation (or map) of the robot’s environment.
We improve classical self-localization approaches by estimating, independently and
in addition to the robot’s pose, the pose of the static and mobile objects of interest.
This allows using, in addition to fixed landmarks, dynamic landmarks such as
temporally local objects (mobile objects) and spatially local objects (view-dependent
objects or textures). Moreover, the estimation of the pose of objects of interest allows
the robot to carry out certain tasks, even when having high uncertainty in its own

@ Springer

J Intell Robot Syst

pose estimation. This is especially valuable when performing attention-demanding
tasks, like tracking a ball. Another nice feature of the proposed system is that the
robot is able to correct its odometry even when it is totally lost [28]. In this sense,
this approach moves in the direction of performing tasks with much less use of global
localization, as humans certainly do. Furthermore, the estimation of the pose of the
fixed-landmarks allows having global measures of the robot’s localization accuracy,
by comparing the real map, given by the real (known a priori) position of the fixed-
landmarks, with the estimated map, given by the estimated pose of these landmarks.
Finally, having an estimation of the pose of the objects allows the straightforward
implementation of active vision behaviors (see an example in Section 4). Object
pose estimation and robot self-localization are implemented using Bayesian filters. In
our current implementation [28], several Extended Kalman Filters (EKFs), one for
estimating the pose of each object of interest and one for estimation the robot’s own
pose, are used. The observations of each object are used to correct the estimation
of the corresponding EKF. For instance, in the robot soccer case the observation of
a goal-landmark is used to correct the EKF that estimate the pose of this landmark.
The same procedure is used to correct the object’s pose estimation of the other filters.
Then, the estimated poses of all objects of interest (goal-landmarks and lines in case
of robot soccer) are used as observations in the EKF in charge of estimating the
robot’s pose.

The hybrid control module is organized in three behavior-based hierarchical
layers: planning layer, deliberative layer and reactive layer, which work in parallel
and have very different response speeds and planning capabilities. The planning layer
is in charge of long-term planning, using information coming from other robots and
eventually external devices (e.g., a game controller in the case of robot soccer) in
order to determine the robot’s mission and role, and its coordination with other
robots. The deliberative layer executes the mission defined in the planning layer
using deliberative behaviors, each of them organized as state machines, in which
each state is implemented as a single behavior or as a behavior-tree. The deliberative
layer configures goals for the primitive behaviors available in the reactive layer,
and sets up the parameters needed by these behaviors. It uses behavior-dependent
value functions (VFs) to score the goals needed by primitive behaviors, which allows
implementing active vision mechanisms. Finally, the reactive layer directly decides
the actions that must be executed when resources from the robots are available. The
robot resources are managed by resource-multiplexers (MUXs), which update goals
in order to make decisions in real time.

It is worth to mention that all described modules run in the robot’s internal
computers.

3.2 Basic Definitions

A mission is a high-level task to be carried out by robot agents. The mission can be
accomplished by a single robot or by several robots, and it is coordinated in the plan-
ning layer. For instance, in soccer a mission could be to defend the goal, which is car-
ried out by the goalkeeper, or to attack the opponent team, which can be carried out
by several strikers, depending on the game situation. If more than one robot carries
out the mission, different roles can be assigned to the different robots participating
in the mission. For instance, in a soccer attacking situation with two attacking robots,

@ Springer

J Intell Robot Syst

Table 1 Missions and roles defined in the control architecture for a robot soccer application

Mission name Description Roles names Description
Defend The goalkeeper should prevent Goalie The goalie is a special role,
the goal the opposite team from scoring because only one player can
by defending the goal. be a goalkeeper during
the match.
Attack All field players trying to score Striker The attacking robot that is
a goal for their team are in nearest to the ball.
attack mission. It can dribble and then kick

the ball to the opponent

goal or to a partner.
Striker cover The robot that supports the

striker, keeping a nearby

position.
Pass receiver A robot waiting for a pass
in a free position.
Defend All field players preventing the ~ Active defender The robot that is nearest to
opposite team from scoring the ball position.
a goal are in a defend mission. Defender going A robot that is far from the
to position position of the ball.

the robot that is closer to the ball can take the striker role, while the second robot
can take the striker cover role. The mission and role information of the robot are
transmitted from the planning layer to the deliberative layer. Table 1 shows some
examples of missions and roles for a robot soccer application.

Deliberative Behaviors are in charge of executing the mission targeted by the plan-
ning layer, by dividing it into different goals. The goals are selected by the delibera-
tive behaviors depending on the world-state, and the internal state of the robot. The
deliberative behaviors must set up at least one possible goal for each of the resources
offered by the robot. A goal is the mechanism used in the reactive layer to configure
its primitive behaviors in order to produce an action. For example, in a soccer
application the observe-ball goal can trigger the primitive behavior search-object-
ellipse in the reactive layer if the robot has no information about the ball position, or
the primitive behavior object-tracking if it has such information. In Tables 2, 3 and 4,
examples of deliberative behaviors, goals, and primitive behaviors for a robot soccer
application are shown.

3.3 Planning Layer

The planning layer is designed to control multiple robots’ coordination and group
behaviors. Team decisions are taken distributely (no leader robot is required), and
fluid communications between robots are a key issue in order to implement this.
However, unavoidable interruptions in the communication channels should be taken
into account when designing the system. For instance, the experience of the robot
soccer community (e.g. RoboCup [36]) is that wireless communication failures can
largely affect the performance of world-class soccer teams.! Thus, the first principle

IThe authors have the experience of several years participation in RoboCup soccer competitions.

@ Springer

J Intell Robot Syst

Table 2 Examples of deliberative behaviors defined in the control architecture for a robot soccer
application

Deliberative behaviors Description

Field playing This behavior is the top-level behavior for the robot in case the robot
is not the goalkeeper, but a field player.
Goalie playing This behavior is the top-level behavior for the goalkeeper.

This behavior is selected when the robot has the attack mission, and its
role is striker cover.

This behavior is used when the robot must go to a specific area
on the field, or for getting a proper positioning
in the case of the goalkeeper.

This is the main behavior for going to the ball and then kicking the ball
or dribbling. It evaluates targets for the ball depending
on the mission selected for the robot and the robot’s role.

