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Toward an actual account for the angular dependence of the Brueckner-Bethe-Goldstone
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Angular correlations arising from particle-particle (pp) propagation in symmetric nuclear matter are
investigated. Their account follows a detailed treatment of the angular dependence of the energy denominator
of the propagator in the Brueckner-Bethe-Goldstone (BBG) equation, in conjunction with the Pauli exclusion
principle for intermediate states. As a result, taking a monopole approximation for the propagator, a correlation
form factor emerges from the Cauchy principal-value integral of the pp propagator, while the imaginary part
becomes structurally different from those in Lippmann-Schwinger-type equations. These features are investigated
within the continuous choice of the single-particle potential considering the Argonne v18 and Paris two-nucleon
potentials. We find that the behavior of the mass operator is affected, deepening slightly the saturation point of
symmetric nuclear matter relative to those based on angle-averaged energy denominators. Implications of these
angular correlations were also investigated in the context of proton-nucleus scattering, showing clear effects on
scattering observables below 100 MeV.
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I. INTRODUCTION

The ability to provide accurate predictions of nuclear
many-body phenomena, on the basis of meson-exchange
models for the nucleon-nucleon (NN) interaction, remains as
one of the most challenging goals in nuclear theory. In the
Brueckner-Bethe-Goldstone (BBG) theory of nuclear matter,
the mass operator has played a pivotal role in microscopic
descriptions of various quantities of physical interest [1,2].
At negative energies it has been a basis for extensive studies
of saturation properties of symmetric nuclear matter, one
of the most elusive puzzles in nuclear physics [3–6]. At
positive energies it has been crucial for the development of
density-dependent effective interactions, extensively used in
microscopic optical potentials for nucleon-nucleus scattering
[7,8]. Here, however, the mass operator still lacks adequate
consistency to describe the data below 100 MeV without ad
hoc rescaling. Another issue which has captured increasing
interest in the past decade is the behavior of nuclear matter
under extreme isospin asymmetric conditions, such as in the
case of neutron stars [9].

An aspect of central importance in the BBG equation for
the reaction matrix is the treatment of pp propagation while
enforcing the Pauli exclusion principle on intermediate states.
The pp propagator is usually represented as the ratio of two
commuting operators, Q/e(+), with Q the Pauli blocking
operator and e(+) the difference, on the upper edge of the
real axis, between a starting energy and intermediate-state
single-particle (sp) energies. Major attention has been given
to the nonsphericity of the integration domain due to the Pauli
operator, while complications arising from the angular depen-
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dence of the energy denominator were systematically handled
resorting to angular averages or effective-mass approximations
[10–14]. Implicit in these approximations is the assumption
that the kinematics of intermediate states, as restricted by the
Pauli exclusion principle, is uncorrelated from the propagation
of the interacting particles under the sp fields. In traditional ap-
proaches [1], angular averages of the ratio of the two operators
are approximated by the ratio of of their averages. However,
the stringent self-consistency requirements to the solution
of the BBG equation—-particularly within the continuous
choice [1]—call for a closer scrutiny in the handling of the
actual ratio Q/e(+). This was earlier noted by Sartor [15],
reporting solutions to the BBG equation with a treatment
of the pp propagator in its full form, including angular
momentum couplings among different NN states. It was
concluded that the explicit treatment of the angular dependence
of the energy denominator renders marginal corrections to
its angle-averaged form. However, as we shall explain later,
the numerical strategies utilized in the referred work become
unsuited to resolve concealed features in the angular behavior
of the pp propagator. As a matter of fact, unforeseen structures
emerge in the propagator when the angular dependence of the
ratio is retained within a controlled representation, featuring
sharp and narrow structures in momentum space that require
specific techniques to keep them under control.

This paper is organized as follows: In Sec. II we outline
the theoretical framework, describe traditional approaches
for the treatment of the angular dependence of the energy
denominator, and introduce a way to treat this dependence
exactly. Here we also describe numerical strategies to treat
accurately sharp structures appearing in the pp propagator. In
Sec. III we present the main results from this work, addressing
the effect of angular correlations on symmetric nuclear matter
properties and on proton-nucleus elastic scattering. In Sec. IV
we summarize this work and draw the main conclusions.
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II. THEORETICAL FRAMEWORK

In the BBG theory for symmetric nuclear matter (NM) the
g matrix depends on the density of the medium, characterized
by the Fermi momentum kF , and a starting energy ω. If v

denotes the bare interaction between two nucleons in an infinite
medium, with ĥ1 and ĥ2 their respective quasiparticle energies,
then g(ω) satisfies

g(ω) = v + v
Q

ω − ĥ1 − ĥ2 + iη
g(ω) . (1)

The solution to this equation enables the evaluation of the mass
operator

M(k; E) =
∑

| p|�kF

〈
1
2 (k − p)|gK (E + εp)| 1

2 (k − p)
〉
, (2)

where εp = p2/2m + U (p), the sp energy of nucleons of mass
m in terms of an auxiliary field U , and K = k + p, the total
momentum of any interacting pair. Self-consistency requires
that

U (k) = Re M(k; εk),

which is achieved iteratively. In the continuous choice [1], this
condition is imposed to all momenta k.

