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In this paper we study a simplified model of the behavior of a 3-D solid made
from two elastic homogeneous materials separated by a rapidly oscillating inter-
face. We study the asymptotic beha¨ior of the solution of such model using
homogenization tools and a compactness result. We obtain the homogenized
equation, and by studying its coefficients, we find some properties of the limiting
material. Q 1999 Academic Press
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1. INTRODUCTION

In this paper we study a simplified mathematical model that describes
the behavior of a 3-D solid body made from two elastic materials which are
separated by a periodically oscillating interface with period e ) 0 and a
constant amplitude. This work is related to the study of transmission

Žproblem posed in a bounded domain with a rapidly oscillating interface see
w x.3 .

The model involves the classical system of linear elasticity in a bounded
domain V ; R3, with an interior boundary Ge that represents the inter-
face between both elastic materials. We consider homogeneous conditions
on the external boundary of V and use continuity boundary conditions on
Ge. In order to simplify the elasticity system, we consider a particular kind
of elastic homogeneous material.

ªeThe solution u of such a system represents the amount of deformation
induced on the solid by the action of an external force. Our aim is to study

ªeŽ .the asymptotic behavior as e tends to zero of the solution u . We use
Žclassical homogenization tools see, e.g., the books by A. Bensoussan, J.-L.

w x w x.Lions, G. Papanicolaou 2 and E. Sanchez-Palencia 8 and a F. Murat’s´
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ª ªe 0w x6 compactness result to prove that the sequence u converges to u as e
ª0tends to zero, where u is the solution of an elliptic boundary value system

Ž .the homogenized equation that we are to explicitly find. Our study
generalizes previous results obtained by R. Brizzi in the case of an elliptic

Ž w x.scalar equation see 3 . From a physical point of view, this limiting
analysis can be seen as a mixing process of materials in the region near the
rapidly oscillating interface.

The homogenized equation corresponds to a generalized elasticity sys-
tem whose coefficients, arranged in a fourth-order tensor, can be seen as
the elasticity coefficients of the limiting material. Studying the homoge-
nized operator, we can conclude that the new material behaves, in the
region near the interface, like a nonhomogeneous anisotropic elastic
material. In the regions where no mixing process occurs, the new material
still behaves like the original materials, i.e., with the same elastic coeffi-
cients.

The homogenized problem can also be deduced using the two scales
Ž w x.asymptotic de¨elopment method see 2 which consists in proposing an
ªeasymptotic ansatz of the solution u using functions that depend upon two

variables, the microscopic and the macroscopic scales. With this expansion
and by means of a formal calculus, the homogenized problem can be
found. An important difference between the problem treated in this paper
and other problems in homogenization theory is that the microscopic scale
has one spatial dimension less than the macroscopic one.

Let us remark that the 2-D case is a straightforward consequence of the
3-D case studied in this paper. However, in the 2-D case it is possible to
explicitly obtain the coefficients in the homogenized problem and to check

Ž w x.technical hypotheses see 1 .
In Section 2, we present the geometry of the domain with its rapidly

oscillating interface and we formulate our model. From its variational
ªe� 4formulation, we obtain a first result concerning the convergence of u e ) 0

� e4and s , the stress tensor. In Section 3, we formulate the homoge-e ) 0
nized problem and we present our main convergence result. Section 4 is
devoted to proving this result. Finally, in Appendix A, we prove a result
concerning the homogenized coefficients}which is necessary for the exis-
tence and uniqueness of the homogenized problem}and in Appendix B
we briefly expose the 2-D case.

2. PRESENTATION OF THE MODEL

2.1. The Geometry of the Problem

In this section, we describe the domain V ; R3 with its rapidly oscillat-
x w x w 2 Ž .ing interface. To this end, let Y s 0, T = 0, T ; R , T ) 0 i s 1, 2 ,1 2 i
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and let h: Y ª R be a smooth function such that

Ž . < � Ž . < 4i h s h , where h s max h y y g Y and h ) 0.­ Y 1 1 1

Ž . Ž . Ž .ii There exists y g Y such that h y s 0 and = h y s 0.0 0 y 0

Let z ) h ) 0 be given. We define0 1

1 2 <V s y , z g R = R h y - z - z , y g Y ,Ž . Ž .� 41 0

1 2 <V s y , z g R = R yz - z - h y , y g Y .Ž . Ž .� 42 0

Let G1 be the interface between these sets, i.e.,

1 2 <G s y , z g R = R h y s z , y g Y ,� 4Ž . Ž .

Using these elements, the so-called reference cell V is built up as follows
Ž .see Fig. 1, left :

1 1 1 wV s V j G j V s Y = yz , z .Ž .1 2 0 0

w xIf we intersect V with the hyperplane Z s z , where 0 - z - h , we1
Ž .obtain Y and its following decomposition Fig. 1, right

Y s Y * z j g z j O zŽ . Ž . Ž .

