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This work deals with the study of an inverse geometric problem in fluid mechanics. In particular, we are
interested in the numerical reconstruction of a rigid body which is immersed in a cavity, filled with a
fluid, by means of measurements of the Cauchy forces and the velocity of the fluid on one part of the
exterior boundary. This problem was studied in [Alvarez C, Conca C, Friz L, Kavian L, Ortega JH.
Identification of immersed obstacles via boundary measurements. Inverse Problems 2005; 21:1531-52],
where the authors proved the identifiability and stability for this problem. In this work we present a
numerical method for the reconstruction of the rigid body for some particular geometries.
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1. Setting of the problem and previous results

This work deals with the study of a geometrical inverse boundary
problem arising in fluid mechanics. Geometrical inverse problems
are frequent models in several applied areas, such as medical
imaging and non-destructive evaluation of materials. In this work
we are interested in the numerical reconstruction of an inaccessible
rigid body D immersed in a viscous fluid, in such a way that D plays
the role of an obstacle around which the fluid is flowing in a greater
bounded domain 2 c RN. Our problem is to determine D or some
geometrical information (i.e. its shape, volume, etc.) via a single
boundary measurement on the boundary oQ.

Let ¢ € H'/?@@)" be a non-homogeneous Dirichlet boundary
data satisfying the standard compatibility condition

/Q¢-nds:0, (1)

and let (v,p) e H'(Q\D) x [*(Q\D) be the unique solution of the
Stokes system of equations:

dive(v,p)=0 in Q\D,

divv=0 in Q\D, 2)
vV=2¢ on 0%,
v=0 on oD;
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o being the stress tensor defined as follows a(v, p) = —pl + 2ve(v),
where I is the identity matrix, v>0 is a given constant
representing the kinematic viscosity of the fluid and e(v) is the
linear strain tensor defined by e(v) = %(Vv#Vv).

The classical inverse boundary problem is the well known
electrical impedance tomography problem proposed by A.P.
Calderon in 1980. In this case, the boundary map is the so-called
voltage to current map, also called the Dirichlet to Neumann map;
that is, the map assigns the voltage potential on the boundary of a
medium to a corresponding current flux at the boundary.
Calderon’s inverse problem is to reconstruct the conductivity of
the medium from this boundary map. This classical problem was
at the middle of the 1980s the starting point for the mathematical
analysis of inverse problems. The interested reader is refereed to
the review by Uhlmann [1] for key historical remarks in this
subject and to the pioneering works by Kohn and Vogelius [2] or
to Sylvester and Uhlmann [3] for early results on this theory.

In this work we are dealing with a geometrical inverse
boundary problem. We will look for the unknown D in the
following set of admissible geometries

24 =1{D cc Q: D is a smooth connected open set in Q,
such that, @\D is connected},
Then, we can define the boundary map, which we will refer to as
the velocity to stress force map, as follows:
Ap(¢p) = a(v,p)n on 0Q,

acting from H'/?@Q)" to H™'?(@Q)", where (v,p) is the unique
solution of the stationary Stokes system (2).

Our inverse problem is to develop a numerical algorithm which
allow us to recover D from the above boundary map.

A:D—Ap,
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Firstly we will recall an identifiability result for this problem,
that is, given a fixed non-homogeneous Dirichlet boundary data,
two any different geometries Dy#D; € %,q, there correspond
different boundary stress force measurements. This result does
not only give a positive answer to the above question, but it also
proves that for the identifiability of D, one measurement of the
velocity to stress boundary map is enough. It is worth noting that
once the identifiability result has been proved, the boundary map
D — Ap has an inverse A~! acting from the range of A to Zg.
Then, the result reads as follows.