In momentum representation the BBG equation takes the
explicit form

〈κ ′|gK (ω)|κ〉 = 〈κ ′|v |κ〉 +
∫

dq〈κ ′|v |q〉

× �(k+ − kF )�(k− − kF )

ω + i η − k2+
2m

− k2−
2m

− �
〈q|gK (ω)|κ〉, (3)

where

�(K, q, x) ≡ U (k+) + U (k−) , (4)

with

k2
± = K2

4
+ q2 ± qKx .

Here x = K̂ · q̂, corresponding to the cosine of the angle
between K and q. The step functions � forbid particle
propagation below the Fermi surface, as required by the Pauli
exclusion principle. Here the Pauli blocking operator takes
the representation Q(K , q) = �(k+ − kF )�(k− − kF ). The
geometry of such exclusion is illustrated in Fig. 1, where
we show the restrictions posed on x when K/2 lays inside
(K � 2kF ) and outside (K > 2kF ) the Fermi sphere. Only
those configurations where the arrowheads of the incoming
(q) and outgoing (−q) relative momenta lay outside the sphere
are included in the integration domain of q, a condition met
when |x| � cos θF ≡ �.

At this point it is useful to denote the energy denominator
in Eq. (3) as e(+) ≡ e + iη, so that the propagator becomes
expressed as Q/e(+). Traditionally, its angular dependence
together with its coupling to v and g, has been simplified
by treating the numerator Q separately from the denominator
e(+). A common practice is that of approximating the inverse
of the energy denominator 〈1/e(+)〉 by the inverse of its
average, 1/〈e(+)〉. If the angular dependence of the Pauli
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FIG. 1. (Color online) Pauli-principle restrictions on the angular
variation of q for (a) K < 2kF and (b) K > 2kF . Here � = cos θF .

blocking operator is retained, then the propagator takes the
form Q/〈e(+)〉, with the nonspherical geometry of the Pauli
operator treated in its full form [10–14]. This scheme is
sometimes referred to as exact treatment of the Pauli blocking,
although it does not treat the propagator in its full form since it
relies on angular averages of the energy denominator [10,11]
or effective-mass approximations for the sp spectrum [13,14].
Current standards go one step further by taking the angular
average of the Pauli operator [16], where Q → 〈Q 〉, with

〈Q 〉 = 1

4π

∫
Q(K , q)d	q = �,

and � = min{1, max[0, (K2/4 + q2 − k2
F )/qK]}. Here we

use d	q = dx dφ, with φ the azimuth angle in the plane
perpendicular to K . With these approximations Q/e(+) →
〈Q/e(+)〉, and 〈Q/e(+)〉 ≈ �/〈e(+)〉, the ratio of averages
(RAv), named hereafter RAv approximation. These two
approximations become best justified when � is independent
of x, a condition met only if U (p) is quadratic in p. Such
is the case of the effective-mass approximation, where it is
assumed that the sp spectrum follows a quadratic behavior,
εp = p2/2M∗ + Uo, with M∗ an effective mass and Uo a field
constant, both quantities calculated self-consistently [1]. The
reliability of this approximation has been studied in Ref. [17],
where it was shown that its use yields uncertainties between
1 and 2 MeV in the saturation energy for symmetric nuclear
matter.

A point of departure from the approximations described
above emerges after considering Fig. 2, where we plot the
difference δ� ≡ � − 〈�〉, as a function of x and q, for
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FIG. 2. (Color online) Plot of the difference � − 〈�〉 as a
function of q and x, for K = 3kF . Here the Pauli blocking operator
allows −1 � x � 1. The color code for the vertical axis is given in
MeV.
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K = 3kF (kF = 1.36 fm−1). Here also 〈 〉 denotes the angular
average,

〈�〉 = 1

�

∫ �

0
�(K, q, x)dx, (5)

with � calculated from the self-consistent U obtained within
the RAv approach, using the continuous choice, for the
Argonne v18 (AV18) potential [18]. Differences between �

and its average 〈�〉 become evident, resembling a humpback
symmetrically curved in x. Physically, the sign of the curvature
affects the orientation of q relative to K , with negative curva-
ture privileging x = ±1, a configuration mostly influenced by
the Pauli exclusion (cf. Fig. 1). Conversely, positive curvature
favors x = 0, i.e., particles with matching momenta (p = k).
In the absence of curvature no preferred orientation to the
intermediate-state kinematics is dictated by the mean field �,
leaving q̂ and K̂ uncorrelated.

