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Abstract. For a self-adjoint operator A : H → H commuting with an increas-
ing family of projections P = (Pt) we study the multifunction t → ΓT (t) =⋂
{σI : I an open set of the topology T containing t}, where σI is the spec-

trum of A on PIH. Let mP be the measure of maximal spectral type. We
study the condition that ΓT is essentially a singleton, mP{t : ΓT (t) is not a
singleton} = 0. We show that if T is the density topology and if mP satisfies
the density theorem, in particular if it is absolutely continuous with respect to
the Lebesgue measure, then this condition is equivalent to the fact that A is a
Borel function of P. If T is the usual topology then the condition is equivalent
to the fact that A is approched in norm by step functions

∑
n∈N

ΓT (αn)〈PInf, f〉,

where the set of intervals {In : n ∈ N} covers the set where ΓT is a singleton.

1. Introduction

Let H be a real separable Hilbert space and P = (Pt : t ∈ R) be an increasing
right continuous family of projections, with P−∞ = 0, P∞ = I the identity. If B is
a Borel real set we denote by PB the projection PB =

∫
B
dPt.

For f ∈ H denote by mf the Borel measure induced by the spectral family P :

mf (B) = 〈PBf, f〉 for any Borel set B.

There exists a measure mP , associated to some element of H of maximal spectral
type, i.e. mf << mP for all f ∈ H . We shall assume that mP(R) = 1.

We shall denote by LP the completion of the Borel σ-field with respect to mP .
If G ∈ LP there is a Borel set B such that mP(G∆B) = 0, and we define

PG := PB

This definition is consistent because if B1 = B2 mP -a.e., then PB1 = PB2 ; in fact

‖(PB1 − PB2)f‖2 =

∫
B1∆B2

d〈Ptf, f〉 =

∫
B1∆B2

d〈Ptf, f〉
dmP(t)

dmP(t) = 0.

We shall denote by FP the support of mP ; that is, FP is the smallest closed set of
full measure.
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Let A be a self-adjoint operator commuting with P . Then A acts on the space
PΛH for any Λ ∈ LP , i.e. APΛH ⊂ PΛH . Denote

σΛ = spectrum of APΛ on PΛH

Then σΛ is a compact set included in [−‖A‖, ‖A‖]. If Λ1 ⊇ Λ2 and mP(Λ2) > 0,
then σΛ1 ⊇ σΛ2 . In fact, if λ ∈ σΛ2 , then there is a sequence (fn) ⊆ PΛ2(H) with
‖fn‖ = 1 such that 〈APΛ2fn, fn〉 → λ, from which the property follows.

Our work is concerned with integral representation of a self-adjoint operator A
commuting with P . In this context a set of necessary and sufficient conditions is
given in [1] and [5].

First let us reduce the problem to the case of continuous P . If A commutes
with P then it commutes with any ∆Pt = Pt − Pt− 6= 0. A necessary condition
in order that the operator A can be written in the form A = g(

∫
sdPs) is that

A∆Pt = λt∆Pt for some real λt. Denote by L the Hilbert space generated by
{∆PtH : t ∈ R}, and let H ′ = HΘL. The projections Pt and PH′ commute, the
family of projections P ′ = (P ′t = PtPH′ : t ∈ R) is continuous, and the restriction
A′ = APH′ commutes with P ′. We have that A = g(

∫
sdPs) iff A∆Pt = λt∆Pt for

all t, and A′ = g′(
∫
sdP ′s). Then we can assume P = (Pt : t ∈ R) is continuous.

Since P is continuous, the measure of maximal spectral type mP is non-atomic.
Following [6], a sequence {Kn} of LP sets is said to converge to t ∈ R if: t ∈⋂

n
Kn, mP(Kn) > 0 and mP(Kn) −→

n
0. Let K be a collection of sequences in LP .

We denote by K(t) the family of sequences in K converging to t. We assume that
K(t) 6= φ for every t ∈ R.

The upper outer density of E ⊆ R at the point t is defined by

D̄∗(E, t) = sup{lim
n

m∗
P(E ∩Kn)

mP(Kn)
/{Kn} ∈ K(t)}.

The lower outer density D∗(I, t) is defined as

D∗(E, t) = inf{lim
n

m∗
P(E ∩Kn)

mP(Kn)
/{Kn} ∈ K(t)}.

