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This work deals with the study of an inverse geometric problem in fluid mechanics. In particular, we are

interested in the numerical reconstruction of a rigid body which is immersed in a cavity, filled with a

fluid, by means of measurements of the Cauchy forces and the velocity of the fluid on one part of the

exterior boundary. This problem was studied in [Alvarez C, Conca C, Friz L, Kavian L, Ortega JH.

Identification of immersed obstacles via boundary measurements. Inverse Problems 2005; 21:1531–52],

where the authors proved the identifiability and stability for this problem. In this work we present a

numerical method for the reconstruction of the rigid body for some particular geometries.

& 2008 Elsevier Ltd. All rights reserved.
1. Setting of the problem and previous results

This work deals with the study of a geometrical inverse boundary
problem arising in fluid mechanics. Geometrical inverse problems
are frequent models in several applied areas, such as medical
imaging and non-destructive evaluation of materials. In this work
we are interested in the numerical reconstruction of an inaccessible
rigid body D immersed in a viscous fluid, in such a way that D plays
the role of an obstacle around which the fluid is flowing in a greater
bounded domain O � RN . Our problem is to determine D or some
geometrical information (i.e. its shape, volume, etc.) via a single
boundary measurement on the boundary qO.

Let f 2 H1=2
ðqOÞN be a non-homogeneous Dirichlet boundary

data satisfying the standard compatibility conditionZ
qO

f � n ds ¼ 0, (1)

and let ðv;pÞ 2 H1
ðOnDÞ � L2

ðOnDÞ be the unique solution of the
Stokes system of equations:

divsðv; pÞ ¼ 0 in OnD;

div v ¼ 0 in OnD;

v ¼ f on qO;

v ¼ 0 on qD;

8>>>><
>>>>:

(2)
ll rights reserved.

3 and by the ICOB through

amiento Matemático, UMI
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s being the stress tensor defined as follows sðv; pÞ ¼ �pIþ 2neðvÞ,
where I is the identity matrix, n40 is a given constant
representing the kinematic viscosity of the fluid and eðvÞ is the
linear strain tensor defined by eðvÞ ¼ 1

2ðrvþtrvÞ.
The classical inverse boundary problem is the well known

electrical impedance tomography problem proposed by A.P.
Calderon in 1980. In this case, the boundary map is the so-called
voltage to current map, also called the Dirichlet to Neumann map;
that is, the map assigns the voltage potential on the boundary of a
medium to a corresponding current flux at the boundary.
Calderon’s inverse problem is to reconstruct the conductivity of
the medium from this boundary map. This classical problem was
at the middle of the 1980s the starting point for the mathematical
analysis of inverse problems. The interested reader is refereed to
the review by Uhlmann [1] for key historical remarks in this
subject and to the pioneering works by Kohn and Vogelius [2] or
to Sylvester and Uhlmann [3] for early results on this theory.

In this work we are dealing with a geometrical inverse
boundary problem. We will look for the unknown D in the
following set of admissible geometries

Dad ¼ fD �� O : D is a smooth connected open set in O,

such that;OnD is connectedg,

Then, we can define the boundary map, which we will refer to as
the velocity to stress force map, as follows:

L : D�!LD; LDðfÞ ¼ sðv; pÞn on qO,

acting from H1=2
ðqOÞN to H�1=2

ðqOÞN , where ðv; pÞ is the unique
solution of the stationary Stokes system (2).

Our inverse problem is to develop a numerical algorithm which
allow us to recover D from the above boundary map.
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www.elsevier.com/locate/enganabound
dx.doi.org/10.1016/j.enganabound.2007.02.007
mailto:251564256@iol.cz
mailto:cconca@dim.uchile.cl
mailto:cconca@dim.uchile.cl
mailto:rlecaros@dim.uchile.cl
mailto:jortega@dim.uchile.cl


ARTICLE IN PRESS

C. Alvarez et al. / Engineering Analysis with Boundary Elements 32 (2008) 919–925920
Firstly we will recall an identifiability result for this problem,
that is, given a fixed non-homogeneous Dirichlet boundary data,
two any different geometries D0aD1 2 Uad, there correspond
different boundary stress force measurements. This result does
not only give a positive answer to the above question, but it also
proves that for the identifiability of D; one measurement of the
velocity to stress boundary map is enough. It is worth noting that
once the identifiability result has been proved, the boundary map
D! LD has an inverse L�1 acting from the range of L to Dad.
Then, the result reads as follows.