Ž . Ž .FIG. 1. The reference cell V left and the decomposition of Y right .
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Ž . Ž Ž . Ž .. � < Ž . Žwhere O z resp., Y * z , g z is defined as y g Y h y - resp., ) ,
. 4 Ž .s z . Note that Y * z s Y y O z .Ž .
Let e be a positive parameter. Extending h by Y-periodicity1 we can

introduce
x

e 2 <V s x , z g R = R h - z - z , x g YŽ .1 0½ 5ž /e

x
e 2 <V s x , z g R = R y z - z - h , x g YŽ .2 0½ 5ž /e

and the rapidly oscillating interface is therefore defined by
x

e 2 <G s x , z g R = R h s z , x g Y see Fig. 2, left .Ž . Ž .½ 5ž /e

x w x wFinally, as in Fig. 2 right, we set V s Y = h , z , V s Y = 0, h1 1 0 m 1
x wand V s Y = yz , 0 . We used V to denote the region near the2 0 m

interface, because it is in this region where we obtain mixed material in
the limit as e goes to zero.

2.2. Setting the Model Up

Let us fill the regions Ve ; V and Ve ; V with two different elastic1 2
ªe e 3materials. Let u : V ª R , i s 1, 2, be the functions that represent thei i

Ž . Ž .FIG. 2. The rapidly oscillating interface left and its homogenized version right .

1 2 Ž 2 . Ž .A function f : R ª R is Y-periodic if f y q Ý k T e s f y for all y g Y and for allis1 i i i
Ž . Ž .T Ž .Tk g Z i s 1, 2 , where e s 1, 0 and e s 0, 1 .i 1 2
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ªeŽ .small deformations inside both materials. By e u , i s 1, 2, we meanx, z i
ªethe linear strain tensor associated with u , i.e.,i

1 Tª ª ªe e ee u s = u q = u ,Ž . Ž . Ž .ž /x , z i x , z i x , z i2

and s e, i s 1, 2, stands for the stress tensor, i.e.,i

ª ªe e es s l div u I q 2m e u ,Ž .i i x , z i i x , z i

where l G 0 and m ) 0 are the Lame coefficients of the ith material,´i i
i s 1, 2. To simplify, we consider the case l s 0. This mathematicali
simplification implies that Poisson’s ratio2 for each material is equal to
zero. The assumption l s 0 is possible since Poisson’s ratio can varyi
between y1 and 1r2, although this physical parameter is in practice
always strictly positive. More details on the theory of elasticity can be

w xfound in the book by L. D. Landau and E. M. Lifschitz 5 . Therefore, the
stress tensor in our model is now given by

ªe es s 2m e u i s 1, 2.Ž .i i x , z i

ªeThe functions u must satisfy the following systemi

ªªe e¡ydiv 2m e u s f in VŽ .Ž .x , z i x , z i i i

ªªeu s 0 on G , i s 1, 2i i~PŽ . e ª ªe e eu s u on G1 2
ª ª ª ªe e e¢2m e u n s 2m e u n on GŽ . Ž .1 x , z 1 2 x , z 2

ª 2 3Ž .where f g L V represents the density of external forces acting on thei
ª esolid body, and n means the exterior normal vector to V . The second1

Ž .equation in P is the homogeneous condition on the external boundariese
e e Ž .of V and V , the third and fourth equations in P are the continuity1 2 e

ªe eboundary conditions on the interface G for the deformations u , and fori
ªethe stresses s n.i ªª ª ªe e e e e

e eLet u s u x q u x , and f , m defined in a similar way, where1 V 2 V1 2

x e stands for the characteristic function of Ve, i s 1, 2. Then, theV ii
Ž .variational formulation of P ise

3ªe 1¡Find u g H V such thatŽ .0~PVŽ . ªe 3ª ª ª ªe e e 12m e u : e ¨ dx dz s f ? ¨ dx dz ;¨ g H V .Ž . Ž . Ž .H H¢ x , z x , z 0
V V

2 Poisson’s ratio is the ratio of the transverse compression to the longitudinal extension.
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ªe 1 3Ž .It is easy to prove that this problem has a unique solution u g H V0
ªe 1 3� 4 Ž . Ž w x.and the sequence u is bounded in H V see 7 . Therefore, thee ) 0 0

ªe e e 2Ž . Ž .sequence s s 2m e u is bounded in LL V , the space of 3 = 3x, z 3, s
2Ž .symmetric second-order tensor with coefficients in L V . Then the fol-

lowing proposition holds.
ª 1 3Ž . Ž .PROPOSITION 2.1. a There exists u* g H V and a subsequence of0

ªe� 4u , which we still denote by e , such thate ) 0

3 3ª ªe 1 2u © u* in H V }weakly, and in L V }strongly.Ž . Ž .0

Ž . 2 Ž . � e4b There exists s * g LL V and a subsequence of s , which we3, s e ) 0
still denote by e , such that

s e © s * in LL 2 V }weakly.Ž .3, s

3. THE MAIN CONVERGENCE RESULT

3.1. The Homogenized Problem

ŽŽ . Ž . .TLet us consider the following periodic system for x s x , xk l k l 1 k l 2
in Y,

ydiv 2me x s div 2mM in YŽ . Ž .Ž .y y k l y k l
P 1 F k , l F 2Ž . k l ½ x Y-periodick l

where M , 1 F k, l F 2, is the 2 = 2 matrix defined byk l

1
w xM s d d q d d .Ž .i jk l ik jl i l jk2

Ž . Ž . Ž . Ž .Since m y, z s m x y q m x y , then P is parameterized by1 OŽ z . 2 Y *Ž z . k l
x w Ž .z g 0, h . For a fixed z, it is easy to show that problem P has a unique1 k l