This behavior is designed to cover the maximum angle to the goal. The
setup used by this behavior depends on the robot mission and on
its role (field player or goalkeeper).

This behavior allows the robot to localize itself.

This behavior is set up to handle a passive and active search of an object
in the field. Passive means searching just around its own place,
while active search involves changes in the robot position.

When an obstacle is detected, this behavior handles obstacle avoidance
at a high level.

Partner following

Going to field position

Go to ball

Goal covering

Localizing
Searching for object

Avoiding obstacle

chosen for minimizing this issue is to have robot communication only at the highest
layer of the hybrid control module, so that in case communication is lost, a robot
would not lose its own abilities. A second principle is to limit the amount and
frequency of data transmission between robots; only relevant information should be
communicated. Thus, only the internal-state, basic communication information and
the world-model are communicated. In Fig. 2 is shown the data structure used for
robot communication. The internal state includes the robot’s mission, role, status,
and identifier (ID). In the case of humanoid robots, status information includes basic

Table 3 Examples of goals

- Resource Goal Parameter
and associated robot’s
resources for a robot soccer Robot head Observe ball
application Observe goal Own or opposite goal.
Observe field line Line identifier.
Observe partner Partner identifier.
Observe rival Rival identifier.
Observe target Target position.
Robot body Go to position Position.
Go to ball and kick Kick identifier.
Go to ball and dribble
Robot head Stand-up Stand-up sequence
and body identifier.
Fall Fall sequence identifier.
Dive Dive sequence identifier.

@ Springer

J Intell Robot Syst

Table 4 Examples of primitive behaviors defined in the control architecture for a robot soccer

application
Multiplexer ~ Primitive behaviors Description
Robot head Search object ellipse ~ Predefined head ellipse enabling the search of a given
object. The ellipse shape and size depend on the object.
Object tracking Track an object with the camera and the head.
Look at target Target the camera to a given position.
Robot body Go to position Allow the robot go to a given position.
Go to ball Similar to go to position but taking care that the final robot
position will allow it to manipulate the ball (e.g. kick).
Dribbling For dribbling the ball while walking.
Avoid collision For avoiding an imminent collision.
Kick ball For kicking the ball when necessary.
Robot head Stand-up For standing-up after a fall.
and body Fall To minimize the joint torque when instability is detected,
and a fall sequence is triggered to avoid robot damage.
Dive Dive sequence used by a player (normally the goalkeeper),

to prevent a goal.

status data such as the robot standing status (stable, unstable or fallen). The basic
communication information includes the time elapsed since the last communication
and a data received flag. The world model includes the robot’s pose, the local map,
and the associated confidence values. The local map includes the position of objects
of special interest for the robot (e.g. the ball in case of robot soccer).

The coordination between robots assumes that robots are homogeneous: all
robots have similar motor and perceptual capabilities. In the case of a soccer ap-
plication, it is also assumed that all robots move in a known field, allowing the use of
a single coordinate’s system in the global map of the robots.

The Multi-Agent Mission Coordinator (MAMC) is in charge of evaluating the
internal-state of the other team members, and it determines which partners are
available for a group mission. The evaluation is made considering the other robots’
missions, roles and deliberative-layer states. The MAMC must be able to detect when
a robot is not accomplishing the assigned mission or when it has not transmitted

e Data Received o
State Flag Local Map Mission
Communication | | communication]
structure Status Time Last R Role
Communication
World
Modelling] Local Map Robot
Confidence Status
Robot Pose
Confidence Robot ID

Fig.2 Diagram of the data structure used for communication between the robots

@ Springer

J Intell Robot Syst

status information for a long period, to set it as unable to accomplish the mission
that was assigned to it, and to free this role in the mission. For instance, in a soccer
application, if the mission is to attack and the striker falls down, the MAMC of the
other robots must eliminate it from the available team members until the robot
stands up and localizes itself again. The Multi-Agent Mission Selector (MAMS)
is in charge of evaluating the information that all teammates make available, and
determining the mission to be accomplished by the robot or the team, in case the
selected mission can be executed by more than one robot. After a mission is assigned,
each robot should continuously evaluate if the mission can still be accomplished
(the environment may have changed), or if a new mission should be selected. The
MAMS has a default mode or a default mission in case there is no communication or
communication is lost. For instance, in a soccer application a field robot sets up attack
as the default mission, and striker as the role. The Agent Role Selector (ARS) selects
arole in the context of a specific mission. It considers the MAMC information about
the teammates roles to select its own role. If different team members are executing
the same role, the first robot that detects the double role assignment is in charge of
informing the others.

The Multi-Agent World Modeling (MAWM) is in charge of fusing the different
world-models transmitted by the available teammates. The fusion procedure can be
implemented with an approach similar to that of [32], in which each robot uses a
Kalman filter to fuse the data corresponding to each object of interest.

In our current implementation for Nao humanoid robots (see Section 4), the
communication between the different robots is carried out using UDP broadcasts
over a wireless network. The data structure transmitted contains the estimated global
position of the ball in the local map, the estimated own pose computed by the self-
localization module, the mission, the role, and the internal status of the transmitter
robot. Each robot transmits this information every 30 s. In case the robot falls down
or loses any critical perceptual information for determining its mission and role, it
informs immediately the change in it internal state (status field) to the team, by
sending an instant message without waiting the timer. The communication between
robots is completely asynchronous, so whenever a robot receives new information
from a teammate it performs an evaluation of the planning layer, and it only sends
information to the deliberative layer in case its mission and role need to be changed.

3.4 Deliberative Layer

The deliberative layer manages the mission that the planning layer has defined. At
this level, deliberative behaviors are organized as state machines, whose structure
depends on the robot role. Each state can be structured as a single behavior or as
a behavior-tree. The deliberative layer is able to make long-term decisions such as
trajectory planning. It configures the multiplexers available in the reactive layer, and
it sets up the parameters required by them in order to select the primitive behaviors.

The deliberative behaviors configure the resource multiplexers directly or through
a Value Function, which are used in case that multiple objectives need to be handle.
In both cases a score vector, which contains the score corresponding to each goal that
can be achieved by the robot, is sent to one or several resource multiplexers. The
different score values depend on the mission being executed, the robot’s internal
state, the active deliberative behavior, and the world state. The mission’s time

@ Springer

J Intell Robot Syst

requirements define the minimal rate at which the scores are updated. In addition,
even though the resource multiplexers update the score values using perceptual data
(see Section 3.5.2), they cannot change the overall system state or the goals.