Theorem 1 (Alvarez et al. [4]). Let T40 and O � RN , N ¼ 2 or

N ¼ 3, be a bounded, C1;1 domain, and G be a non-empty open subset

of qO. Let D0;D1 2 Dad and f 2 C1
ð½0; T�;H3=2

ðqOÞNÞ with fc0;
satisfying the flux condition (1). For �� ¼ 0 or �� ¼ 1, let ðvj; pjÞ for

j ¼ 0;1, be solution of

qvj

qt
� divðsðvj; pjÞÞ

þ��divðvj 	 vjÞ ¼ 0 in ðOnDjÞ � ð0; TÞ;

divðvjÞ ¼ 0 in ðOnDjÞ � ð0; TÞ;

vjðx;0Þ ¼ 0 for x 2 OnDj;

vjðs; tÞ ¼ fðs; tÞ for ðs; tÞ 2 qO� ð0; TÞ;

vjðs; tÞ ¼ 0 for ðs; tÞ 2 qDj � ð0; TÞ:

8>>>>>>>>>>>><
>>>>>>>>>>>>:

(3)

Assume that ðvj; pjÞ are such that

sðv0;p0Þn ¼ sðv1; p1Þn on G� ð0; TÞ.

Then D0 
 D1.

The same identification result holds for the stationary problem:

Theorem 2 (Alvarez et al. [4]). Let O � RN , N ¼ 2 or N ¼ 3, be a

bounded, Lipschitz domain, and G a non-empty open subset of qO. Let

D0;D1 2 Dad and f 2 H3=2
ðqOÞN with fc0, satisfying the flux

condition (1). For �� ¼ 0 or �� ¼ 1, let ðvj; pjÞ for j ¼ 0;1, be solution of

�divðsðvj; pjÞÞ þ ��divðv	 vÞ ¼ 0 in OnDj;

divðvjÞ ¼ 0 in OnDj;

vjðsÞ ¼ fðsÞ for s 2 qO;

vjðsÞ ¼ 0 for s 2 qDj:

8>>>><
>>>>:

(4)

Assume that ðvj; pjÞ are such that

sðv0;p0Þn ¼ sðv1; p1Þn on G.

Then D0 
 D1.

On the other hand, the stability of our inverse geometrical
boundary problem corresponds to study continuity properties of
the inverse of the boundary map. In [4], the authors obtained a
partial answer to this problem, that is, they proved a directional
continuity of the inverse boundary map.

Let us consider the change of variables

C : O0�!Ot :¼ CtðO0Þ ¼ I þ tC1ðO0Þ,

and let ðvt; ptÞ 2 H1
ðOtÞ

N
� L2
ðOtÞ be the unique solution of the

Stokes system in the deformed domain, that is,

�divðsðvt; ptÞÞ þ ��divðv	 vÞ ¼ 0 in Ot;

divðvtÞ ¼ 0 in Ot;

vtðsÞ ¼ fðsÞ for s 2 qO;

vtðsÞ ¼ 0 for s 2 qDt:

8>>>><
>>>>:

(5)

(For t ¼ 0 note that C0 ¼ I and Ot ¼ O0.) Then, under suitable
assumptions on the function C1, the mapping

Ct 7!sðvt; ptÞn ¼: LCtðO0Þ
is analytic in an open subset of W1;1-‘‘diffeomorphisms’’ (by an
abuse of language we shall say that C is a W1;1-diffeomorphism
when both C and C�1 are in W1;1

ðRN ;RNÞ, and restricted,
respectively, to the domains OnD0 and CðOnD0Þ). In particular, it
can be differentiated with respect to C; as a matter of fact, the
corresponding derivative is the so-called shape derivative of the
solution of (5) with respect to the geometry.