Ž 1Ž . .2 1Ž .solution in H Y rR , where H Y rR is the space of Y-periodica a
1 Ž 2 . ŽH R functions defined up to an additive constant proofs of existenceloc

w xand uniqueness for similar periodic problems can be found in C. Conca 4
w x. Ž .and E. Sanchez-Palencia 8 . We assume that the solution of P , ask l

Ž . x w Ž .function of y, z g Y = 0, h i s 1, 2 , satisfies the following regularity1
hypothesis:

22¡ 2 1 2 2x wa x g L 0, h ; H Y l L 0, h = RŽ . Ž . Ž .Ž .Ž .k l loc 1 a loc 1

­~H1Ž . 2 2 2 2xb x g L 0, h ; L Y l L 0, h = RŽ . Ž . Ž . .ŽŽ .Ž .k l loc 1 a loc 1i­ z¢
1 F i F 2
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Now, we consider the following periodic scalar problem in Y

ydiv m= w s div 2me in YŽ .Ž .y y k y kP 1 F k F 2Ž . k ½ w Y-periodick

2 Ž .where e is the k th vector of the canonical basis of R . P is alsok k
x wparameterized by z g 0, h and, for a fixed z, this equation has a unique1

1Ž .solution in H Y rR. We assume that the following regularity hypothesisa

holds for its solution:

¡ 2 1 2 2x wa w g L 0, h ; H Y l L 0, h =RŽ . Ž .Ž . Ž .k loc 1 a loc 1~H2 ­wŽ . k 2 2 2 2x wb g L 0, h ; L Y l L 0, h =R .Ž . Ž .Ž . Ž .¢ loc 1 a loc 1­ z

Ž .Using x and w we construct AA z , a fourth-order tensor whosek l k
coefficients are defined by

w x¡2m M h - z - zi j1 k l 1 0
m~a 0 - z - h 1 F i , j, k , l F 3,a z sŽ . i jk l 1i jk l ¢ w x2m M yz - z - 0i j2 k l 0

where the coefficients in the region V are defined bym

1¡ 1 F i , j F 2w x2m M q e x dy ifŽ .H i jž /k l y k l ½i j< < 1 F k , l F 2Y Y

1 1 ­w 1 F i F 2, j s 3k
m 2d q dy ifH k i ½ž /< < 1 F k F 2, l s 32 Y ­ yY i

1 1 ­w 1 F i F 2, j s 3l
m 2d q dy ifH l i ½ž /< < k s 3, 1 F l F 22 Y ­ yY i

m ~ 1 1 ­wa s i s 3, 1 F j F 2ki jk l
m 2d q dy ifH k j ½ž /< < 1 F k F 2, l s 32 Y ­ yY j

1 1 ­w i s 3, 1 F j F 2l
m 2d q dy ifH l j ½ž /< < k s 3, 1 F l F 22 Y ­ yY j

1 i s j s 3
2m dy ifH ½< < k s l s 3Y Y¢

0 otherwise

Ž < < .Y denote the Lebesgue’s measure of the set Y . This tensor satisfies



BAFFICO AND CONCA666

PROPOSITION 3.1. The coefficients of AA are such that:

Ž . Ž . Ž . Ž . x wa a z s a z s a z , ;1 F i, j, k, l F 3, ;z g yz , z .i jk l k l i j i jlk 0 0

Ž .b There exists b ) 0 such that for all j , 3 = 3 symmetric second-order
tensor,

x wAA z j : j G bj : j , ;zg yz , z .Ž .Ž . 0 0

Proof. See Appendix A.

Let us now introduce the homogenized problem

3ª0 1¡Find u g H V such thatŽ .0~PVŽ . ªH 3ª ª ª ª0 1AAe u : e ¨ dx dz s f ? ¨ dx dz ;¨ g H V ,Ž . Ž . Ž .Ž .H H¢ x , z x , z 0
V V

ª ªe Ž .where f is the weak limit of f ; see 3 below. Using Proposition 3.1, we
ª0 1 3Ž . Ž . Ž w x.conclude that PV has a unique solution u g H V see 7 .H 0

Ž .Remark 3.1. The homogenized problem PV can be deduced usingH
Ž w xthe two-scale asymptotic de¨elopment method see 2, 4, or 8 for more

.details . In this case the scales to be considered are the microscopic one,
2 Ž . 3y s xre g R , and the macroscopic scale, x, z g R . The ansatz to be

used is

ª ª ª ªe 0 1 2 2u x , z s u x , z , xre q e u x , z , xre q e u x , z , xre q ??? ,Ž . Ž . Ž . Ž .
ª ªk 3 kŽ .where u : V = Y ª R , k s 0, 1, 2, . . . , are functions such that u x, z, ?

Ž .is Y-periodic, for all x, z in V. A detailed use of this method can be
w xfound, e.g., in C. Conca 4 .