Theorem 1 (Alvarez et al. [4]). Let T>0 and Q <R, N=2 or
N = 3, be a bounded, C"' domain, and I" be a non-empty open subset
of 8Q. Let Dg,D; € Zaq and ¢ e C1([0, T]; H*2(@Q)N) with ¢ =0,
satisfying the flux condition (1). For ¢, =0 or &, =1, let (v;,p;) for
j=0,1, be solution of

ov; .
a_t] — div(a(v;, py))
+e,div(v; @ v)) =0 in (\D)) x (0,T),

div(vj) =0 in (2\Dj) x (0, T), (3)
vj(x,0)=0 for x e Q\D;,

Vi(s, ) = ¢(s, ) for (s,t) € 0Q x (0,T),

Vvi(s,t)=0 for (s,t) € 3D; x (0, T).

Assume that (vj, p;) are such that
o(Vo,po)n = o(v1,py)n on I' x (0, T).

Then Dg = D;.
The same identification result holds for the stationary problem:

Theorem 2 (Alvarez et al. [4]). Let Q< RN, N=2 or N=3, be a
bounded, Lipschitz domain, and I" a non-empty open subset of 0Q. Let
Dg,D1 € Zyq and ¢ € H?@Q)N with ¢=0, satisfying the flux
condition (1). For &, = 0 or &, = 1, let (v;, py) for j = 0, 1, be solution of

—div(e(v;, p)) + &, div(v@ v) = 0 in @\D;,

div(vj)) =0 in Q\D;,

v (4)
Vi(s) = ¢(s) for s € 09,
vi(s)=0 for s e oD;.

Assume that (vj, p;) are such that
a(Vo,po)n = a(vq,py)n on I.
Then Dy = D;.

On the other hand, the stability of our inverse geometrical
boundary problem corresponds to study continuity properties of
the inverse of the boundary map. In [4], the authors obtained a
partial answer to this problem, that is, they proved a directional
continuity of the inverse boundary map.

Let us consider the change of variables

Y Qo—Q; = V.(Q) =1+ 1¥1(Q),

and let (v,p,) € H(Q)" x L*(Q,) be the unique solution of the
Stokes system in the deformed domain, that is,

—div(e(v,,p,)) + & divive@v) =0 in Q,,

div(v;) =0 in Q.

V.(S) = ¢(S) for s € 0Q, )
v.(s)=0 fors € oD..

(For =0 note that Yo =1 and Q, = Qy.) Then, under suitable
assumptions on the function ¥, the mapping

Vo> o(Ve, PN =: Ay (ay)

is analytic in an open subset of W!*°-“diffeomorphisms” (by an
abuse of language we shall say that ¥ is a W*-diffeomorphism
when both ¥ and ' are in W'°®RN,RVN), and restricted,
respectively, to the domains @\Dg and ¥(2\Dy)). In particular, it
can be differentiated with respect to ¥; as a matter of fact, the
corresponding derivative is the so-called shape derivative of the
solution of (5) with respect to the geometry.

Theorem 3 (Alvarez et al. [4]). Let Dy € 2,4, Wo :=1 and ¥, €
W ®N, RV) such that ¥; = 0 in a neighbourhood of the boundary
0Q and ¥1 #0 on Dy. Denote ¥. = I + t ¥ and (v., p,) the solution of
(5) (including = =0), and by ;>0 a positive number such that
t—>o(V,,p.)n is analytic on (—tq,71). Assume that for some z, €
(—11,71) one has ¥. (Dg)#Dy. Then there exists a strictly positive
constant C = C(¥1,9Q,Dg,¢) and a positive integer m=
m(¥1, Q, Do, ¢) such that for some =g >0 and all = € [—1g, 10], we have

14D, () — A 00 (D)l y-12y0 = C l2|™,

where Ay py($) := (v, p)nonT.

2. Asymptotic expansion of the solutions of the Stokes
problem with respect to the domain

2.1. Shape differentiation

In this work we will consider a different approach to the one
used in [4] for the study of the stability by using the so-called
shape differentiation. To do this, we will present the so-called shape
differentiation due to Murat and Simon, for more details about this
technique we refer to [5,6] and the bibliographies therein. These
results are useful in shape optimization theory and the study of
generic results for partial differential equations.