Theorem 3 (Alvarez et al. [4]). Let D0 2 Dad, C0 :¼ I and C1 2

W1;1
ðRN ;RNÞ such that C1 
 0 in a neighbourhood of the boundary

qO and C1c0 on D0. Denote Ct ¼ I þ tC1 and ðvt; ptÞ the solution of

(5) (including t ¼ 0), and by t140 a positive number such that

t7!sðvt; ptÞn is analytic on ð�t1; t1Þ. Assume that for some t� 2
ð�t1; t1Þ one has Ct� ðD0ÞaD0. Then there exists a strictly positive

constant C ¼ CðC1;O;D0;fÞ and a positive integer m ¼

mðC1;O;D0;fÞ such that for some t040 and all t 2 ½�t0; t0�, we have

kLD0
ðfÞ � LCtðD0ÞðfÞkH�1=2

ðGÞNXC jtjm,

where LCtðD0ÞðfÞ :¼ sðvt; ptÞn on G.

2. Asymptotic expansion of the solutions of the Stokes
problem with respect to the domain

2.1. Shape differentiation

In this work we will consider a different approach to the one
used in [4] for the study of the stability by using the so-called
shape differentiation. To do this, we will present the so-called shape

differentiation due to Murat and Simon, for more details about this
technique we refer to [5,6] and the bibliographies therein. These
results are useful in shape optimization theory and the study of
generic results for partial differential equations.

Given a subset O � Rn and a function u : O! Rn;we define the
new domain Oþ u; by

Oþ u ¼ fy 2 Rn : y ¼ xþ uðxÞ; x 2 Og. (6)

Let us to consider perturbations u in the space Wk;1
ðO;RNÞwith

norm

kukk;1 ¼ sup ess
0pjajpk;x2O

jDauðxÞj.

Remark 4. Now, we must note that if O is of class Cj; we can
choose k ¼ jþ 1 ðand therefore the perturbation space
Wk;1

ðO;RNÞÞ; such that our new domain O0 þ u is also of class Cj.

Definition 1 (Simon [6]). Let kXmX1;1pro1: We say that the
function u! vðuÞ has a first order local variation at u ¼ 0 on
Wm�1;r

loc ðOÞ; if vðuÞ 2Wm;r
ðOþ uÞ for all u 2Wk;1

ðO;RnÞ and there
exists a linear map v0ðO;uÞ defined from u 2Wk;1

ðO;RnÞ to
Wm�1;r

loc ðOÞ such that, for all open set o �� O;

vðuÞ ¼ vð0Þ þ v0ðO;uÞ þ byðuÞ in o,

when kukk;1 is small enough and

byðuÞ
kukk;1

�!0 in Wm�1;r
ðoÞ as kukk;1 ! 0.

Remark 5. From Definition 1 it follows that the first local
variation can be defined as

v0ðO;uÞ ¼ lim
t!0

vðtuÞjo � vð0Þjo
t

in o, (7)

where o �� O and vðtuÞjo; vð0Þjo are the restrictions of the
functions vðtuÞ and vð0Þ to o.

Remark 6. In what follows, to simplify matters, we will write v0ðuÞ

instead of v0ðO;uÞ:
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On the other hand (see [6]) we note that if for each u 2

Wk;1
ðO;RnÞ small enough,

vðuÞ ¼ 0 on qðOþ uÞ,

the first local derivative at u ¼ 0, in the direction u, denoted by

v0ðuÞ, verifies

v0ðuÞ ¼ �ðu � nÞ
qvð0Þ

qn
on qO,

where n is the unit outward normal vector to O.