Ž .Remark 3.2. The homogenized equation PV is the variational for-H
mulation of a generalized elasticity system where the stress tensor and the
linear strain tensor are related by

3
ªw xs s a z e u , 1 F i , j F 3, 1Ž . Ž . Ž .i j Ý i jk l x , z k l

k , ls1

ªŽ .or s s AAe u . The coefficients a of AA can be seen as the elasticityx, z i jk l
coefficients of the homogenized material. From the definition of AA, we
observe that in the regions V and V the homogenized material still1 2
behaves as the original materials did, with Lame’s coefficients m and m ,´ 1 2

x wrespectively. Instead, in V the coefficients depend upon z g 0, h .m 1
Therefore, the homogenized material in the region near the interface

Ž w x.behaves like a nonhomogeneous anisotropic elastic material see 7 .
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3.2. The Con¨ergence Result

The main convergence theorem is

Ž . Ž . Ž .THEOREM 3.1. If H1 , H2 and H3 hold, then the sequence of
ª ª ªe 0 1 3 0� 4 Ž . Ž .solutions u of PV con¨erges to u in H V }weakly, where u ise ) 0 e 0

Ž .the unique solution of the homogenized problem PV .H

Ž .Hypothesis H3 in Theorem 3.1 is a technical hypothesis that we
present in Section 4.3.

4. PROOF OF THE CONVERGENCE RESULT

The proof of Theorem 3.1 consists of several steps. First, using Proposi-
� e4tion 2.1, we find the equation that satisfies s *, the weak limit of s .e ) 0

The next steps are devoted to proving}using classical homogenization
ªtechniques and a compactness result}that s * and u*, the weak limit of

ªe� 4 Ž .u , are related by 1 . Toward that end, we identify each componente ) 0
� e4of the limit tensor of s separately. Finally, using the equation fore ) 0

ªs *, we conclude that u* is the solution of the homogenized problem
Ž .PV .H

4.1. The Equation Satisfied by s *

We begin the homogenization process passing to the limit in equation
ªeŽ .PV . To this end, we first identify the weak limit of f :e

Since

x e © u and x e © 1 y u in L` V }weakly ), 2Ž . Ž . Ž .V V1 2

where
1 in V¡ 1

< <O zŽ .~u x , z sŽ . in Vm< <Y¢0 in V .2

Then
ª ª ª 3e 2f © f u q f 1 y u in L V }weakly. 3Ž . Ž . Ž .1 2

Ž . Ž .Using Proposition 2.1 and 3 we pass to the limit e ª 0 in PV and wee

obtain the following variational equation for s *:

ª 3ª ª ª 1s *: e ¨ s f ? ¨ ;¨ g H V , 4Ž . Ž . Ž .H Hx , z 0
V V

ª ª ªŽ .where f s f u q f 1 y u .1 2
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w x4.2. Identification of s * , 1 F k, l F 2, in Vk l m

We shall prove

Ž . w e x w x 2Ž .PROPOSITION 4.1. If H1 holds, then s © s * in L V }k l k l m
Ž .weakly up to a subsequence , for 1 F k, l F 2, where

21 ªw xs * s 2m M q e x dy e u* .Ž . Ž .Ý Hk l ž /i j y i j x , z i j½ 5k l k l< <Y Yi , js1

Proof. Let p : Y ª R2, 1 F k, l F 2, be the polynomial defined byk l

y r2y 2 01p y s , p y s p y s , p y s .Ž . Ž . Ž . Ž .11 12 21 22 y2y r20 1

Ž .Note that e p s M , 1 F k, l F 2. Let w s p q x and s sy k l k l k l k l k l k l
Ž . Ž .2me w remark that s is a 2 = 2 matrix , and define the functionsy k l k l

x
ew x , z s e w , z x , z g VŽ . Ž .k l k l mž /e

and

x
es x , z s s , z x , z g VŽ . Ž .k l k l mž /e

Ž e w e x Ž .do not mistake the 2 = 2 matrix s for s , the k, l -element ofk l k l
e . Ž .tensor s . As x is the solution of P , we havek l k l

div s e s 0 in V . 5Ž .x k l m

Ž .Since H1 is fulfilled, we can use classical arguments about the conver-
gence of periodic functions, to conclude that for all V9 ;; V open setsm

2e 2w ª p in L V9 }strongly, 6Ž . Ž .k l k l

­
e 2w ª 0 in L V9 }strongly, 1 F i F 2 , 7Ž . Ž . Ž .Ž .Ž .k l i­ z

e 2s © s in L V9 }weakly, 1 F i , j F 2 , 8Ž . Ž . Ž .i jk l k l i j
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where s is the average in Y of s , i.e.,k l k l

1
s s 2m M q e x dy.Ž .Ž .Hk l k l y k l< <Y Y

Ž . Ž .Remark 4.1. From 5 and 8 , we conclude that

div s s 0 in V . 9Ž .Ž .x k l m

ªe e TŽ . Ž .Now we can define the function w s w , 0 . Let f g DD V . If wek l k l m
ª ªe Ž .put ¨ s f w in PV , after elementary calculations, we obtaink l e

ªe e e e es = f ? w dx dz q 2m e u : e w f dx dzŽ . Ž .H Hx , z k l x x k l
V Vm m