Given a subset Q ¢ R" and a function u : @ — R", we define the
new domain Q + u, by

Q+u={yeR":y=x+u®X),xc Q). (6)

Let us to consider perturbations u in the space W*>(@Q, RV) with
norm
lullkoo = sup ess [D*u(x).
0< | <kxeQ
Remark 4. Now, we must note that if Q is of class ¢, we can

choose k=j+1 (and therefore the perturbation space
Wk (@, RVY), such that our new domain Qq + u is also of class C.

Definition 1 (Simon [6]). Let k>m>1,1<r<oco. We say that the
function u — v(u) has a first order local variation at u=0 on
WP=I(Q), if v(u) € W™ (@ + u) for all u e W*°(Q,R") and there
exists a linear map v/(Q;u) defined from ue W**(Q,R") to

Wm-1(@Q) such that, for all open set w cC @,

loc
v(u) = v(0) + V(2 u) + 0u) in o,
when |luly, is small enough and
O(u)
Ml k00

Remark 5. From Definition 1 it follows that the first local
variation can be defined as

—0 in W™ Y(w) as |lullge — O.

V(tu)lw 7 V(O)lw

V(Q;u) = lim in w, (7)
t—0 t
where w cc Q and v(tu)|,,v(0)|, are the restrictions of the

functions v(tu) and v(0) to w.

Remark 6. In what follows, to simplify matters, we will write v'(u)
instead of v'(Q; u).
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On the other hand (see [6]) we note that if for each ue
Wk>(Q, R") small enough,

v(u)=0 on A(Q + u),

the first local derivative at u = 0, in the direction u, denoted by
V'(u), verifies

(O
"

where n is the unit outward normal vector to Q.

V) =—(Uu- on 0@,

2.2. Computation of the first local derivatives

Assume that the deformed domain has the form
Q" +u = (2\D) + u. Note that we are interested in obtaining the
asymptotic expansion of Ap,, around u = 0.

Firstly, for every u € #°, we can write down the following
Stokes equation

—vAv, + Vp, =0 in Q* +u,
divv, =0 in Q+u,
Vy=¢ on 0Q, (8)
vy=0 on oD + u,
JorPuod+wdx =0,
where ¢ € H¥?@Q)" satisfies the compatibility condition

Jog @ -nds=0.

We define the following cost functional. Let o, be a given
measurement of the normal component of the stress tensor on
I'm C 9, corresponding to the target obstacle (Fig. 1)

J = /F 16V, D) — oml2. 9)

Then our inverse problem corresponds to the minimization
problem
min J(w),
UEU 4q
where %, c WH°(Q,R") is the set of deformations such that
D+ u € 944, that is, D + u is an admissible geometry. We can note
that thanks to the identifiability result (cf. Theorem 2), the
functional J has a unique global minimum, which is achieved
when the cost function J vanishes. Moreover, due to the analyticity
of the solutions of (8) with respect to the perturbation parameter
u, we have that the functional J(u) is analytic in a neighborhood of
u=0. Thus, we are interested in obtaining an asymptotic
expansion with respect to u in order to compute the derivatives.
This will also be useful to develop a numerical scheme based in
gradient methods.

We recall that if we consider a regular function u — z,,
it is enough to consider a differentiable function, then we have for

Fig. 1. Boundary measurement.

asetSc R,

/as+u z(u)ds = /as z(0)ds + /65 Z(u)ds

+ / (u - grad z(0) + z(0)divgs u) ds + o(u),
Jos

where o(u)/||ully .,—>0 as |[ull; ., — 0, Z(u) being the first local
variation of z, at u = 0 in the direction u (see [6]). Moreover, since
supp u cc @, u =0 in a neighborhood of 82, and considering S =

I'm we have
Z(u) = |6(Vy, Py — om|®>  on I'y, (10)

and
/ lo(Vy, PN — o |* ds — / l6(Vg, Do) — o |* ds
I'm I'm
= | 2(e(vo,po)1t = om) - o(V'(W), P'@)np ds + o(w), (11)

where (V'(u), p’(u)) is solution of

—dive(v'(u),p'(w)) =0 in Q*,

vV-vVu)=0 in Q*,

V() =0 on 3Q, (12)
W = —- e

Vu)=—(u-n an on oD.