Value Functions are in charge of evaluating and sometimes merging robot’s goals,
depending on the current behavior and mission, and they permit implementing active
vision behaviors in the architecture. A value function is defined as a function of
the world-state, whose value increases with the degree of benefit of the world-
state for the execution of the corresponding deliberative behavior [30]. Thus, they
allow selecting the benefit of observing a given target, depending on the deliberative
behavior being executed. For instance, while executing the goal-covering behavior
that requires that the goalkeeper places itself in such a way that it covers the maximal
free angle of the goal when observed from the ball position (see Section 4 for a
more detailed explanation of this behavior), the corresponding value function will
evaluate the benefit of observing the ball for having a better estimation of its position,
or of observing the landmarks for having a better estimation of the robot’s pose.
Value functions also evaluate the option of looking at multiple objects in case this
is possible, and they are able to determine a spatial position from which they can
be observed simultaneously. Section 3.6 describes the module that implements the
active vision system where value functions are used.

3.5 Reactive Layer

This layer is the fastest one, and it decides directly which action must be executed
when resources from the robots are available. It is built using primitive-behaviors,
which are able to inhibit other primitive-behaviors that use the same resources. The
robot’s resources are joints that need to work simultaneously in order to reach a
goal. A resource could be just a joint or a group of them. For instance, in a humanoid
robot all joints of the legs are considered as a single resource required for walking.
Actuation is implemented to coordinate and monitor the different joints in the
system, and it asks the reactive layer for the next action in a specific resource when
this resource is going to be released. The reactive layer gets data from all sensors
available in the robot (e.g. accelerometers, gyroscopes, cameras), and also from the
deliberative layer. The data coming from the deliberative layer is used to configure
activation conditions and short-term goals for the primitive-behaviors, while sensor
data is used as parameters for the primitive behaviors.

Resource multiplexers allow handling multiple goals for the same robot’s re-
sources by allowing the activation of primitive behaviors that will use the corre-
sponding resources. Tables 3 and 4 show some examples of resources, resource
multiplexers, and the associated goals and primitive behaviors for the case of a robot
soccer application. The sensorial data is collected at different rates depending on the
sensor measurement rates (e.g. accelerometer data is obtained at a much higher rate
than images), and primitive behaviors always use the latest available data.

3.5.1 Primitive Behaviors

Primitive behaviors are the fundamental building blocks of the hybrid control system.
They correspond to simple behaviors which can be executed very quickly, and that
are associated with group of robot resources. For instance, in robot soccer the object-
tracking and search-object-ellipse primitive behaviors are associated with the robot

@ Springer

J Intell Robot Syst

head. Whenever new data is available, the selected primitive behavior determines
the next action to be executed by the robot in order to accomplish the desired goal.
The deliberative layer is responsible for the configuration of the primitive behaviors
that will be used, but the final decision about which primitive behaviors will be
activated is made using perceptual data. This allows the system to be more reactive.
For example, the selection of the kick-ball or go-to-ball primitive behaviors is made
using perceptual data, while the kick to be used is given as a parameter defined by
the deliberative layer. The primitive behaviors are only aware of a short-term policy,
and they do not take into account the consequences of the actions or the changes
produced by them in the environment. An activated primitive behavior inhibits all
other primitive behaviors that require the use of the same robot resources. In this
sense, all activated primitive behaviors are orthogonal behaviors [25], because they
do not use the same resources.

The deliberative layer can deactivate primitive behaviors. In fact, a deliberative
behavior can decide that a primitive behavior must not be activated for the accom-
plishment of a given mission. For instance when the robot decides it needs to dribble
the ball, instead of kicking it, the kick-ball primitive behavior is deactivated.

The primitive behaviors can decide on three different types of policies to be used
for sending commands or orders to actuation:

Queue Policy The command is placed as the last one in the queue of actions to
be executed. The principle behind having a queue of commands
is to allow the continuous movement of the robot (e.g. continu-
ous walk), by avoiding the initializing and ending steps that are
only performed when they are required.

Non-queue Policy The command is not queued, and it overwrites all queued
commands.

Special Policy The command corresponds to a non-parametric sequence of
movements, for instance, kick movements, stand-up sequences
and fall sequences.

Actuation sends three different kinds of messages to the reactive layer:

Command-Odometry Odometric data of the current robot command,
sent from the actuation module to the reactive
layer.

Command-Finishing-Notification — Actuation notifies the reactive layer that a com-
mand execution is going to finish, and that re-
sources used by this command will be released.

Command-Cyclic-Part In case of cyclic movements, actuation no-
tifies that the command being executed can be
changed without disturbing the robot. The un-
derlying concept is that a cyclic command can
be divided into three stages: initialization, ex-
ecution, and end. While the initialization and
end stages are common to all movements, the
execution part is the one that can be modified
while executing cyclic movement (e.g. robot
cyclic walk).

@ Springer

J Intell Robot Syst

3.5.2 Resource Multiplexers

Resource multiplexers manage robot resources by selecting the goal for primitive
behaviors that will access them. In the case of our implementation for humanoid
robots, the resources to be managed are the robot body and the robot head. There are
multiplexers in charge of selecting goals that will activate primitive behaviors that will
send commands to the head, to the body, and to the head and the body at the same
time (see Table 4). Each multiplexer receives the perceptual data acquired at time
step k, and a score vector from the deliberative layer, which include a deliberative
score Sd, and some additional parameters for each possible goal. The structure of the
score vector can be seen in Fig. 3.

In the multiplexer, an activation function computes new goal scores in two stages.
The first stage is optional, and it is used only if the score vector includes more than
one goal. In this case, whether the goals can be executed simultaneously or not is
verified. An example of simultaneous goals is observing two different objects at the
same time (e.g., a ball and a goal in robot soccer). If this simultaneous action is not
possible given the current situation (e.g., robot pose), then the goal can be divided
into two, or even more goals. The second stage consists of computing a new score
for each goal using Sd and a reactive score Sr, which is refreshed every time a new
perception is received. Sr and Sd can be combined in different ways. In our current
implementation Sr and Sd are averaged. Computing the final scores in the reactive
layer allows the system to react to fast changes in the environment. In fact, if no
scores were actualized in the reactive layer, the system would only be able to evaluate
goals at the deliberative layer’s frequency. However, it is important to note that the
deliberative score Sd is associated to a long-term objective so it remains unchanged
until a new one is computed in the deliberative layer.