2 ­ªe e eq 2m e u w f dx dzŽ . Ž .Ý H jx , z k l3 j ­ zVmjs1

ª ªe es f ? f w dx dz , 10Ž .Ž .H k l
Vm

ªe ewhere u denotes the first two components of u . On the other hand, if we
e Ž .use fu as a test function in 5 , we have

s e = f ? ue dx dz q 2mee w e : e ue f dx dz s 0. 11Ž .Ž . Ž .H Hk l x x k l x
V Vm m

Ž . Ž .If we subtract 11 from 10 , we obtain

ªe e e es = f ? w dx dz y s = f ? u dx dzH Hx , z k l k l x
V Vm m

2 ­ ªª ªe e e e eq 2m e u w f dx dz s f ? f w dx dz.Ž . Ž . Ž .Ý H Hjx , z k l k l3 j ­ zV Vm mjs1

12Ž .

Ž . Ž . Ž . Ž . ŽUsing Proposition 2.1 and 3 , 6 , 7 , 8 by considering V9 ;; V , anm
. Ž .open set such that supp f ; V9 , we can pass to the limit in 12 , and

obtain

ªª ªUes *= f ? w dx dz y s = f ? u* dx dz s f * ? f w dx dz ,H H Hx , z k l k l x k l
V V Vm m m
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ªU TŽ .where w s p , 0 . Integrating by parts the left-hand side of thisk l k l
ª ªUŽ . Ž .equation, knowing that s * satisfies 4 with ¨ s f w as a test function ,k l

Ž . Ž .and s satisfies 9 with fu* as a test function , we havek l

ªUs *: e w f dx dz s s : e u* f dx dz.Ž .Ž .H Hx , z k l k l x
V Vm m

We also have

w xM if 1 F i , j F 2i jªU k le w sŽ .x , z k l i j ½ 0 otherwise

Ž .Then, in the sense of DD9 V , we havem

w xs * s s : e u*Ž .k l k l x

2 1
w xs 2m M q e x dy e u* .Ž . Ž .Ý H i jž / i jk l y k l x½ 5i j< <Y Yi , js1

Ž .Since the following symmetric property holds see Proposition 3.1

w x2m M q e x dy s 2m M q e x dy ,Ž . Ž .H Hi j ž /ž /k l y k l i j y i jk li j k lY Y

ªw Ž .x w Ž .xand e u* s e u* for 1 F i, j F 2, we finally conclude that forx i j x, z i j
1 F k, l F 2,

2 1 ªw xs * s 2m M q e x dy e u* ;Ž . Ž .Ý Hk l ž /i j y i j x , z i j½ 5k l k l< <Y Yi , js1

hence, Proposition 4.1 is proved.

w x4.3. Identification of s * , 1 F k F 2, in V3k m

1Ž . Ž .Let w g H Y rR be the solution of the periodic problem P and letk a k
Ž .p y s y , 1 F k F 2}note that = p s e }and set w s 2 p q w andk k y k k k k k

j s m= w . We define the functionsk y k

x
ew s e w , z x , z g VŽ .k k mž /e

and
x

ej s j , z x , z g V .Ž .k k mž /e
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Then we have

div j e s 0 in V , 13Ž .x k m

Ž Ž . .and for all V9 ;; V since H2 holds ,m

w e ª 2 p in L2 V9 }strongly, 14Ž . Ž .k k

­
e 2w ª 0 in L V9 }strongly, 15Ž . Ž .Ž .k­ z

2e 2j ª j in L V9 }weakly, 16Ž . Ž .k k

where j is the average in Y of j , i.e.,k k

1
j s m 2 e q = w dy.Ž .Hk k y k< <Y Y

Ž . Ž .Remark 4.2. From 13 and 16 , we conclude that j satisfiesk

ydiv j s 0. 17Ž .x k

Ž w x.We also need the following compactness lemma see F. Murat 6 :

� e4 y1, pŽ .LEMMA 4.1. If the sequence g belongs to a bounded set of W Ve ) 0
for some p ) 2, and g e G 0, in the following sense:

² e :for all f g DD V , such that f G 0, and ;e ) 0, g , f G 0.Ž .

� e4 y1Ž .Then g belongs to a compact set of H V .e ) 0

e ŽŽ e . Ž e . .TIf j s j , j is assumed to fulfillk k 1 k 2

¡ e p ea j ; L V and j locally bounded,Ž . Ž .� 4Ž . Ž .½ 5jk loc m ke)0 j e)0

for some p ) 2~H3Ž .
­

eb j G 0 in the distribution sense,Ž . Ž .Ž .¢ jk­ z

Ž .then, using Lemma 4.1, we see that for all V9 ;; V j s 1, 2 ,

­ ­
e y1j ª j in H V9 }strongly. 18Ž . Ž .Ž . Ž .Ž . Ž .j jk k­ z ­ z
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Let us now prove

Ž . Ž . w e x w xPROPOSITION 4.2. If H2 and H3 hold, then s ª s * in3k 3k
2Ž .L V }weakly, for 1 F k F 2, where

21 ­wj ªw xs * s m 2d q dy e u* .Ž .Ý H3k jk x , z 3 j½ 5ž /< <Y ­ yY kjs1

ªe e TŽ . Ž .Proof. Let f g DD V and consider w s 0, w . If we use the testm k k
ª ªe Ž .function ¨ s f w in PV we obtain, after algebraic developments,k e