2.2. Computation of the first local derivatives

Assume that the deformed domain has the form
O� þ u ¼ ðOnDÞ þ u. Note that we are interested in obtaining the
asymptotic expansion of LDþu around u ¼ 0:

Firstly, for every u 2W, we can write down the following
Stokes equation

�nDvu þrpu ¼ 0 in O� þ u;

div vu ¼ 0 in O� þ u;

vu ¼ f on qO;

vu ¼ 0 on qDþ u;R
O� pu � ðI þ uÞdx ¼ 0;

8>>>>>><
>>>>>>:

(8)

where f 2 H3=2
ðqOÞN satisfies the compatibility conditionR

qO f � n ds ¼ 0.
We define the following cost functional. Let sm be a given

measurement of the normal component of the stress tensor on
Gm � qO, corresponding to the target obstacle (Fig. 1)

JðuÞ ¼

Z
Gm

jsðvu; puÞn� smj
2. (9)

Then our inverse problem corresponds to the minimization
problem

min
u2Uad

JðuÞ,

where Uad �W1;1
ðO;RnÞ is the set of deformations such that

Dþ u 2 Dad, that is, Dþ u is an admissible geometry. We can note
that thanks to the identifiability result (cf. Theorem 2), the
functional J has a unique global minimum, which is achieved
when the cost function J vanishes. Moreover, due to the analyticity
of the solutions of (8) with respect to the perturbation parameter
u, we have that the functional JðuÞ is analytic in a neighborhood of
u ¼ 0. Thus, we are interested in obtaining an asymptotic
expansion with respect to u in order to compute the derivatives.
This will also be useful to develop a numerical scheme based in
gradient methods.

We recall that if we consider a regular function u! zu;

it is enough to consider a differentiable function, then we have for
D+u

Γm

Ω

D

Fig. 1. Boundary measurement.
a set S � Rn,Z
qSþu

zðuÞds ¼

Z
qS

zð0Þdsþ

Z
qS

z0ðuÞds

þ

Z
qS
ðu � grad zð0Þ þ zð0ÞdivqS uÞdsþ oðuÞ,

where oðuÞ=kuk1;1�!0 as kuk1;1 ! 0, z0ðuÞ being the first local
variation of zu at u ¼ 0 in the direction u (see [6]). Moreover, since
supp u �� O, u ¼ 0 in a neighborhood of qO; and considering S ¼

Gm we have

zðuÞ ¼ jsðvu; puÞn� smj
2 on Gm, (10)

andZ
Gm

jsðvu;puÞn� smj
2 ds�

Z
Gm

jsðv0; p0Þn� smj
2 ds

¼

Z
Gm

2ðsðv0; p0Þn� smÞ � sðv0ðuÞ; p0ðuÞÞnfdsþ oðuÞ, (11)

where ðv0ðuÞ; p0ðuÞÞ is solution of

�divsðv0ðuÞ; p0ðuÞÞ ¼ 0 in O�;

r � v0ðuÞ ¼ 0 in O�;

v0ðuÞ ¼ 0 on qO;

v0ðuÞ ¼ �ðu � nÞ
qv0

qn
on qD:

8>>>>><
>>>>>:

(12)

Note that (11) corresponds to the first order expansion of the
cost functional

JðuÞ ¼ Jð0Þ þ

Z
Gm

2ðsðv0; p0Þn� smÞ � sðv0ðuÞ; p0ðuÞÞnfds

þ oðuÞ.

On the other hand, let us to consider the auxiliary problem

�divsðj; qÞ ¼ 0 in O�;

r � j ¼ 0 in O�;

j ¼ 0 on qOnGm;

j ¼ 0 on qD;

j ¼ 2ðsðv0; p0Þn� smÞn on Gm;

8>>>>>><
>>>>>>:

(13)

then multiplying the first equation of (12) by j and integrating by
parts, we obtainZ

qO[qD
sðv0ðuÞ; p0ðuÞÞnjds

¼

Z
qO[qD

v0ðuÞ � sðj; qÞn ds. (14)