A. The angular correlation form factor

To retain the angular dependence of � in the energy
denominator of the propagator Q/e(+), for a given kF we have
resorted to the following representation:

� → �x ≡ α + γ x2, (6)

with α and γ functions of K and q. A linear term of the form
β x would be needed in the case of asymmetric nuclear matter.
To obtain α and γ we minimize

∫ �

−�
(� − �x)2 dx, leading to

simple algebraic solutions. In Fig. 3(a) we show the resulting
mean field α, while in Fig. 3(b) we plot the corresponding
“humpback curvature” γ�2 as functions of q, for selected
values of 2K/kF . These curves are based on self-consistent
fields U (k) at kF = 1.5 fm−1 for the AV18 potential. While α

as a function of q follows the same trend of U , the humpback
curvature is more structured, crossing the axis at low momenta
and remaining negative for large q.

The interesting feature of the angular structure of �x is that
it enables the exact (analytic) evaluation of the solid-angle
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FIG. 3. (a) The mean field α and (b) corresponding humpback
curvature γ�2 as functions of q for different 2K/kF ratios, as listed
in the legend. These results are based on the AV18 potential for
kF = 1.5 fm−1.

integral of the pp propagator in Eq. (3). To keep focus on the
emerging structures, we have chosen at this stage to neglect
couplings among different angular momentum states and take
the monopole average of the ratio Q/e(+). The extension
beyond this approximation is, in principle, straightforward.
Thus, we evaluate analytically the monopole integral involving
spherical harmonics, namely,

λ(K, q) =
〈

Q

e + iη

〉
≡

∫
d	q Y 0

0 (q̂)
Q

e + iη
Y 0

0 (q̂), (7)

leading to

λ(K, q) =
∫ �

0

dx

E + i η − γ x2
, (8)

where E = E(K, q), with

E = ω − K2

4m
− q2

m
− α(K, q). (9)

We can now evaluate exactly the integral on x in Eq. (8).
The simplest case appears when γ ≡ 0, so that λ = �/(E +
iη), recovering the propagator based on the traditional RAv
approach. However, if γ is a nonzero function we write

λ = P
∫ �

0

dx

E − γ x2
− i π

∫ �

0
δ(E − γ x2)dx, (10)

where P denotes principal value. Here special care must be
paid to the roots of E − γ x2, occurring in terms of x and/or
q. The former case requires s ≡ γ�2/E > 0, allowing the
root x = √

E/γ , provided s > 1. The latter occurs when
γ (K, q) vanishes at q◦, the same zero of E. In this case we
use Taylor series expansions for the energy, namely, E ∼
E ′

◦ (q − q◦), and the humpback function, γ ∼ γ ′
◦ (q − q◦),

with the primed symbol denoting partial derivative with respect
to q and the subscript “◦” indicating evaluation at q◦. In this
double-zero scenario the δ term contributes with −iπδ(q −
q◦)

∫ �

0 dx/|E′
◦ − γ ′

◦ x2|, which in the absence of a zero in
the denominator leads to an expression analogous to the one
obtained for the principal-value integral. However, when s1 ≡
γ ′

◦ �2/E′
◦ > 1, the integral becomes undefined, a situation

which would require higher order terms in the expansion
of �. Actual computational runs show no occurrence of this
condition, so that excluding this case we express

λ(K, q) = �

E
F (s) − iπ

�

|E|
�(s − 1)

2
√

s

− iπ
�

|E ′◦|
F (s1)δ(q − q◦), (11)

where

F (s) = tan−1
√−s√−s

�(−s) + 1

2
√

s
ln

∣∣∣∣1 + √
s

1 − √
s

∣∣∣∣ �(s), (12)

with s �= 1.
The above closed form for λ(K, q) captures information

regarding the angular structure exhibited by �. We note that
the real part of the propagator factors out the whole structure
implied by the humpback curvature by means of the form factor
F . As illustrated in Fig. 4, F (s) is a positive definite function
with a logarithmic singularity at s = 1, continuous at s = 0,
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FIG. 4. The angular correlation form factor, a positive-definite
function with a logarithmic singularity at s = 1.

where F (0) = 1. These features and their natural dependence
on γ�2 led us to name Fangular correlation form factor. The
framework where λ(K, q) is used as in Eq. (11) shall be called
the angle-correlated (AC) approach.

In the context of the integral equation for the g matrix [cf.
Eq. (1) in the AC approach], the intricate dependence of λ on q

through the ratio γ�2/E, prevents a straightforward identifica-
tion of sectors in q where special caution may be required. This
is particularly so noting that F [s(q)] diverges when γ�2 ∼ E,
while it vanishes when E = ω − α − K2/4m − q2/m → 0±,
under which s(q) → ±∞. Also, the unusual form of the
imaginary part in terms of a step and delta functions calls for
a close scrutiny to its role in the BBG equation. None of these
structures would have been identified nor characterized using
numerical quadrature alone in the evaluation of the monopole
integral in Eq. (7). These unique aspects led us to test diverse
strategies to explore features and subtleties of the solutions.
The evaluation of g followed the discretization in momentum
space of the BBG equation g = v + vλg, with subsequent use
of matrix inversion techniques [15].