2 e e­ u ­ wj ke e e em = u ? = w f dx dz q m f dx dzÝH Hx 3 x k ­ z ­ xV V jm mjs1

­ ue ­ w e
3 k ªe e eq 2m f dx dz q s = f ? w dx dzH H x , z k­ z ­ zV Vm m

ª ªe es f ? f w dx dz , 19Ž .H k
Vm

ªe eŽ .where u j s 1, . . . , 3 denotes the jth component of u .j
Ž . eNow, if we multiply 13 by the test function fu , after carrying out an3

integration by parts, we have

j e ? = f ue dx dz q me = w e ? = ue f dx dz s 0. 20Ž .Ž .Ž .H Hk x 3 x k x 3
V Vm m

Ž . Ž .We subtract 20 from 19 ,

­ ue ­ w e
3 kªe e es = f ? w dx dz q 2m f dx dzH Hx , z k ­ z ­ zV Vm m

2 e e­ u ­ wj ke e ey j ? = f u dx dz q m f dx dzŽ . ÝH Hk x 3 ­ z ­ xV V jm mjs1

ª ªe es f ? f w dx dz. 21Ž .H k
Vm

Ž . Ž .Using 3 , we can pass to the limit in the right-hand side of 21 . Using
Ž . Ž . Ž .Proposition 2.1, 14 , 15 , 16 , we do the same in the first, second, and

Ž .third terms of the left-hand side of 21 . Let us rewrite the terms in the
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Ž . Ž .sum in the left-hand side of 21 as follows j s 1, 2

­ ue ­ w e
j kem f dx dzH

­ z ­ xV jm

­ ­f
e e e e

y1 1s y j ; fu y j u dx dz ,Ž . Ž .Ž . Hj jk j H ŽV9. , H ŽV9. k j¦ ; 0­ z ­ zVm

Ž .where V9 ;; V is such that supp f ; V9. Using Proposition 2.1, 16m
Ž .and 18 , we can pass to the limit in the last equation and obtain

­ ue ­ w e ­ uU
j k jem f dx dz ª j f dx dz , 1 F j F 2.Ž .H H jk­ z ­ x ­ zV Vjm m

Ž .Then, passing to the limit in 21 , we obtain

2 U­ ujªU Us *= f ? w dx dz y j ? = f u dx dz q j f dx dzŽ .ÝH H Hž / jx , z k l k x 3 k ­ zV V Vm m mjs1

ª ªUs f * ? f w dx dz , 22Ž .H k
Vm

ªU TŽ .where w s 0, 2 p . Integrating by parts the first and second terms ofk k
Ž . Ž .this equation, using that s * and j satisfy 4 and 17 , respectively, wek

obtain
2 U­ ujªUy s *: e w f dx dz q j f dx dzŽ .Ž . ÝH H jx , z k k ­ zV Vm mjs1

Uq j ? = u f dx dz s 0 23Ž .H k x 3
Vm

ªU TŽ Ž .and in the distribution sense using that w s 0, 2 p and then,k k
ªUŽ . w x .s *: e w s 2 s * ,x, z k 3k

2 1 ­wk ªw xs * s m 2d q dy e u* .Ž .Ý H3k k j x , z 3 j½ 5ž /< <Y ­ yY jjs1

Ž Ž .. Ž Ž .. ŽFinally, since H m 2d q ­w r­ y dy s H m 2d q ­w r­ y dy seeY k j k j Y jk j k
.Proposition 3.1 , we conclude that

2 1 ­wj ªw xs * s m 2d q dy e u* .Ž .Ý H3k jk x , z 3 j½ 5ž /< <Y ­ yY kjs1

Proposition 4.2 is therefore proved.
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Remark 4.3. By symmetry of the limit tensor s *, we also have identi-
w xfied the coefficients s * , k s 1, 2.k3

w x4.4. Identification of s * in V33 m

Using Lemma 4.1 we shall prove the following

�w e x 4 w « x w xPROPOSITION 4.3. The sequence s is such that s © s *33 e ) 0 33 33
2Ž .in L V }weakly, wherem

1
w xs * s 2m dy e u* .Ž .H33 x , z 33½ 5< <Y Y

w xProof. We use the method introduced in R. Brizzi 3 . We know that
w e x e Ž e . e

e es s 2m ­ u r­ z and m s m x q m x ; then33 3 1 V l V 2 V l V1 m 2 m

­ ue ­ ueŽ . Ž .3 31 2ew xs s 2m P q 2m P ,33 1 1 2 2ž / ž /­ z ­ z

Ž e . e < e Ž . Ž .where u s u i s 1, 2 , and the operator P ? represents the exten-V3 i 3 ii

sion by zero in V _ Ve.i
e ŽŽ Ž e . . .Let c s P ­ u r­ z ; we see that it is a bounded sequence ini i 3 i