Once the goal is selected by the multiplexer, one primitive behavior is activated
and executed taking the perceptual data into account. The selected primitive-
behavior inhibits the others that could require the same robot’s resources. For
example, in the case of observe-goal, two primitive behaviors can be selected object-
tracking, in order to track the goal, or search-object-ellipse, in order to find the goal.

In the case of primitive behaviors associated with the robot head (see Table 4),
the multiplexer should also determine, in case of having multiple goals (i.e., multiple
objects need to be observed), the spatial position that need to be observed or tracked
(see [33] for details).

Score || Deliberative Object | | Id
1 Score 1
Mux N : .
S | & Goal = 1
Vector
Sc:re Objects Object i

Fig. 3 Data structure for the score vector used for the robot head multiplexor. This data structure
is dynamic because its size depends on runtime information added by the deliberative layer. Score
information (deliberative score and objects) is defined for each possible goal (see Table 3)

@ Springer

J Intell Robot Syst

3.6 Active Vision System

The active vision system is an optional module of the architecture that allows adding
flexibility in the implementation of complex behaviors. This system tries to reduce
the most relevant components of the uncertainty in the world-state, for the execution
of the current deliberative behavior that the robot is performing. The world-state, xi,
is the set of relevant variables of the world model (robot localization, other objects
positions, etc.) needed for the robot to make decisions. A value function is defined
as a function of the world-state (Vi(xx)), whose value increases with the degree of
convenience of the world-state for the execution of the corresponding deliberative
behavior.

The system requires the existence of a subset of primitive-behaviors that
influences the observations but not the state. This assumption holds in many mobile
robots, in which there exist acting primitives, uj, which allow moving the robot and
therefore directly influencing state x; and indirectly observation z; through xi, as
well as sensing primitives, w;", that directly influences the observation z; but not
x,. For instance, in the case of a typical humanoid robot with a camera mounted on
an articulated neck, the camera movements do not influence the world-state; u;”
corresponds to orders for the neck joints, and u{” corresponds to orders for the rest
of the robot body. In terms of the primitive behaviors described in Section 3.5.1, a
sensing order w; can be generated by any primitive behavior associated with the
head resource, while an acting order uj can be generated by any primitive behavior
associated with the body resource.

In order to select an “optimal” objective to sense with a primitive-behavior u}", it
is necessary to define an optimality criterion, which will depend on the corresponding
deliberative-behavior. If we consider a discrete sensing primitive-behavior space,
U, then u‘}(“’”* can be found by iterating over U, and for each w" calculating
the value function by computing a given optimality criterion. As behavior dependent
optimality criterion the minimum expected value variance, which minimizes the
expected variance of the value function after the next sensing primitive-behavior u;,
or the maximum expected action task value, which maximizes the expected value of
the value function after the next acting primitive-behavior uj{,, can be used (see
explanation in [30]).

Thus, the active vision system consists of the following steps:

(a) In time step k, the reactive layer decides the best acting primitive-behavior

u?“, which should maximize the expectation of the corresponding deliberative-

behavior value function £ (Vk(xk) !ui“) ui“ is executed, and according to the
process dynamics, the world-state moves from x;_; to xi.

(b) The world-modeling module makes a prediction (preliminary estimation) about
Xe, by (%) = p (X |Uk—1, Zi—y, usc).

(¢) In the deliberative layer the robot selects the optimal sensing primitive-
behavior by evaluating the corresponding value function, computed using the
optimality criterion regarding the resulting belief b« (-). This requires consider-
ing all possible objects to be observed, and in each case simulating the execution
of the corresponding wj®”, which also requires simulating the operation of the
correction stage of the world-modeling module (simulation of steps (d) and (e)).
The information about the selected sensing primitive-behavior is sent to the
reactive layer as a deliberative score.

@ Springer

J Intell Robot Syst

(d) The reactive layer uses the deliberative score, in addition to the reactive score,
in order to compute the final score and to activate the final sensing primitive-
behavior uj’fe*. Then a sensing action is executed and a new observation z is
obtained.

(e) The world-modeling module uses z; to update the belief b (-) (correction stage
of the filter).

In [30] this active vision system is explained in detail.

3.7 Modules Communication and Synchronization

The architecture described above is implemented using the robotics library,
UChileLib [31]. This library provides several functionalities regarding computer
processes and communications, and it allows the development of modular software.
UChileLib makes use of the Boost Libraries [35], is OS independent, and can be
compiled and executed in Windows or Linux.

In the library, a module is a part of the software with an encapsulated functionality
that has a clear and explicit interface with the rest of the software. In order to allow
modules to work concurrently, to share memory, and to communicate easily with
each other, we implement each of them as a thread. We define a package as a group
of data that will be transmitted as a whole from one module to another. Every time a
module wants to send some information to another module, it generates a package.
If the receiving module is ready to receive, the package is sent immediately. If not,
the package is stored for a later delivery. When a new package needs to be sent,
and there are other packages waiting to be sent, three possible courses of action can
be taken, depending on the specific connection: (1) overwriting the existing package
and keeping just the newest one, (2) queuing all the packages in order to make sure
that all of them will arrive at the listening module, or (3) re-packaging the packages’
data so that only one contains the information of all of them. This can be done when
the data contained in the packages can be somehow “summed up”, for example, the
odometry in a self-localization filter.

A module that has incoming and outgoing communication connections has to
handle two types of messages coming from other modules: (1) the messages that
notify the module that a new package has arrived from an incoming connection, and
(2) the messages that notify the module that another module is ready to receive a
new package through an outgoing connection. Since the module has only one thread
to process these messages, they can be queued. Consequently, each module has a
queue of messages to be processed, and it processes them in the order in which they
arrive.