It is worth stressing that the features disclosed here for the
pp propagator are intrinsic in the sense that they emerge from
the genuine behavior of the energy denominator in the angular
variable x. This statement is supported by the following
observation. Consider the real part of energy denominator for
the exact sp fields,

e(q, x) ≡ ω − K2

4m
− q2

m
− �(K, q, x). (13)

An accurate evaluation of the monopole integral,
1
�

∫ �

0 dx/[e(q, x) + iη], requires analytical control of the
behavior of e(q, x) near x◦, its zero in x. To this purpose,
and taking into account that e(q, x) is symmetric in x, let us
introduce an auxiliary energy denominator with the following
quadratic form in x:

d(q, x) ≡ 1

2x◦

∂�

∂x

∣∣∣∣
x=x◦

(x2
◦ − x2). (14)

In the limit x → x◦, these energies satisfy e(q, x) → d(q, x),
matching their zero and gradient at the zero. Here we have
assumed single roots in x2, and that the gradient term can
be smoothly extrapolated to regions in q with no zeros in
x. Clearly the gradient in � plays the role of the humpback
function, γ ∼ (x◦/2)(∂�/∂x)|x◦ .

Considering the above definition for d, we now express the
exact propagator as

1

e + iη
=

(
1

e + iη
− 1

d + iη

)
+ 1

d + iη
.

As shown in Appendix A, the term in parentheses on
the right-hand side is real and smooth in x and q. Thus,
its contribution affects only the principal-value part of the
propagator. The second term, in turn, conveys all the AC
features we have already discussed, with contributions in both
real and imaginary parts of the propagator according to Eq. (11)
for λ. In this regard, we can safely state that the features we
have disclosed for the pp propagator, particularly its imaginary
part, are genuine. The extent to which they are accounted for by
means of the χ2 optimization [cf. Eq. (6)] is a matter of further
investigation. In this sense the present work sets a benchmark
for further studies on the subject.

B. Calculational considerations

During self-consistent iterations we found that F [s(q)]
differs from unity mainly near q◦, as illustrated in Fig. 5(a) (red
curve) for a typical example. Here F exhibits an extremely
sharp peak due to the logarithmic singularity, and a pit due
to the zero of E. Their extreme proximity illustrates how
swift s(q) may vary with respect to q. During self-consistent
calculations both the total momentum K = k + p and starting
energy ω = εk + εp become changing quantities, leading to
changes in the position and shape of the peak. These features
may become a source of instabilities, an aspect which we were
able to control with the use of a generalized Weierstrass-Gauss
transform of width σ , namely,

F̄ (q) = N
∫ ∞

−∞
F [s(p)] e−(q−p)2/σ 2

dp, (15)

with N a normalizing constant. This transformation blurs the
sharp structures in momentum space, confining the spatial
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FIG. 5. (Color online) (a) Exact form factor F (red curve) and
blurred angle-correlated form factors F̄ as functions of q for kF =
1.35 fm−1, ω = 80 MeV, and K = 3.8 fm−1. RAv approaches yield
F (s) = 1 (dot-dashed line). (b) Typical behavior of the step-related
distribution θ (q), Eq. (16), as a function of (q − q◦).
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range of their effects. Clearly σ → 0 restores the original
function, F̄ (q) → F [s(q)]. In Fig. 5(a) we plot F̄ (q) as a
function of q for σ = 0.05, 0.10, and 0.20 fm−1. The findings
reported in this work are based on σ = 0.05 fm−1 (solid blue
curve), which provides sound stability to the results to be
discussed later on.

Regarding the imaginary contributions, we have found that
the condition s(q) > 1 is met over an extremely narrow band
in q, with the pole q◦ at one of its boundaries. The width of
the band is typically a fraction of fm−1. In Fig. 5(b) we show
the step-related distribution

θ (q) = q2 �

|E|
�(s − 1)√

s
, (16)

as a function of (q − q◦) under the same conditions used
for Fig. 5(a). Observe the narrowness of the width, of the
order of ∼0.4 fm−1 in this case, featuring a singular behavior
∼1/

√|q − q◦| at the pole. These narrow structures make the
use of traditional quadratures unsuitable if no caution is made
to reproduce the strength of the distribution

S =
∫ ∞

0
θ (q)dq. (17)

Otherwise the contribution of θ (q) to the imaginary part of λ

would become erratic, subject to whether or not the band in q

is reached by the mesh {qi} used for the quadrature in q. To
control these features, if q◦ exists but all θ (qi) ≡ θi are zero,
then we give to Im λ(K, q) the Dirac δ-function (double-zero)
form. Otherwise we modify

θi → S∑
θj �=0 θj wj

θi,

with {wi} the set of weights used for the quadrature in q.
An accurate evaluation of S is described in Appendix B.
This construction guarantees numerically that S = ∑

i wiθi ,
a consideration which proved crucial to prevent spurious
fluctuations of the mass operator, particularly near the Fermi
surface. Still, as shown in that appendix, the strength exhibits a
discontinuity depending on whether the condition s > 1 occurs
below or above q◦, leading to changes in the absorptive part of
the g matrix.