Note that (11) corresponds to the first order expansion of the
cost functional

Jw =]J©O) + /r 2(0(vo, o)t — om) - o(V' (W), p'(W))n¢ ds
+ o(u).

On the other hand, let us to consider the auxiliary problem

—diva(p,q) =0 in Q*,

V-p=0 in Q%,

=0 on 0Q\I'm, (13)
=0 on oD,

@ = 2(6(Vo,po)n — o) ON 'y,

then multiplying the first equation of (12) by ¢ and integrating by
parts, we obtain

/ a(V'(w), p'(u)neds
oQuUAD

= / V@) - o(p,q)nds. (14)
2QuUBD
Thus, we have
/r a(V'(w),p'(w)ne ds = [ ; V() - o(p,q)nds, (15)
that is

/r oV (), P )N - (26 (Vo, P)t — o)) ds

0
= /an (—(u . n)%) -o(p,q)nds. (16)

Therefore, we conclude that

Jw =10~ [ (@-m30) - o.ands+ ow, (17)
JoD n

which give us the first order expansion of the cost function. In an

analogous way it is possible to compute the higher order terms by

considering the higher order local variations of the solution

(Vu, p,) of the problem (8). A similar computation of the derivative

for the Navier-Stokes equation was obtained in [7].
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3. A numerical approach

This section deals with the development of numerical algo-
rithms to recover geometric information about an object im-
mersed in a region filled by a viscous fluid governed by the Stokes
system. Additional information is provided by measurements of
the internal forces (stress forces) density around the region
boundaries. In particular we are interested in recovering informa-
tion about the position, geometry and volume of the object.

The numerical strategy we have followed to solve our inverse
geometric problem is based in the following general observation:
The problems of optimal and inverse design can both be system-
atically treated within the mathematical theory for the control of
systems governed by partial differential equations, by regarding the
design problem as a control problem in which the control is the
shape of the boundary. This approach requires a well established
shape differentiation theory. The inverse geometric problem then
becomes a special case of the optimal design problem in which the
shape changes are driven by the discrepancy between the current
and target pressure distributions.

Search techniques used in the control process are gradient
based method, which requires the formulation of the Jacobian. By
using techniques coming from domain differentiation one can
formulate the gradient in terms of adjoint variables, which greatly
improve the efficiency of the process against finite difference
methods.

The objective function, even for simple geometries as circles,
shows to be non convex which requires the development of
heuristic method to reach the global minimum. Standard methods
like Simulated Annealing (no need of gradient) requires high
number of function evaluations and proves themselves quite
unsatisfactory. However a heuristic method based on similar
concept was developed. The idea is to use a re-scaling of the
parameters and to allow for “up-hills” moves within the search.
The factoring involved in the re-scaling plays the same role as the
annealing temperature, where the transition from higher to lower
scales allows the jumps from local to global minimum.

In this work we consider the following 2D problem, which
corresponds to a channel with open ends, the velocity on the inlet
satisfies a parabolic profile, while the boundary conditions in the
outlet are those of a free boundary. The object satisfies the non-
slip boundary condition (null velocity) on the rest of the
boundary. Immersed in the fluid there is a circular obstacle with
unknown center and radius. Our goal is a three (ball shaped case),
five (elliptic obstacle) or even a more general situation where the
geometry of the obstacle depends on a finite number of degrees of
freedom (polygonal geometries) (Figs. 2-4).