In order to make the library multi-platform, and to reuse as much code as
possible, the modules that need to communicate with the robot hardware have
all their functionality in a platform independent layer. This platform independent
layer of modules is implemented as an abstract class, in which the functions that
communicate with the hardware are declared but not implemented. Then, using class
inheritance, these platform independent modules are instantiated for every required
robot platform. Consequently, the platform-specific instances of these modules need
to implement only the functions that communicate with the hardware.

@ Springer

J Intell Robot Syst

4 Validation in Nao Humanoid Robots
4.1 Experimental Setup

One of the main features of robot soccer is that playing soccer is a complex behavior
that requires solving several simultaneous problems in real-time (sensor fusion,
vision, self-localization, decision making, team coordination and gait control, just
to name the most important ones). Thus, robot soccer seems to be an adequate
benchmark for a real-time robot architecture as the one being proposed here. In
the experimental setup, Nao humanoid robots (produced by Aldebaran Robotics
[34]) and the RoboCup SPL (Standard Platform League) rule definition [38] are
used. In the performed experiments real and simulated Nao robots, both running the
UChileLib control architecture (see Section 3.7), are used.

The Nao robot has 21 degrees of freedom and its main external sensors are two
cameras placed on its head. In addition, it has several other sensors such as sonar,
pressure sensors, and accelerometers. As its main processor unit, the Nao has an
AMD GEODE 500 MHz CPU, with a256 MB SDRAM. The robot can communicate
with other robots or with an external computer using a wireless IP network. The
native Nao’s OS is an Embedded Linux (32 bit x 86 ELF) using a custom Open
Embedded based distribution.

The UChile HL-SIM simulator [29], a 2D simulator developed by our research
group, was used as the simulation environment. In this simulator, the sensing data
is replaced by simulated data, and the actuation module commands are executed
virtually by a virtual robot running in the graphic interface of the simulator. These
modules—vision and actuation—have controlled noise, and they are connected with
the other modules in the same way as they are connected in the real robots. This
allows us to run the hybrid control and world-modeling modules in the simulated
environment as if they were running in the real robot. The graphical interface of the
simulator and its engine run in a single process that communicates with the robot
processes via sockets (allowing the robot clients to run in different computers). By
having this parallelism, the simulator is able to take into account the time that the
robot expends in processing, thus achieving more realistic experiments. In the sim-
ulator, communications are implemented in a slightly different way from the robots
to avoid Internet port conflicts when several simulated robots are running in the
same computer. The simulator’s server centralizes all intra-robot communications,
and every simulated robot has a full duplex TCP socket communication with the
server. The broadcasts are emulated using the following procedure: the transmitter
robot sends the message to the server, and then the server distributes it to the rest of
the robots.

The reported experiments validate the ability of the architecture to react to fast
changes in the environment while executing expensive behaviors (active vision while
playing soccer), and the ability to execute group behaviors (team soccer playing)
without disturbing the robot’s reactivity.

4.2 Active Vision Experiments in a Simulated Environment

The main goal of these experiments is to validate the ability of the architecture to
react to fast changes in the environment, while executing an expensive task in terms

@ Springer

J Intell Robot Syst

Vertical straight line. Horizontal straight line. Parabolic movement.

Fig. 4 Ball trajectories used in the goal-covering experiments (UChile HL-SIM simulator
visualization)

of processing time. The selected task is the execution of an active vision behavior,
the “goal-covering behavior”.

In this experiment, the goalkeeper intends to cover the goal at all times while
minimizing the available shot angles for an attacking player. Hence, the robot needs
to localize itself in order to be sure that it covers the goal, while at the same time it
looks at the ball for detecting whenever it is coming toward the goal. To accomplish
this task, active vision (see description in Section 3.6) is used intensively in order
to reduce uncertainty in localization, while estimating the score associated to each
object of interest (beacons and the ball), given from the value function. This score,
which is computed using the deliberative and the reactive scores (see Section 3.5.2),
shows the best object in the field for correcting the pose estimation, while keeping
attention on the ball. The experiments are made with a robot executing the goal-
covering behavior, and with the ball moving through three different trajectories, as
shown in Fig. 4. In the simulator, the ball is moving at a constant speed of 0.2 m/s.

Experiments with the deliberative layer running at three different speeds (0.5,
1, and 2 Hz) were carried out. In these experiments the frequency of the reactive
layer varied between 14 and 100 Hz, with a mean value of 57 Hz.> Results are
shown graphically in Fig. 5. In each case, the deliberative-, reactive- and final-score
of each object of interest (ball, goal-beacon 1, and ball-beacon 2), as well as the ball
confidence, are shown. It should be remembered that the final objects scores are
used to determine the objects to be observed; the object with the highest score is
always observed. On the other hand, the confidence values are indications of how
good the state of a tracked object is. The higher the confidence of an object, the
lower its associated score. Table 5 shows the average percentage of time that the
robot decides to observe the ball, and the average percentage of time that the ball is
in an unknown position (lost), as a function of the speed of the deliberative layer.

Two main conclusions can be drawn from the experiments. The first one is that
the computation of the final score, using the deliberative and reactive scores in the
reactive layer, is the feature that enables the system to react to fast changes in the en-
vironment. The reactive score allows the system to react quickly, and to handle quick
changes in the environment, while the deliberative score handles a long-term goal

2The reactive layer always runs at the maximal possible execution rate. Frequency variations are
due to variations in process execution conditions, such as image acquisition execution, variations in
behavior-tree evaluation conditions, etc.

@ Springer

J Intell Robot Syst

a Final Score For Gaze Direction Selection

Fo Evolution of the Ball Confidence
1.5 =
Ball S v .
@ Goal-Beacon1 B 15 Ball viewed
2 Goal-Beacon?2 | z s :
o i i) Ball Confidence
wl = 1
= —
=]
g
ol § 0 -
0 50 100 150 200 250 300 350 © 0 100 200 300
Time (samples) Time (samples)
Score Calculated by the Deliberative Layer Score Calculated by the Reactive Layer
@ 15 Ball 1 Ball
o [:1]
& Goal-Beacon1 s 1 Goal-Beaconl -
° 4 Goal-Beacon2 | 73] Goal-Beacon2
F 2
2 505
£ 05} 1 8
= x
u 1 1 n D
0 100 200 300 0 100 200 300
Time (samples) Time {(samples)
Final Score For Gaze Direction Selection olution of the Ball Confidence
Evolution of the Ball Confid
1 15
Ball = Ball viewed
08 .
s Goal-Beacon1 3 4 Ball Confidence
o
5 06 Goal-Beacon2 E, e
@ > 1\\, ™ k
T Ay ™,
04 g
- 205 .
02 ig
0 : : : ' : <1
a 100 200 300 400 S00 600 0 200 400 600
Time (samples) Time (samples)
Score Calculated by the Deliberative Layer 1 Score Calculated by the Reactive Layer
o 1 Ball 08 Ball
2 —— Goal-Beacont | g Goal-Beacon1
tﬁ : Goal-Beacon?2 i 06 Goal-Beacon2 4
=2 06] ®
w =
2 04 5 0.4
2 02 02
0 : : : - : 0 a -
1] 100 200 300 400 500 600 0 200 400 600
Time (samples) Time (samples)