Since most of the nontrivial structure of λ(K, q) occurs in
the vicinity of q◦, we use an N -point Gaussian quadrature in
the interval [0, q◦[, supplemented with M Gaussian points
mapped [19] as qi = q◦ + q̄ tan[π (ui + 1)/4]. Here q̄ is
adjusted so that qM ∼ 500 fm−1 (M = 25), while N is set
to yield a balanced density of points on each side of the
pole (N ≈ M

√
2q◦/πq̄). The adequacy of this quadrature

was tested in free space (kF = 0), comparing the resulting
np phase shifts with those reported by the Argonne [18] and
Paris [20] groups. The agreement with the reported values
is quite satisfactory, reproducing to full digits most of the
published phase shifts. Self-consistency is imposed requiring
that the maximum variations of U (k) on three consecutive
iterations do not exceed 0.05 MeV, in the range 0 � k �
5.5 fm−1. The Fermi integral | p| � kF in Eq. (2) is performed
by means of Gaussian quadrature for p. The findings reported
in this work consider solutions of Eq. (3) to all NN states
with total angular momentum up to J = 7 and 9. Additional

waves (out to J = 15) were also included within the Born
approximation for the g matrix [21], using the long-range
one-pion-exchange potential of Ref. [22].

III. RESULTS AND DISCUSSION

A. Symmetric nuclear matter

Results for the on-shell mass operator are shown in
Fig. 6 as functions of k for kF = 1.20 (0.05) 1.75 fm−1.
Figures 6(a) and 6(b), and 6(c) and 6(d) correspond to results
based on the RAv and AC approaches, respectively. The upper
(lower) frames display results for their corresponding real
(imaginary) components. The outermost blue (red) curves
denote kF = 1.20 (1.75) fm−1. These results are based on the
AV18 bare potential.

Although the real component of the self-consistent fields
obtained from the two approaches are very similar below
kF , for k > kF clear differences do appear, being more
pronounced as kF increases. In the case of Re M(k, εk),
the RAv approach is characterized by uniform growth with
common interceptions at k near 3.5 fm−1. In contrast, the AC
results show inflection points in the interval between 2.5 and
4 fm−1. The differences between the two approaches are less
pronounced for the blue curves, i.e., kF < 1.3 fm−1. In the
case of Im M(k, εk), the RAv approach leads to a monotonic
descent while the AC results also show inflection points, more
pronounced at the higher kF . We have investigated the origin
of such differences and found that they are correlated with
the side relative to q◦ where the condition s > 1 occurs more
frequently. As discussed in Appendix B, the strength S in
Eq. (17) experiences a discontinuity when the condition s = 1
is met, which may occur to the right or to the left of the pole
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FIG. 6. (Color online) On-shell mass operator at various Fermi
momenta. RAv results are shown in (a) and (b), while AC results
are shown in (c) and (d). The upper and lower frames correspond to
the real and imaginary parts of the mass operator, respectively. The
outermost blue (red) curves correspond to kF = 1.20 (1.75) fm−1.
The kF difference between consecutive curves is 0.05 fm−1. These
results are based on the AV18 bare potential.
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The box denotes the accepted sector for the saturation point.

q◦. This feature affects directly the trend of the imaginary part
of g and its subsequent contribution to the mass operator.

Saturation properties of NM constitute a natural ground to
assess the effects of angular correlations as they emerge from
the actual λ(K, q). In Fig. 7 we show saturation curves (B/A

vs kF ) for the AV18 (red curves) and Paris (black curves) NN
potentials based on the RAv approximation (dashed curves)
and AC approach (solid curves). The small circles denote
the actual calculated values, while the curves are the result
of cubic spline interpolations. The box denotes the accepted
sector for the saturation point, namely, kF = 1.35 ± 0.05 fm−1

and B/A = −16 ± 1 MeV. The results shown in this figure
take into account Jmax = 15, with the first nine waves actual
solutions of Eq. (3) and the remaining six obtained within
the Born approximation. It becomes clear from this figure
that the inclusion of angular correlations yields an increase
in the binding at the saturation point by about 0.5 MeV, with
AV18 binding slightly more than the Paris potential. We have
explored other NN realistic potentials and find similar trends.