2Ž . U 2Ž .L V . Then there exists c g L V and a subsequence, such thatm i m

c e © c U in L2 V }weakly. 24Ž . Ž .i i m

U Ž .It is possible to identify the functions c : Let f g DD V ; theni m

­
e

ex ; fuŽ .V l V 3¦ ;1 m y1 1­ z Ž . Ž .H V , H Vm 0 m

­f
e e

es y c f dx dz y x u dx dz.H H1 V l V 31 m ­ zV Vm m

�Ž .Ž .4 ŽeFor the sequence ­r­ z x we use the Lemma 4.1 in R.V l V e ) 01 mw xBrizzi 3 it is shown that this sequence satisfies the hypothesis required in
. Ž .the compactness lemma , and for the right-hand terms we have 24 ,

Ž .Proposition 2.1 and 2 . Then, passing to the limit

< <­ O zŽ .
U; fu3¦ ;ž /< <­ z Y y1 1Ž . Ž .H V ; H Vm 0 m

< <O z ­fŽ .
U Us y c f dx dz y u dx dz ,H H1 3< <Y ­ zV Vm m
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and developing the duality product in the last equation, we obtain in the
distribution sense the following identity:

< < UO z ­ uŽ . 3Uc s .1 < <Y ­ z

In the same way,

U< <Y y O z ­ uŽ . 3Uc s .2 < <Y ­ z

Ž . w x U UFinally, from 24 we know that s * s 2m c q 2m c ; then we con-33 1 1 2 2
clude that

1 ­ uU
3

< < < <w xs * s 2 m O z q m Y y O zŽ . Ž .Ž .33 1 2< <Y ­ z

1 ­ uU
3s 2m dy .H½ 5< <Y ­ zY

Hence, Proposition 4.3 is proved.

4.5. Identification of s * in V and V1 2

Finally, to identify the limit s * in V and V we prove the following.1 2

e < U 2Ž .PROPOSITION 4.4. For j s 1, 2, s © s in LL V }weakly, whereV j s jj

ª ª ªU U U <s s 2m e u and u s u* .VŽ .j j x , z j j j

Ž .Proof. From the a priori estimates Proposition 2.1 , we know that
ª ªe 1 3 e 2Ž . Ž .u © u* in H V }weakly and s © s * in LL V }weakly, so, if we0 3, s

ª ªe e e e< < Ž .consider u s u and s s s j s 1, 2 , thenV VV Vj jj j

3ª ªUe 1u © u in H V }weakly j s 1, 2 25Ž . Ž .Ž .V j jj

s e © s U in LL 2 V }weakly j s 1, 2 , 26Ž . Ž .Ž .V j 3, s jj

ª ªU U< <where s s s * and u s u* .V Vj jj j ªe e eŽ .We also know, from the definition of s , that s s 2m e u . Now,V j x, z V jj
Ž . Ž .using 25 and 26 , we conclude that

ªU Us s 2m e u j s 1, 2 .Ž .Ž .j j x , z j

Proposition 4.4 is proved.
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4.6. Conclusion

Ž . Ž . Ž . Ž .From Propositions 4.1 , 4.2 , 4.3 , 4.4 and the definition of tensor AA,
ª Ž .we conclude that s * and u* are related by 1 . Therefore, since s *

ªŽ . Ž .satisfies 4 , u* is solution of PV .H
Since all the steps shown above can be repeated for any weak accumula-

ªe� 4tion point of u , we conclude that the solution of the homogenizede ) 0
Ž .problem PV is the unique weak accumulation point of this sequence.H

Hence, the whole sequence converges weakly to this limit, and Theorem
3.1 is therefore proved.

APPENDIX A: PROOF OF PROPOSITION 3.1

Ž .To prove part a of Proposition 3.1, we first study the coefficients of
tensor A with indexes 1 F i, j, k, l F 2. The symmetry of these coefficients

x w x wis evident when z g h , z and z g yz , 0 . To prove the symmetry when1 0 0
x w Ž .z g 0, h i.e., in the region near the interface , we use the bilinear form1
Ž 1Ž . .2 Ž 1Ž . .2b: H Y rR = H Y rR ª R, defined bya a

1 21b x , c s 2me x : e c dy ;x , c g H Y rR . 27Ž . Ž . Ž .Ž .Ž . Ž .H y y a< <Y Y

Ž .Let w s p q x , 1 F k, l F 2, and x solution of P and p thek l k l k l k l k l k l
polynomial defined in Section 4.2. Using properties of these functions we
can easily see that

b w , w s am . 28Ž . Ž .k l i j i jk l

Ž . Ž w x. m mSince b ?, ? is a symmetric bilinear form see 4 , then a s a , fori jk l k l i j
1 F i, j, k, l F 2.

Ž .On the other hand, as M s M , then by uniqueness of problem P ,k l lk k l
Ž . m mwe have x s x up to an additive constant , and then a s a .k l lk i jk l i jlk

We now study the coefficients a with j s l s 3 and 1 F i, k F 2.i jk l
From the definition of tensor AA, we have the symmetry of these coeffi-

x w x wcients when z g yz , 0 and z g h , z . To prove the symmetry in the0 1 0
ˆ 1Ž .region near the interface, we now consider the bilinear form b: H Y rRa

1Ž .= H Y rR ª R defined bya

1
b̂ w , j s m= w ? = j .Ž . H y y< <4 Y Y

Ž .Let w s 2 p q w , where w is solution of P and p is the polynomialk k k k k k
defined in Section 4.3. Doing elementary calculations we conclude that

ˆ mb w , w s a ,Ž .k i i3k3
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ˆ m mŽ .and by symmetry of b ?, ? , we have a s a , 1 F i, j, F 2. By con-i3k3 k3 i3
struction of AA, we also have am s am , 1 F i, j, F 2.i3k3 i33k

Ž .For the other nonzero terms i.e., a , a and a , the samei33 l 3 jk3 3 j3 l
method can be used.