Fig. 5 Goal-covering results for three different situations: Deliberative layer running at frequencies
of 0.5 Hz (a), 1 Hz (b), and 2 Hz (¢). In all cases the reactive layer is running at a mean frequency of
57 Hz (see main text for details)

@ Springer

J Intell Robot Syst

(v Evolution of the Ball Confidence
Final Score For Gaze Direction Selection 15
1 E Ball viewed
osl o | - Ball Confidence
: Goal-Beacon1 g]
g L
06} >
<]
3 04 : E
e v E 0.5 1
02 g
3
D i i i i L D L L
1] 100 200 300 400 500 600 0 200 400 60C
Time (samples) Time {Samples)
Score Calculated by the Deliberative Layer 1 S0re Geulatan by the eactive Laver
& Ball] o 08 Ball |
S Goal-Beacon1 2 Goal-Beacon1
» 08 1 ® 06
@
Z 06 2
= 5 0.4
2 04 3
8 02 2
U L L G " "
0 200 400 600 0 200 400 60C
Time (samples) Time (samples)

Fig. 5 (continued)

that is needed to accomplish a mission. For instance, in the case of the deliberative
layer running at 1 Hz, the ball moves 20 cm between each iteration of the deliberative
layer. Making decisions at this speed (1 Hz) would not be enough to track the ball
properly. However, as can be seen in Fig. 5b, the system is able to keep track of the
ball, and its associated confidence value remains high most of the time.

The second conclusion is that the system needs a critical frequency at which the
deliberative score can be refreshed. This can be observed in Fig. Sa, which shows the
robot’s performance when the deliberative layer runs at 0.5 Hz. In this case the ball
moves 40 cm between each iteration of the deliberative layer, and updating the final
scores of the objects in the reactive layer at 57 Hz is not enough to keep track of
the objects properly. As shown in Table 5, in 34.2% of the cases the ball position is
unknown. In fact the ball confidence stays low, even though the robot is trying to look
at the ball most of the time (45.2% of the time). Moreover, the robot has localization

Table 5 Statistics about ball perception, while the robot is executing goal-covering behavior

Frequency of the Average percentage of the Average percentage of
deliberative layer time that the robot decides the time with the ball in
(in Hz) to observe the ball an unknown position
0.5 452% 34.2%

1 28.5% 19.0%

2 31.5% 10.9%

In all cases the reactive layer is running at a mean frequency of 57 Hz

@ Springer

J Intell Robot Syst

Table 6 Reactive and deliberative layers frequency for different missions and roles, in real-world
experiments with a Nao Humanoid robot

Mission/role Layer Max frequency Average frequency Min frequency
Hz Hz Hz
Defend the goal/ Reactive 69 54 42
goalkeeper Deliberative 1.91 1.6 1.5
Attack/striker Reactive 70 58 47
Deliberative 1.9 1.71 1.6

problems because most of the time it is trying to observe the ball, but not the
goal-beacons. With the deliberative layer running at a high speed, the robot switches
the target of the gaze to different objectives more precisely than when it runs at a
low rate, due to the fact that in cases when the environments present large changes,
deliberative goal selection becomes important. As can be observed in Table 5, when
the speed of the deliberative layer increases, both the percentage of time that the
robot decides to observe the ball and the percentage of time that the ball is in an
unknown position, decrease.>

4.3 Active Vision Experiments in a Real Environment

The main goal of these experiments is to validate the usefulness of the proposed
architecture when controlling a humanoid robot in the real-world, and its ability to
react to fast changes in the environment, while executing an expensive task in terms
of processing time.

To accomplish this, the architecture was tested in extensive experiments in which
a robot was playing soccer for several minutes. In these experiments the robot exe-
cuted several different missions in different roles (see Table 1), and it used different
deliberative behaviors (see Table 2), some of them including active vision mecha-
nisms. In all cases the robot behaved properly, and the use of active vision behaviors
did not affect the robot’s responsivity and reactivity.

In Table 6 the average frequency of the reactive and deliberative layers when exe-
cuting two different missions and roles are shown. These mean values were measured
in several game situations, during more than 60 min of operation. As can be observed
the average frequency of the deliberative layer is ~1.65 Hz, while the average
frequency of the reactive layer is ~56 Hz.

The robot reactivity was measured by letting the robot fall while executing the
goal-covering behavior. After falling, the robot detected the fall in just 51 ms, and
after some seconds it was already back in a proper playing position (see Fig. 6).
The standup sequence takes several seconds because of mechanical and electronic
limitations of the robots. Even though the deliberative layer is executed every 600 ms,
the robot detects the fall in just 51 ms, because the reactive layer executes every
18 ms. The fall is detected as soon as the reactive layer receives and processes the
accelerometers and gyroscope readings.

3Note for the reviewers. A second set of experiments was carried out for the case of a striker
player executing an active vision behavior. In these experiments similar results as the ones of the
goal-covering behavior were obtained Due to space limitations, they are not included in the paper.
However, they can be incorporated upon request.

@ Springer

J Intell Robot Syst

T =8.57 [s] T =14.09 [s] T=17.16 [s]

Fig. 6 Exemplar situation of a robot fall and recovery while executing the goal-covering behavior.
In T = 8.52 the robot falls. In T = 8.57 the robot detects the fall and starts the recovering process. In
T = 14.09 the robot is again in a proper playing position. The standup sequence takes several seconds
because of mechanical and electronic limitations of the robot

4.4 Group Behaviors Execution While Playing Soccer in Real Competitions

The ability of a team of Nao humanoid robots to play soccer properly and to execute
group behaviors while using the proposed architecture was validated in three testing
environments. In the first environment, the architecture was tuned and tested using
the UChile HL-SIM simulator. Several complete games between teams of four Nao
robots were successfully simulated. In these games robots behaved properly, and they
were able to execute complex group’s behaviors.