A more detailed account of some of our findings are
summarized in Table I, where we show results for the saturation
Fermi momentum kF , binding energy per nucleon B/A, and
incompressibility Knm following the AC and RAv approaches,
for the AV18 and Paris potentials. Here

Knm = k2
F

∂2(B/A)

∂k2
F

, (18)

with the second derivative evaluated at the saturation momen-
tum kF . To assess convergence on the number of partial waves,
we have examined the cases Jmax = 7, 9, and 15. Here we
denote by 15a and 15b the cases where the Born approximation
is applied in the last eight and six partial waves, respectively.

We have found that the evaluation of the incompressibility
is sensitive to the choice of interpolation method of B/A in
terms of kF . The results reported here were obtained using two
distinct schemes: cubic spline and Padé P[2,2] interpolations.
While both methods agree on the saturation points out to three

TABLE I. Nuclear matter saturation properties based on the angle-
correlated and ratio-of-averages representations of the pp propagator
for the AV18 and Paris potentials. See the text for explanation of the
numbers quoted in parentheses.

AV18 Paris

λ Jmax kF B/A Knm kF B/A Knm

(fm−1) (MeV) (MeV) (fm−1) (MeV) (MeV)

〈 Q 〉
〈e(+)〉 7 1.53 −16.7 190(2) 1.53 −16.1 178(1)

9 1.53 −16.9 192(2) 1.54 −16.4 188(3)
15a 1.54 −17.1 199(4) 1.54 −16.5 191(3)
15b 1.54 −17.0 196(3) 1.55 −16.6 193(4)〈

Q

e(+)

〉
7 1.53 −17.2 194(2) 1.53 −16.5 182(1)
9 1.54 −17.4 198(3) 1.55 −16.8 198(4)

15a 1.55 −17.6 207(7) 1.55 −16.9 201(5)
15b 1.55 −17.5 203(6) 1.55 −17.0 204(6)

a,bSee text for explanation.

significant figures, the calculated incompressibility may differ
up to 14 MeV. In the Knm column of Table I we report the
average obtained from the two methods, quoting in parentheses
their difference relative to the average.

When comparing the RAv and AC approaches, we observe
that angular correlations yield an increase of 0.4–0.5 MeV in
the saturation energy relative to the angle-averaged results,
a trend observed regardless of the number of partial waves
included. While the Paris potential predictions for the satu-
ration energy remain within accepted range, the inclusion of
angular correlations sets the AV18 below the lower bound
for accepted value. From Table I we also note that, in all
cases, the saturation energy increases by about 0.3–0.5 MeV
in going from 7 to 15 partial waves. On the other hand, all cases
overestimate the saturation density by 45–50 % relative to the
accepted empirical value (kF = 1.53–1.55 fm−1). Regarding
the incompressibility, a moderate increase of 4 to 11 MeV is
observed when angular correlations are taken into account. A
similar trend occurs in going from 7 to 15 partial waves, with
the AV18 potential calculations affected by 6–13 MeV while
those for the Paris potential are affected by 15–22 MeV.

We have also examined the differences between the AC and
RAv self-consistent fields at low densities. These differences
diminish with decreasing kF , as expected, making unnecessary
the treatment of angular correlations at low kF .

B. Nucleon-nucleus elastic scattering

A substantial body of research has been devoted toward the
development of microscopic descriptions for nucleon-nucleus
collisions based on NN effective interactions [8,23]. These
interactions are calculated directly from realistic models for
the bare NN interaction by solving the BBG equation. In
the microscopic approach of Arellano, Brieva, and Love
[24,25], the genuine off-shell g matrix is folded in momentum
space with the target ground-state mixed density, leading to
energy-dependent nonlocal optical potentials. No localization
procedure is applied to the calculated g matrix.
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FIG. 8. (Color online) (a) Differential cross sections dσ/d	

and (b) analyzing power Ay(θ ), as functions of the center-of-mass
scattering angle θc.m. for p+16O elastic scattering, as obtained from
momentum space g-matrix folding optical model potentials. The
solid and dashed curves represent results based on the AC and RAv
approaches, respectively. Blue, red, and black curves correspond to
beam energies of 30, 50, and 70 MeV, respectively.

In order to assess the impact of angular correlations
on nucleon scattering from nuclei, we have calculated the
scattering observables for proton elastic scattering from 16O
at energies between 30 and 70 MeV. The optical potentials
are based on g matrices within the AC and RAv approaches,
each set calculated with their corresponding self-consistent
solutions. Here we have chosen the AV18 potential as the bare
NN interaction.

In Fig. 8 we show the differential cross sections (dσ/d	)
and analyzing power (Ay) as functions of the scattering angle
in the center-of-mass reference frame (θc.m.), for proton elastic
scattering from 16O. The blue curves denote the results at
30 MeV, red curves at 50 MeV, and black curves at 70 MeV.
The solid and dashed curves represent results based on the AC
and RAv approaches, respectively.