If E is LP -measurable and D∗(E, t) = D̄∗(E, t) = 1, then we say that t is an
(outer) density point for E. The density topology TD is the set of all I ⊆ R such
that ∀t ∈ I D̄∗(Ic, t) = 0. In this context also see [3], [7] and [8].

We shall assume that mP satisfies a density theorem; this means that there exists
a collection K such that, for every set A ⊆ R, almost every point with respect to
mP of A is an outer density point for A. Under this condition every open set
I ∈ TD is LP -measurable, and every point t ∈ I is a density point of I. Moreover
a function ϕ ∈ LP is TD/T0-continuous mP-a.e., where T0 in the usual topology
on R. Therefore, if ϕ is a bounded LP -measurable function, then for mP -a.a. t, if
{Kn} ∈ K(t)

lim
n→∞

∫
Kn

ϕ dmP

mP(Kn)
= ϕ(t).

If mP is absolutely continuous with respect to the Lebesgue measure, then mP
satisfies the density theorem with respect to K(t) = class of all regular intervals
converging to t.
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In the next four lemmas we shall consider a topology T on FP . Mainly we are
interested in the traces of TD and T0 over FP , which we still denote by TD and T0.
We shall assume that T fulfills the following two conditions:

(i) T ⊆ LP ;
(ii) ∀φ 6= I ∈ T mP(I) > 0.
These two conditions are satisfied by TD and T0. For TD they follow respectively

from Corollary 4.4 and Corollaries 4.12 and 4.13 of [6]. As for T0, (i) is inmediate
and (ii) follows from the definition of FP .

We denote by IT (t) = {I ∈ T : t ∈ I} the set of open neighbourhoods of t ∈ FP .
Define the pointwise spectrum of A with respect to P and the topology T by

ΓT (t) =
⋂

I∈IT (t)

σI ,

for t ∈ FP .
In the proof of the lemmas we abbreviate Γ(t) = ΓT (t) and IT (t) = I(t)

Lemma 1. ΓT (t) is a non-empty T0-compact set included in [−‖A‖, ‖A‖].

Proof. The sets σI are non-empty and compact, so it suffices to show that the family
(σI)I∈I(t) has the finite intersection property. This holds because this family is a
net with respect to the order induced by inclusion; in fact if I1, ..., In belong to I(t)
the open set

⋂n
i=1 Ii also belongs to I(t), and

⋂n
i=1 σIi contains σ⋂n

i=1 Ii
.

The mapping Γ : FP → Subsets R is a multifunction with compact values. We
recall that for X and Y topological spaces, a multifunction G : X → Subsets Y , is
said to be upper semi-continuous if for all t ∈ X and for all open set V containing
G(t), there exists a neighbourhood U of t such that G(s) ⊂ V for all s ∈ U (see
[2]). Now, set

S(G) = {t ∈ FP : G(t) is a singleton}
and assume S(G) 6= ∅. When t ∈ S(G) we identify the singleton G(t) with its
unique element. IfG is an upper semi-continuous multifunction, thenG : S(G) → Y
is a continuous function.

Lemma 2. ΓT is a T /T0 upper semi-continuous multifunction.

Proof. Let V ∈ T0 be an open set such that Γ(t) ⊂ V . Since the family of T0-
compact sets {σI}I∈I(t) is a net with the order induced by inclusion, it is easy to
prove that there exists I ∈ I(t) with σI ⊆ V . In particular, for all s ∈ I we have
Γ(s) ⊆ σI ⊆ V .

This result implies that there exist measurable selections γ ∈ Γ, i.e. an LP -
measurable function γ : FP → R such that γ(t) ∈ ΓT (t) for all t ∈ FP . Moreover,
the functions below are two measurable selections:

ψΓT (t) = max{u ∈ ΓT (t)}, φΓT (t) = min{u ∈ ΓT (t)}.
More precisely:

Lemma 3. ψΓT is T /T0 upper semi-continuous and φΓT is T /T0 lower semi-
continuous.

Proof. This follows from Lemma 2. In fact, if t ∈ ψ−1
Γ (−∞, r), then Γ(t) ⊂

(−∞, r) = V and there exists a neighbourhood U of t such that Γ(s) ⊂ (−∞, r)
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for all s ∈ U , so U ⊂ ψ−1
Γ (−∞, r). Hence ψ−1

Γ (−∞, r) ∈ T and ψΓ is upper
semi-continuous. The proof is analogous for φΓ.

Lemma 4. S(ΓT ) = {t : ΓT (t) is a singleton} is LP -measurable.