Ž . x wTo prove part b , we first note that coerciveness when z g h , z and1 0
x w x wz g yz , 0 is evident since m ) 0. When z g 0, h , we must show that0 i 1

Ž .for all symmetric second-order tensors j we have AAj : j G 0, and if
Ž .AAj : j s 0, then j s 0.

Using the relationships between the coefficients of AA and the bilinear
ˆforms b and b, we obtain

2 2 2 2
ˆAAj : j s b w j , w j q b w j , w jŽ . Ý Ý Ý Ýk l k l k l k l l l3 i i3ž / ž /

k , ls1 k , ls1 ls1 is1

2 2 1
2ˆq b w j , w j q 2m dy j . 29Ž .Ý Ý Hk k3 j j3 33ž /< <ž / Y Yks1 js1

From this equation, the positiveness of AA is due to the positiveness of the
Ž w x. Ž .bilinear forms see 4 or 8 . When AAj : j s 0, all the terms on the

Ž .right-hand side of 29 are equal to zero, which implies that j s 0 and,33
ˆ Ž .by coerciveness of b and b, that j s 0 k, l s 1, 2 and j s 0, k s 1, 2k l k3

Ž w x.see, e.g., 4 . Hence j s 0.

APPENDIX B: THE CASE V ; R2

When V ; R2, it is possible to find explicit functions which are solu-
Ž . Ž .tions of the periodic problems P , P , and validate the hypothesesk l k

Ž . Ž . Ž . Ž w x.H1 , H2 , and H3 see 1 . In the 2-D case, the periodic problems
Ž . Ž . x w Ž .P and P become ordinary differential equations in 0, T s Y withk l k
periodic boundary conditions:

d dx d¡
y 2m s 2m in YŽ .~ ž /dy dy dyP andŽ . 11¢x 0 s x TŽ . Ž .

d dw d¡
y m s 2m in YŽ .~ ž /dy dy dyPŽ . 1¢w 0 s w T .Ž . Ž .
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It is easy to prove the following.

x wPROPOSITION B.1. For z g 0, h fixed, let w and x be defined by1

¡ C
y 2 y if 0 - y - a zŽ .ž /m2

C C C~ y a q y 2 y if a z - y - b zŽ . Ž .w y sŽ . ž / ž /m m m2 1 1

C C C
y b y a q y 2 y if b z - y - 1Ž . Ž .¢ž / ž /m m m1 2 2

and

¡ C
y 1 y if 0 - y - a zŽ .ž /2m2

C C C~ y a q y 1 y if a z - y - b zŽ . Ž .x y sŽ . ž / ž /2m 2m 2m2 1 1

C C C
y b y a q y 1 y if b z - y - 1Ž . Ž .¢ž / ž /2m 2m 2m1 2 2

Ž . x Ž . Ž .wwhere O z s a z , b z and

y11 1
C s C z s 2 dy .Ž . Hž /< <Y mY

Ž . 1Ž .Then w and x are the unique solutions up to an additï e constant in H Ya

Ž . Ž .of problems P and P , respectï ely.1 11

Remark B.1. Studying the regularity of the solutions of the equations
Ž . Ž . Ž . Ž . Ž . Ž w x.P and P one can validate hypotheses H1 , H2 , and H3 see 1 .1 11

In the 2-D case, the homogenized tensor has six nonzero coefficients,

2m h - z - z¡ 1 1 0

1 ­x~ 2m 1 q dy 0 - z - ha s ,H 11111 ž /< <Y ­ yY¢2m z - z - 02 0
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2m h - z - z¡ 1 1 0

1~a s 2m dy 0 - z - hH2222 1< <Y Y¢2m z - z - 02 0

m h - z - z¡ 1 1 0

1 ­w~ m 2 q dy 0 - z - ha s a s a s a s H 11212 1221 2112 2121 ž /< <2 Y ­ yY¢m z - z - 0.2 0

Remark B.2. If we denote by m* and mq the following positive con-
stants,

y11 1 1
qm* s m dy , m s dy .H Hž /< < < <Y Y mY Y

Žthese constants are the arithmetic and the harmonic media of m in Y,
q. Ž .respectively , then we note that a s 2m* and C z s 2m in V .2222 m

Since we know the explicit solutions of the periodic problems, we can
easily show that the homogenized coefficients in the 2-D case are:

2m h - z - z 2m h - z - z¡ ¡1 1 0 1 1 0
q~ ~2m 0 - z - h 2m* 0 - z - ha s , a s ,1 11111 2222¢ ¢2m z - z - 0 2m z - z - 02 0 2 0

m h - z - z¡ 1 1 0
q~m 0 - z - ha s a s a s a s .11212 1221 2112 2121 ¢m z - z - 02 0
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