From these results the sensitivity of elastic scattering to
the treatment of the angular correlations in the pp propagator
becomes clear. The effect in all cases is a more diffractive
pattern in the cross section, together with more pronounced
peaks in Ay . These results are not necessarily in disagreement
with the findings reported by Cheon and Redish in Ref. [14].
While here we focus on beam energies below 100 MeV, in
the referred work the study was performed for energies above
200 MeV, treating the energy denominator within an effective-
mass approximation but including the multistate coupling due
to the nonsphericity of the Pauli blocking. As mentioned
before, the effective-mass approximation implies F (s) = 1,
therefore it neglects the angular correlations treated in this
work. On the other hand, we have not treated the multistate
coupling at this stage due to the nonsphericity of the whole

propagator Q/e. In any case, from this exploratory application
it becomes clear that significant effects may lay behind an exact
treatment of the angular dependence of the pp propagator. The
extent to which they remain, change, or average away is a
matter of further research.

IV. SUMMARY AND CONCLUSIONS

We have investigated the effects stemming from the angular
dependence of the energy denominator of the pp propagator in
symmetric nuclear matter, where its explicit angular behavior
is retained by means of a quadratic expansion in terms of
x = K̂ · q̂. Following an exact angular integration in the
monopole approximation we provide analytic expressions
for the propagator, characterized by an angular-correlation
form factor and an additional imaginary term in the form
of a step function. These features in the pp propagator
lead to sharp structures in momentum space, which in the
context of the BBG equation were controlled by means of
a Gauss-Weierstrass transformation of narrow width. Self-
consistent solutions for the mass operator based on this
angle-correlated approach were compared with those obtained
within the traditional approaches, where angular averages
are used separately for the Pauli blocking and the energy
denominator (RAv). Studies based on the AV18 and Paris NN
potentials show that the saturation energy deepens slightly,
by about 0.5 MeV, relative to the RAv approach, whereas the
saturation density remains overestimated by ∼50% relative
to its empirical value. We also note that angular correlations
change only marginally the incompressibility. Differences
for the self-consistent solutions from these two approaches
diminish with decreasing kF , as expected.

We also investigated the effects of angular correlations on
proton-nucleus elastic scattering at beam energies between 30
and 70 MeV. Here the fully off-shell g matrix, obtained within
AC and RAv approaches, are used to calculate microscopic
optical model potentials. We find clear sensitivity of the
scattering observables to considerations in the treatment of
the pp angular correlations. The RAv approach smoothens the
diffractive minima of dσ/d	, while the extreme values of Ay

are slightly diminished. Preliminary investigations suggest that
these effects diminish with the energy of the beam, something
which is understandable because medium effect become less
important as the energy of the beam increases. In that sense, our
findings are consistent with the ones reported in Ref. [14] for
intermediate-energy nucleon scattering. In any case, the trend
we observe at energies below 100 MeV indicates the need for
a closer investigation of the role of pp angular correlations on
nucleon-nucleus scattering.

Correlations arising from averaging the ratio Q/e have a
counterpart in the statistical theory of nuclear reactions. In the
Hauser-Feshbach theory of compound nucleus (CN) reactions,
the assumption made is that the exit channels have lost memory
of how the CN was formed in the incoming channels. Actually,
it has been demonstrated [26,27] that the incoming and exit
channels display correlations. Again, these studies illustrate
the point that in the presence of correlations, the average of a
ratio may differ from the ratio of the averages.
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The study presented here for the treatment of the pp
propagator is incomplete in two aspects. First, in that the
angular structure of the energy denominator is given a
parabolic dependence, a feature which can be improved if
the exact sp fields are used. A way to treat these fields exactly
has been sketched in Sec. II A. Second, we have not treated the
full entanglement between different states, as it would emerge
when the full x dependence in Eq. (3) is treated exactly. It
has been reported [13] that the incorporation of the coupling
between different states due to the nonsphericity of the Pauli
blocking yield important corrections, moving the calculated
saturation point closer to the empirical value. These findings
need to be investigated further when angular correlations are
taken into account.

The findings disclosed here, particularly the features
exhibited by the angular-correlation form factor, may be
a source of additional corrections in high-precision studies
of symmetric as well as asymmetric nuclear matter. More-
over, recent developments involving sophisticated relativistic
and nonrelativistic calculations [28], including three-body
forces [6,29,30], finite temperature [31], higher order terms
in the hole-line expansion [4,32], or the development of
low-momentum NN interactions [33], rely upon the RAv
approach in the form of effective-mass approximations or
angle-averaged energy denominators. Although it is premature
to anticipate the actual implications of AC effects on these
state-of-the-art applications, their inclusion would either alter
their current predictions and/or set narrower margins of
uncertainty in their account of conventional effects.
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APPENDIX A: REGULARIZATION OF THE
EXACT PROPAGATOR

Here we show that [1/e(+) − 1/d (+)] is real, vanishing when
x → x◦, the zero of e(q, x). In this way we demonstrate that
the behavior of the imaginary part of the exact propagator is
fully accounted for by 1/d (+), validating the expressions for the
imaginary part of the propagator in Eq. (11). The analysis here
is focused on regions of q where there are zeros in the exact
denominator, keeping in mind that near the zero d(q, x) ≈
[ 1

2x◦
(∂e/∂x)x◦ ](x

2 − x2
◦ ).