In the second set of experiments, the architecture was tested in the SPL soccer
robotics field of our laboratory (see Fig. 6). In this case several games between teams
of two robots were carried out. In the experiments, the humanoid robot players were
able to carry out group’s behaviors and act very reactively at the same time.

In the third set of experiments, the architecture was validated in soccer games
against other teams during the RoboCup 2010 world-championship (Singapur, July
2010) [37]. In this competition our UChile team built a joint team, the CHITA team,
together with the SPQR team from the Sapienza Universita di Roma. During games
robots of each sub-team used their own control code. Data communication between
robots of both sub-teams was implemented with the common communication proto-
col described in Section 3.7. In the four games that the joint CHITA team played, a
good performance of the UChile robots was observed, due to the use of the proposed
control architecture. In particular:

The robots of the UChile sub-team kicked three goals during the competition—
one against Nao Devils (Germany), one against Kouretes (Grece), one against Les
3 Mousquetaires (France) - [37]. In addition, robust behaviors were observed; the
robots kicked to the opposite goal every time they could, and when they fell down

@ Springer

J Intell Robot Syst

they stood up very fast in a very reactive way. These observations demonstrated
that the architecture allowed good coordination between the internal robot’
control-processes, allowing robots taking the right decisions at the right time. The
architecture worked in a reactive way when it was required.

The data communication with the robots of the SPQR sub-team worked correctly
and allowed the implementation of team behaviors. Using the communication
protocol, each robot transmitted a flag indicating when the ball was observed, and
the distance to the ball. The planning layer of each robot received this information,
and used it in order to determine the mission and role of each robot. For example,
if two robots observed the ball at approximately the same distance, then both
robots set up the attack mission and the striker role, and they went to the ball,
at the same time. In case one robot observed the ball at a shorter distance than the
other robot, then this robot set up the attack mission and the striker role and it went
to the ball. The other robot set up the attack mission and the striker cover role and
kept a fixed distance form the striker, avoiding disturbing it. The observed correct
execution of team behaviors implies that all layers of the proposed architecture, as
well as robot’s communication, were working coordinately. In addition, thanks to
our modular architecture, implementing communication and coordination of team
behaviors among robots running different control codes was straightforward.

One of the main reasons for not having a better performance during the RoboCup
2010 competition was the fact that our robots have a slower gait than robots from
other teams. This is an aspect that is being improved.

5 Conclusions

In this paper, a real-time hybrid control architecture for biped humanoid robots has
been proposed. In this architecture the main robot’s functionalities are organized
in four parallel modules: perception, actuation, world-modeling, and hybrid control.
The hybrid control module is divided into three different layers with different re-
sponse speed and planning capabilities: the planning layer, the deliberative layer and
the reactive layer.

The architecture was validated using Nao humanoids in simulated and real
environments. The experimental results have shown the feasibility of having active
vision mechanisms that do not disturb the robot reactivity, and the straightforward
management of the robot’s resources using resource multiplexers. The control
architecture was able to maintain real-time responsiveness in the reactive layer of a
real humanoid robot, while the deliberative layer developed more complex behaviors
at lower frequencies. In a real-game situation, the robot was able to detect a fall in
just 51 ms, even though it was executing an active vision behavior (goal-covering).
In addition, the ability to execute group behaviors in real-time was tested in inter-
national robot soccer competitions. In this application, the use of the architecture
allowed implementing communication and coordination of team behaviors among
robots running different control codes.

As future work we would like to extend the use of this control architecture to
other applications (autonomous vehicles and service robot platforms), and to include
learning capabilities in it. For instance, we would like to use reinforced learning in
order to learn the value functions.

@ Springer

J Intell Robot Syst

Acknowledgement This research was partially funded by FONDECYT (CHILE) under Project
Number 1090250.

References

10.

11.

12.

13.
. Hoshino, Y., Takagi, T., Di Profio, U., Fujita, M.: Behavior description and control using behav-

15.

16.
17.
18.
19.
20.

21.

22.

23.

. Arkin, R.: Behavior-Based Robotics. MIT Press (1998)
. Arkin, R., Fujita, M., Takagi, T., Hasegawa, R.: An ethological and emotional basis for human—

robot interaction. Robot. Auton. Syst. 42(3-4), (2003)

. Brooks, R.: A robust layered control system for a mobile robot. IEEE J. Robot. Autom. 2(1)

(1986)

. Jaeger, H., Christaller, T.: Dual dynamics: designing behavior systems for autonomous robots.

In: Artificial Life and Robotic, vol. 2(3), pp. 108-112. Springer, Japan (1998)

. Hertzberg, J., Jaeger, H., Zimmer, U., Morignot, P.: A framework for plan execution in behavior-

based robots. Proceedings, pp. 8-13 (1998)

. Behnke, S., Frotschl, B., Rojas, R.: Using hierarchical dynamical systems to control reactive

behavior. In: Lecture Notes in Computer Science, pp. 186-195 (2000)

. Behnke, S., Stiickler, J., Strasdat, H., Schreiber, M.: Hierarchical reactive control for soccer

playing humanoid robots. International Journal of Humanoid Robotic 5(3), 375-396 (2008)

. Hurdus J., et al.: Victor tango architecture for autonomous navigation in the Darpa Challenge. J.