Thus, we haveZ
Gm

sðv0ðuÞ; p0ðuÞÞnjds ¼

Z
qD

v0ðuÞ � sðj; qÞn ds, (15)

that isZ
Gm

sðv0ðuÞ;p0ðuÞÞn � ð2ðsðv0; p0Þn� smÞnÞds

¼

Z
qD
�ðu � nÞ

qv0

qn

� �
� sðj; qÞn ds. (16)

Therefore, we conclude that

JðuÞ ¼ Jð0Þ �

Z
qD
ðu � nÞ

qv0

qn

� �
� sðj; qÞn dsþ oðuÞ, (17)

which give us the first order expansion of the cost function. In an
analogous way it is possible to compute the higher order terms by
considering the higher order local variations of the solution
ðvu; puÞ of the problem (8). A similar computation of the derivative
for the Navier–Stokes equation was obtained in [7].
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r

(a,b)

Fig. 2. Three degrees of freedom, which correspond to the center ða; bÞ and the

radius r of the ball.

θ
rx

ry

(a,b)

Fig. 3. Five degrees of freedom, which correspond to the center ða; bÞ, the angle y
and the semiaxes rx and ry of the ellipse.

(a6,b6)

(a1,b1)

(a2,b2)

(a3,b3)

(a4,b4)

(a5,b5)

Fig. 4. Finite number of degrees of freedom, which correspond to the edges ðai ; biÞ

of the polygon.

Γm

Γ

Γin Γout
(a,b)

r

Bopt

Fig. 5. Domain of study.
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3. A numerical approach

This section deals with the development of numerical algo-
rithms to recover geometric information about an object im-
mersed in a region filled by a viscous fluid governed by the Stokes
system. Additional information is provided by measurements of
the internal forces (stress forces) density around the region
boundaries. In particular we are interested in recovering informa-
tion about the position, geometry and volume of the object.

The numerical strategy we have followed to solve our inverse
geometric problem is based in the following general observation:
The problems of optimal and inverse design can both be system-
atically treated within the mathematical theory for the control of
systems governed by partial differential equations, by regarding the
design problem as a control problem in which the control is the
shape of the boundary. This approach requires a well established
shape differentiation theory. The inverse geometric problem then
becomes a special case of the optimal design problem in which the
shape changes are driven by the discrepancy between the current
and target pressure distributions.

Search techniques used in the control process are gradient
based method, which requires the formulation of the Jacobian. By
using techniques coming from domain differentiation one can
formulate the gradient in terms of adjoint variables, which greatly
improve the efficiency of the process against finite difference
methods.

The objective function, even for simple geometries as circles,
shows to be non convex which requires the development of
heuristic method to reach the global minimum. Standard methods
like Simulated Annealing (no need of gradient) requires high
number of function evaluations and proves themselves quite
unsatisfactory. However a heuristic method based on similar
concept was developed. The idea is to use a re-scaling of the
parameters and to allow for ‘‘up-hills’’ moves within the search.
The factoring involved in the re-scaling plays the same role as the
annealing temperature, where the transition from higher to lower
scales allows the jumps from local to global minimum.

In this work we consider the following 2D problem, which
corresponds to a channel with open ends, the velocity on the inlet
satisfies a parabolic profile, while the boundary conditions in the
outlet are those of a free boundary. The object satisfies the non-
slip boundary condition (null velocity) on the rest of the
boundary. Immersed in the fluid there is a circular obstacle with
unknown center and radius. Our goal is a three (ball shaped case),
five (elliptic obstacle) or even a more general situation where the
geometry of the obstacle depends on a finite number of degrees of
freedom (polygonal geometries) (Figs. 2–4).