Considering the identity

1

u + iη
= u

u2 + η2
− iη

u2 + η2
,

we obtain for the real and imaginary parts

X(q, x) ≡ Re

{
1

e + iη
− 1

d + iη

}
= (e − d)(η2 − ed)

(e2 + η2)(d2 + η2)

and

Y (q, x) ≡ Im

{
1

e + iη
− 1

d + iη

}
= η (e2 − d2)

(e2 + η2)(d 2 + η2)
,

respectively. For a given q but away from x◦, then e �= 0
and d �= 0. If we subsequently let η → 0, then X becomes
finite (X → 1/e − 1/d) while Y vanishes. The other case is
when x = x◦, so that e = d = 0, leading to X = Y = 0. The
subsequent limit η → 0 does not alter the result. Therefore
X(q, x) is indeed a real and finite function, while Y (q, x) ≡ 0.

APPENDIX B: EVALUATION OF THE STRENGTH S

Here we describe the method used to evaluate the strength S

defined by Eq. (17). The integral is confined to the region where
s � 1. One of its boundaries is given by the condition E =
γ�2. Since both E, as expressed by Eq. (9), and γ are smooth
functions, the solution to this equation is straightforward,
leading to a single root b near q◦ located on either side of
q◦. The other boundary occurs at q◦, with q approaching q◦
from that side where s → +∞. If we denote γ◦ = γ (K, q◦),
then near q◦ we can approximate s ≈ γ◦�2/E ′

◦(q − q◦). Thus,
s → +∞ occurs on the right side of q◦ as long as γ◦/E ′

◦ > 0.
If this ratio is negative, the condition s > 1 is met on the left
side of q◦, leading to b < q◦.

Once b is determined we proceed to evaluate S =∫ ∞
0 θ (q)dq. The integral is confined to the interval [q1, q2]

where the condition s > 1 is met. Explicitly,

S =
∫ q2

q1

q2 dq√
γE

.

In order to control the singular behavior of the integrand near
q◦, we subtract (and add) the term q2

◦/
√

a(q − q◦), where a =
γ◦E ′

◦/2q◦. Here we assume no double zero, so that a �= 0. With
this construction we express S as the sum of two integrals,
S = S◦ + �S, where

S◦ =
∫ q2

q1

q2
◦ dq√

a(q2 − q2◦ )
. (B1)

The evaluation of �S = S − S◦ involves a nonsingular inte-
grand, so that a simple Gaussian quadrature can be used. For
S◦ in Eq. (B1), instead, we evaluate analytically

S◦ = q2
◦√| a | ×

{
arccos(t) if t = b/q◦ < 1

ln
(
t + √

t2 − 1
)

if t > 1.
(B2)

We can now explore the behavior of S◦ when b is near q◦.
The boundary b is obtained imposing s = 1, or equivalently
E = γ�2. Expanding both sides to first order around q◦ we
obtain E ′

◦(b − q◦) = [γ◦ + γ ′
◦ (b − q◦)]�2. Therefore

b ≈ q◦ + γ◦�2

E ′◦ − γ ′◦ �2
.
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Considering that the denominator is always negative–feature
observed numerically—then the position of the boundary b

with respect to q◦ is given by the sign of the humpback
curvature at the pole, i.e., γ◦. With these considerations and
using the definition for a, we get

S◦ ∼ 2q2
◦

|E ′◦|
√

1 − s1
×

{
π√

2(1−t)
if t < 1

1 if t > 1,
(B3)

where s1 = γ ′
◦ �2/E ′

◦. Here it becomes evident that there exists
a discontinuity in S◦ when the boundary b passes from one side
of q◦ to the other. This transit is driven by the sign of γ◦. The

double-zero contribution in Eq. (11) is coincident with this
result when t > 1 and t → 1.

The above expression for S◦ also exhibits a singularity
when b approaches q◦ from the left. Although there is
no reason to discard these occurrences, we have moni-
tored this quantity during self-consistent procedures and
found no indication of diverging S◦. Isolated events may
occur when the Fermi motion integration in Eq. (2) is
performed. In practice any event where |b − q◦| < 10−2 fm−1

is treated as a double zero, where simultaneously εk + εp =
K2/4m + q2

◦/m + �(K, q◦) = 0 and γ (K, q◦) = 0, with
K = k + p.
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