Acro. Comput. Inform. Commun. 5(12), 1542-9423 (2008)

. Berger, R., Burkhard, H.: At Humboldt—team description 2007. In: Lecture Notes in Computer

Science (RoboCup 2007) (2008)

Chernova, S., Arkin, R.: From deliberative to routine behaviors: a cognitively inspired action-
selection mechanism for routine behavior capture. Adapt. Behav. 15(2), 199-216 (2007)
Huntsberger, T., Pirjanian, P., Trebi-Ollennu, A., Aghazarian, H., Das, H., Joshi, S., Schenker,
P.: CAMPOUT: a control architecture for tightly coupled coordination of multirobot system for
planetary surface exploration. In: Proc. SPIE Conf. Sensor Fusion and Decentralized Control in
Robotic System 111 (2000)

Christensen, H., Pirjanian, P.: Theoretical methods for planning and control in mobile robotics.
In: IEEE Conf. on Knowledge-Based Intelligent Electronic System (1997)

Maes, P.: Modelling adaptive autonomous agents. J. Artif. Life 1, 135-162 (1994)

ior module for personal robot. In: Proc. IEEE Conf. Robotic and Automation (2004)

Sawada, T., Takagi, T., Fujita, M.: Behavior selection and motion modulation in emotionally
grounded architecture for QRIO SDR-4X II. In: Proc. IEEE Conf. on Intelligent Robots and
Systems (2004)

Steinbahuer, G., Wotawa, F.: Enhacing plan execution in dynamics domains using model based
reasoning. In: Lecture Notes in Computer Science 5314, pp. 510-519 (2008)

Gat, E.: On Three Layer Architectures. Artificial Intelligence and Mobile Robots, pp. 195-210.
AAIA Press (1997)

Matari¢, M.: Behavior-based control: examples from navigation, learning and group behavior. J.
Exp. Theor. Artif. Intell. 9(2-3) (1997)

Lencer, S., Bruce, J., Veloso, M.: A Modular Hierarchical Behavior-based Architecture. Lecture
Notes in Computer Science 2377 (2002)

Proetzsch, M., Luksch, T., Berns, K.: Development of complex robotic systems using the
behavior-based control architecture iB2C. Robot. Auton. Syst. 58, 4667 (2010)

Friedmann, M., Kiener, J., Petters, S., Thomas, D., von Stryk, O., Sakamoto, H.: Versatile, high-
quality motions and behavior control of humanoid soccer robots. In: Proc. IEEE Workshop on
Humanoid Soccer Robot, pp. 9-16 (2006)

Ferrein, A., Potgieter, A., Steinbahuer, G.: Self-aware robots- what do we need from learning,
deliberative and reactive control? In: Proc. Workshop on Hybrid Control of Autonomous Sys-
tems, pp. 1-5 (2009)

Berger, M., Endert, H., Joecks, S.: Combining learning, deliberation and reactive control in sim-
ulated soccer: DAInamite framework. In: Proc. Workshop on Hybrid Control of Autonomous
Systems, pp. 57-62 (2009)

@ Springer

J Intell Robot Syst

24.

25.

26.

27.

28.

29.

30.

31

32.

33.

Korterkamp, D., Simmons, R.: Robotic systems architectures and programming, chapter A.8.
In: Siciliano, B., Khatib, O. (eds.) Springer Handbook of Robotics, pp. 187-206. Springer
(2008)

Mataric, M., Michaud, F.: Behavior-based systems, chapter E.38. In: Siciliano, B., Khatib, O.
(eds.) Springer Handbook of Robotics, pp. 891-909. Springer (2008)

Bonasso, R.P., Kortenkamp, D., Miller, D.P., Slack, M.: Experiences with an architecture for
intelligent, reactive agents. J. Exp. Theor. Artif. Intell. 9, 237-256 (1995)

Miiller, M.: Hierarchical activation spreading: a design pattern for action selection. In: Proc.
Workshop on Hybrid Control of Autonomous Systems, pp. 63-70 (2009)

Guerrero, P., Ruiz-del-Solar, J.: Improving robot self-localization using landmarks’ poses track-
ing and odometry error compensation. In: Lecture Notes in Computer Science 5001 (RoboCup
2007), pp. 148-158 (2008)

Guerrero, P., Ruiz-del-Solar, J., Diaz, G.: Probabilistic decision making in robot soccer. In:
Lecture Notes in Computer Science 5001 (RoboCup 2007), pp. 29-40 (2008)

Guerrero, P., Ruiz-del-Solar, J., Romero, M., Angulo, S.: Task oriented probabilistic active
vision. Int. Journal of Humanoid Robotics 7(3), 451-476 (2010)

Ruiz-del-Solar, J., Guerrero, P., Palma-Amestoy, R., Marchant, R., Yaiez, J.M.: UChile Kiltros
2009 Team description paper. In: RoboCup Symposium 2009, 29 June-5 July, Graz, Austria. CD
Proceedings (2009)

Stroupe, A., Matrin, M., Balch, T.: Distributed sensor fusion for object position estimation by
multi-robot systems. In: Proc. ICRA Conf. 2, pp. 1092-1098 (2001)

Schulz, R.: Active Vision in Anthropomorphic Humanoid Robots. Electrical Engineering Thesis,
Universidad de Chile (2010) (in Spanish)

. Aldebaran Robotics Official Website: http://www.aldebaran-robotics.com/. Accessed 19

December 2010

. Boost Library Official Website: http://www.boost.org/. Accessed 19 December 2010

. RoboCup Official Website: http://www.robocup.org/. Accessed 19 December 2010

. RoboCup 2010 Official Website: http://www.robocup2010.org/. Accessed 19 December 2010

. RoboCu SPL League Official Website: http://www.tzi.de/spl/bin/view/Website/WebHome.

Accessed 19 December 2010

. Darpa Challenge Official Website: http://www.darpa.mil/grandchallenge/index.asp. Accessed 19

December 2010

@ Springer

http://www.aldebaran-robotics.com/
http://www.boost.org/
http://www.robocup.org/
http://www.robocup2010.org/
http://www.tzi.de/spl/bin/view/Website/WebHome
http://www.darpa.mil/grandchallenge/index.asp

	A Real-Time Hybrid Architecture for Biped Humanoids with Active Vision Mechanisms
	Abstract
	Introduction
	Related Work
	A Real-Time Hybrid Architecture for Humanoid Robots
	Architecture Overview
	Basic Definitions
	Planning Layer
	Deliberative Layer
	Reactive Layer
	Primitive Behaviors
	Resource Multiplexers

	Active Vision System
	Modules Communication and Synchronization

	Validation in Nao Humanoid Robots
	Experimental Setup
	Active Vision Experiments in a Simulated Environment
	Active Vision Experiments in a Real Environment
	Group Behaviors Execution While Playing Soccer in Real Competitions

	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