To simplify matters, we start considering the simplest case of a
ball shaped obstacle, which consists in recovering the center ða; bÞ
and the radius r of the obstacle by means of exterior measure-
ments, namely the normal component of the stress tensor in the
upper side, later we will show some examples also considering
also ellipse shaped obstacle. That is, let O� ¼ OnBa;b;r , where O is
the rectangle ð�10;10Þ � ð�5;5Þ and Ba;b;r ¼ Bðða; bÞ; rÞ (see Fig. 5)
and let consider the Stokes system

divsðv; pÞ ¼ 0 in O�;

div v ¼ 0 in O�;

v ¼ f on Gin;

sðv; pÞn ¼ 0 on Gout ;

v ¼ 0 on Gm [ G;

v ¼ 0 on qBa;b;r :

8>>>>>>>>><
>>>>>>>>>:

(18)

In order to do that, let us introduce

S ¼ fða; b; rÞ 2 R3 : Bðða;bÞ; rÞ � Og.
And let sm be a given measurement of the normal component of
the stress tensor on Gm � qO, corresponding to the target obstacle.
Then we define the functional

J : S � R3 ! R

as

Jða; b; rÞ ¼

Z
Gm

jsðv; pÞn� smj
2 ds, (19)

where ðv; pÞ is the unique solution of the Stokes system (18).
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Fig. 7. Pressure measurements on the upper boundary for same center and

different radius (r ¼ 0:1, 0.2 and 0.4).
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Thus, our problem can be equivalently formulated as the
following minimization problem:

min
ða;b;rÞ2S

Jða; b; rÞ. (20)

It is clear, thanks to the identifiability result (cf. Theorem 2), that
the functional J has a unique global minimum, which is achieved
when the cost function J vanishes. At first glance this would mean
that the minimization problem (20) can be solved trivially. This is
however far from being true since the solution corresponds to the
unknown rigid body Bopt (see Fig. 5), which is our actual goal. But
setting up this minimization problem is not a completely void
idea because it provides a strategy or algorithm to recover Bopt,
numerically, or at least to get closer to its own position and shape:
starting from an initial configuration B0 we look for a sequence of
coordinates ðan; bn; rnÞ 2 S in such a way that the objective
function J decreases as n goes to infinity, and furthermore that
Jðan; bn; rnÞ ! 0 as n!1:

On the other hand, from the regularity of the solutions of the
Stokes system with respect to the obstacle, the functional J is a
regular function from S � R3 to R, moreover it is a differentiable
function. Thus, we can see that the derivative at the point ða;b; rÞ
in the direction ðea;eb;erÞ is given by

J0ðða; b; rÞ; ðea;eb;erÞÞ ¼ Z
qBa;b;r

½ðea� a;eb� bÞ � n

þ ðer � rÞ�
qv

qn
� sðj;qÞn

� �
ds, (21)

where ðj; qÞ is the unique solution of the so-called adjoint
problem

�divðsðj; qÞÞ ¼ 0 in O�;

divðjÞ ¼ 0 in O�;

sðj; qÞn ¼ 0 on Gout ;

j ¼ 0 on Gin [ G;

j ¼ 2½sðv; pÞ � sm�n on Gm;

j ¼ 0 on qBa;b;r :

8>>>>>>>>><
>>>>>>>>>:

(22)

Now, we give further details about how such a numerical
algorithm can be practically implemented to recover simple
particular geometries of rigid bodies (essentially spheres and
ellipsoids). In this case, we implement the steepest descent
(SD) and non linear conjugate gradient (NLCG) method as shown
in [8] (these algorithms are subsequently referred as NR
methods). The main idea is to update the parameter space (x) at
Pressure 

Fig. 6. Isobar corresponding t
each iteration (i) by

xi ¼ xi�1 þ ad,

where d is the search direction defined accordingly for SD and CG
methods, and a is the step size, which is chosen such that the
maximum function reduction is attained at each iteration. The
latter is achieved by a standard line search method (brent as
defined in [8]) which does not use gradient information but
function evaluation only.