To simplify matters, we start considering the simplest case of a
ball shaped obstacle, which consists in recovering the center (a, b)
and the radius r of the obstacle by means of exterior measure-
ments, namely the normal component of the stress tensor in the
upper side, later we will show some examples also considering
also ellipse shaped obstacle. That is, let Q* = Q\B,;,, where Q is
the rectangle (-10,10) x (—5,5) and B, = B((a, b), 1) (see Fig. 5)
and let consider the Stokes system

dive(v,p) =0 in Q*,

divv=0 in Q*,

v=1¢ on I,

o(v,pn=0  on oy, (18)
v=0 onmUr,

v=0 on dBgp.

In order to do that, let us introduce

S={(a,b,r) € R*: B((a,b),r) C Q}.

Fig. 2. Three degrees of freedom, which correspond to the center (a,b) and the
radius r of the ball.

o
(5

Fig. 3. Five degrees of freedom, which correspond to the center (a, b), the angle 0
and the semiaxes rx and ry of the ellipse.

(a5,b5)

(ad,b4) (26,b6)

(a3,b3) (al,bl)

(a2,b2)

Fig. 4. Finite number of degrees of freedom, which correspond to the edges (a;, b;)
of the polygon.

rm
—_— R s
B . 'Bupl -1 .
I‘in 1ﬂoul

Tr

Fig. 5. Domain of study.

And let o, be a given measurement of the normal component of
the stress tensor on I', C 3, corresponding to the target obstacle.
Then we define the functional

J:SCRR SR
as

Ja,b,r)= / lo(v, p)n — o> ds, (19)

where (v, p) is the unique solution of the Stokes system (18).
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Thus, our problem can be equivalently formulated as the
following minimization problem:

min J(a,b,r).
(a,b,r)eS

(20)

It is clear, thanks to the identifiability result (cf. Theorem 2), that
the functional J has a unique global minimum, which is achieved
when the cost function J vanishes. At first glance this would mean
that the minimization problem (20) can be solved trivially. This is
however far from being true since the solution corresponds to the
unknown rigid body B, (see Fig. 5), which is our actual goal. But
setting up this minimization problem is not a completely void
idea because it provides a strategy or algorithm to recover Bop,
numerically, or at least to get closer to its own position and shape:
starting from an initial configuration By we look for a sequence of
coordinates (an,bn,rn) €S in such a way that the objective
function J decreases as n goes to infinity, and furthermore that
J(an,bn,ry) — 0 as n — oo.

On the other hand, from the regularity of the solutions of the
Stokes system with respect to the obstacle, the functional J is a
regular function from S c R? to R, moreover it is a differentiable
function. Thus, we can see that the derivative at the point (a,b,r)
in the direction (a, b, 7) is given by

J (@b, r): @b, ) = / [@—ab—b)-n

JOBgp,

+ (@ =r1)] B—; - o(, q)n} ds, (21)

where (¢,q) is the unique solution of the so-called adjoint
problem

923

each iteration (i) by
Xi = X;_1 + od,

where d is the search direction defined accordingly for SD and CG
methods, and « is the step size, which is chosen such that the
maximum function reduction is attained at each iteration. The
latter is achieved by a standard line search method (brent as
defined in [8]) which does not use gradient information but
function evaluation only.

It is a well known fact that gradient search methods perform
better if appropriate scaling is used for the gradient. The idea is to
choose a scaling such that all the components of the gradient are
of the same magnitude. For instance if we take our geometry with
the target ball of center (aope, bopr) = (0,0) and radius rope = 0.8 and
the initial guess is the ball with center (ag, bg) = (1,0) and radius
ro = 0.6, then the gradient of J at (ag, bg, o) is
V_](a(), bo, ro) = (%,%, g) (] ,0, 06)

= (1.18226,0.14909, —35.5256).