It is a well known fact that gradient search methods perform
better if appropriate scaling is used for the gradient. The idea is to
choose a scaling such that all the components of the gradient are
of the same magnitude. For instance if we take our geometry with
the target ball of center ðaopt ; boptÞ ¼ ð0;0Þ and radius ropt ¼ 0:8 and
the initial guess is the ball with center ða0;b0Þ ¼ ð1;0Þ and radius
r0 ¼ 0:6; then the gradient of J at ða0; b0; r0Þ is

rJða0; b0; r0Þ ¼
qJ

qx
;
qJ

qy
;
qJ

qr

� �
ð1;0;0:6Þ

¼ ð1:18226;0:14909;�35:5256Þ.

Thus an initial scaling for this problem would be to reduce the
radius component by a factor of 100 and leave the others
unchanged. Lets define the re-scaling by the new set of variables:

ðX;Y ;RÞ ¼ ðx; y; factR � rÞ,
Pressure 

o a ball and to an ellipse.
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that means that for a gradient search over the parameters X;Y and
R the methods goes as

R ¼ R0 þ aqRJ (23)

but gradR ¼ ð1=factRÞqRJ, where J is our objective function.
Since R ¼ factR � r, (23) is written as

r ¼ r0 þ
a

ðfactRÞ2
qrJ.

The meaning of factR is to attenuate (or enlarge) the contribution
of R against the other variables. In our above example to achieve a
100 reduction, factR need to be set to 10.

The point is that starting at factR ¼ 0:1 makes the radius
contribution dominant, which takes the solution to a local
minimum. Then by increasing factR, the contribution of r

decreases which allows to find another local minimum. The idea
Fig. 8. Iterations 1 and 10 ða1 ; b1; r1Þ ¼ ð4:5;0;1

Fig. 9. Iterations 25 and 45 ða25; b25; r25Þ ¼ ð4:9746;�2:8437

Fig. 10. Iterations 1 and 20 ða1; b1 ; rx;1; ry;1; y1Þ ¼ ð0;0;1;1;0Þ and ða20 ;b

Fig. 11. Iterations 40 and 70 ða40;

ða70; b70 ; rx;70; ry;70; y70Þ ¼ ð�3:89335;2:78944;1:5613;1:35159;1:20772Þ.
is to eventually reach the global minimum. The heuristic is quite
analogous to the SA method, where the choice and setting of factR

is as much arbitrary as the choice of temperature in SA.
Finally, we can note that the choice of the initial guess it is not

completely by hazard, in fact from the pressure measurements on
the upper boundary Gm, we can see that the obstacle introduce a
perturbation on the pressure field as it is shown in Fig. 6; and we
can see that the x-component of the inflection point of the
pressure measured on the upper side of the boundary corresponds
to the x-component of the center, and it is independent of the
radius which allow us to choose a good initial guess (see Fig. 7).

Now, we will show some numerical results for two cases. In
both of them we consider a Poiseuille flow and the container is the
rectangle ð�10;10Þ � ð�5;5Þ (Figs. 8–11).

For the first one, we consider the target as the ball of center
ðaopt ; boptÞ ¼ ð5;�3Þ with radius ropt ¼ 0:4.
Þ and ða10; b10 ; r10Þ ¼ ð2:7910;�2:7989;0:3Þ.

;0:3271Þ and ða45; b45 ; r45Þ ¼ ð4:9930;�2:8727;0:3363Þ.

20; rx;20 ; ry;20 ; y20Þ ¼ ð�3:8205;1:63942;1:12443;1:03204;0:922812Þ.

b40; rx;40 ; ry;40 ; y40Þ ¼ ð�3:87028;2:08849;1:27299;1:07465;1:20775Þ and
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A second numerical test corresponds to the target as the ellipse
of center ðaopt ;boptÞ ¼ ð�4;3Þ with semiaxes rx;opt ¼ 1:8; ry;opt ¼ 1:2
and rotation angle yopt ¼ p=3.

In summary, the global method seems quite robust to deal
with detecting a Stokes fluid, independent of the choice of the
initial guess. Moreover, we can note that this numerical approach
can be extended to another geometries as ellipses or polygonal
geometries as well (finite number of parameters).
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