Thus an initial scaling for this problem would be to reduce the
radius component by a factor of 100 and leave the others
unchanged. Lets define the re-scaling by the new set of variables:

X,Y,R) = (x,y,factR 1),

1.5 T T T T T T

T T
Radio=0.1
Radio=04

—div(a(p,q)) =0 in Q*,

div(p) =0 in Q*,

a(p,q)n =0 on Ioye,

=0 onluyurl, (22)
¢ =2[o(V,p) —om]n ON I'p,

»=0 on 8By

Now, we give further details about how such a numerical
algorithm can be practically implemented to recover simple
particular geometries of rigid bodies (essentially spheres and
ellipsoids). In this case, we implement the steepest descent
(SD) and non linear conjugate gradient (NLCG) method as shown
in [8] (these algorithms are subsequently referred as NR
methods). The main idea is to update the parameter space (x) at

IsoValue
W-1.2371

Pressure

= S|
_1 5 1 L L L L 1 1 1
-10 -8 -6 -4 -2 0 2 4 6 8 10

Fig. 7. Pressure measurements on the upper
different radius (r = 0.1, 0.2 and 0.4).

Is

Pressure

u
uy
i

Fig. 6. Isobar corresponding to a ball and to an ellipse.

W20578
213445

boundary for same center and

oValue

82785
9045
98115




924 C. Alvarez et al. / Engineering Analysis with Boundary Elements 32 (2008) 919-925

that means that for a gradient search over the parameters X, Y and
R the methods goes as

R = Ry + a0gJ (23)

but grady = (1/factR)dgJ, where J is our objective function.
Since R = factR = r, (23) is written as
o
r=ro+ (factR? orJ.
The meaning of factR is to attenuate (or enlarge) the contribution
of R against the other variables. In our above example to achieve a
100 reduction, factR need to be set to 10.

The point is that starting at factR = 0.1 makes the radius
contribution dominant, which takes the solution to a local
minimum. Then by increasing factR, the contribution of r
decreases which allows to find another local minimum. The idea

is to eventually reach the global minimum. The heuristic is quite
analogous to the SA method, where the choice and setting of factR
is as much arbitrary as the choice of temperature in SA.

Finally, we can note that the choice of the initial guess it is not
completely by hazard, in fact from the pressure measurements on
the upper boundary I';;, we can see that the obstacle introduce a
perturbation on the pressure field as it is shown in Fig. 6; and we
can see that the x-component of the inflection point of the
pressure measured on the upper side of the boundary corresponds
to the x-component of the center, and it is independent of the
radius which allow us to choose a good initial guess (see Fig. 7).

Now, we will show some numerical results for two cases. In
both of them we consider a Poiseuille flow and the container is the
rectangle (-10,10) x (-5, 5) (Figs. 8-11).

For the first one, we consider the target as the ball of center
(Gopt, bopt) = (5, —3) with radius rop; = 0.4

Fig. 8. Iterations 1 and 10 (ay,by,11) = (4.5,0,1) and (a9, b1o,710) = (2.7910,—2.7989,0.3).

Fig. 9. Iterations 25 and 45 (azs, bys,125) = (4.9746,—2.8437,0.3271) and (d4s, bas, r45) = (4.9930, —2.8727,0.3363).

Fig. 10. Iterations 1 and 20 (ay,by,7x1,7y,1,01) =(0,0,1,1,0) and (azo, b20.7x20.7y,20, 20) = (—3.8205,1.63942,1.12443,1.03204, 0.922812).

Fig. 11. Iterations 40 and 70
(a70, b70, %70 Ty,70, 070) = (—3.89335,2.78944,1.5613,1.35159,1.20772).

(a40, b0, Tx 40, Ty.40, 040) = (—3.87028,2.08849,1.27299, 1.07465,1.20775) and
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A second numerical test corresponds to the target as the ellipse
of center (dopt, bopt) = (—4, 3) with semiaxes ryope = 1.8, 1y 0pe = 1.2
and rotation angle Opr = 7/3.

In summary, the global method seems quite robust to deal
with detecting a Stokes fluid, independent of the choice of the
initial guess. Moreover, we can note that this numerical approach
can be extended to another geometries as ellipses or polygonal
geometries as well (finite number of parameters).
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