Proof. This follows inmediately from the equality S(Γ) = {t : ψΓ(t) = φΓ(t)}.

Lemma 5. Assume m is a non-atomic Borel measure and J = {J} is a family
of open intervals covering a Borel set E. Then there exists a countable class of
disjoint open intervals I = {I} subordinated to J (i.e. for any I ∈ I there exists
J ∈ J such that I ⊂ J) satisfying m(E \

⋃
I∈I I) = 0.

Proof. By Lindelöf’s theorem there exists a countable class {Jn : n ∈ N} ⊂ J such
that E ⊂

⋃
n∈N Jn. Now define I ′1 = J1, I

′
k = Jk \

⋃
i<k Ji for k > 1. It is easily

shown that each set I ′k is a finite union of disjoint intervals {I ′′i,k : i = 1, . . . , Nk}.
Set Ii,k = Interior I ′′i,k; since m is non-atomic the class of sets I = {Ii,k : i =

1, ..., Nk, k ∈ N} has the desired property.

2. Main results

Theorem 1. Assume mP satisfies the density theorem (in particular, if it is abso-
lutely continuous with respect to the Lebesgue measure). Then the following condi-
tions are equivalent:

a) mP{t : ΓTD is not a singleton} = 0.
b) A =

∫
ψ(t)dPt for ψ a Borel function.

If these conditions hold, then ψ = ψΓTD mP -a.e.

Proof. a)⇒b). To avoid overburdened notation, we shall not make explicit the
dependence on TD. First observe that ψΓ = φΓ on S(Γ), so the restriction ψΓ :
S(Γ) → R is TD/T0-continuous. Using Lemma 2, we get that ∀ε > 0 and ∀t ∈ S(Γ)
there exists a TD open set It ∈ I(t) such that

σ(APIt) ⊂ (ψΓ(t)− ε, ψΓ(t) + ε);

hence, ∀s ∈ It ∩ S(Γ) : ψΓ(s) ∈ (ψΓ(t)− ε, ψΓ(t) + ε).
Let K be the class of sets with respect to which mP satisfies the density theorem.

Take {Kn} ∈ K(t). There exists n(ε) such that

∀n ≥ n(ε) :
mP(Kn ∩ It)
mP(Kn)

≥ 1− ε.

We denote by ψ any LP -measurable extension of ψΓ to R bounded by ‖A‖. Let us

take f ∈ H such that | dmf

dmP
| ≤ c. We have

|〈APKnf, f〉 − ψΓ(t)〈PKnf, f〉|

≤ |〈APKn∩Itf, f〉 − ψΓ(t)〈PKn∩Itf, f〉|+ 2‖A‖‖PKn\Itf‖2

≤ ε

∫
Kn∩It

dmf

dmP
dmP + 2‖A‖

∫
Kn\It

dmf

dmP
dmP

≤ εcmP(Kn) + 2‖A‖cεmP(Kn) = cε(2‖A‖+ 1)mP(Kn).
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Hence: ∣∣∣∣ 1

mP(Kn)
〈APKnf, f〉 − ψΓ(t)

1

mP(Kn)
〈PKnf, f〉

∣∣∣∣ ≤ c(2‖A‖+ 1)ε.

From the density theorem, we get∣∣∣∣ d

dmf
〈APtf, f〉 − ψΓ(t)

d

dmf
〈Ptf, f〉

∣∣∣∣ ≤ c(2‖A‖+ 1)ε mP -a.e in t.

We conclude that

d

dmf
〈APtf, f〉 = ψΓ(t)

d

dmf
〈Ptf, f〉 mP -a.e. on S(Γ).

Since mP(S(Γ)c) = 0, for any f with (
dmf

dmP
) bounded we deduce that

〈Af, f〉 =

∫
ψΓ(t)d〈Ptf, f〉.

By standard density arguments we obtain this last equality for any f ∈ H .
b)⇒a). Let A =

∫
ψ(t)dPt with ψ Borel measurable. ψ is T /T0-continuous

mP -a.e.; that is, there exists a full mP -measurable set E ⊆ FP such that for any
t ∈ E, ε > 0 there exists It ∈ I(t) such that ∀s ∈ It, |ψ(s) − ψ(t)| ≤ ε. It is easily
obtained that:

σ(APIt) ⊂ [ψ(t) − ε, ψ(t) + ε] .

As this happens for any ε > 0, we deduce that for any t ∈ E, Γ(t) = {ψ(t)}. Then
S(ΓTD) ⊃ E, and it is a full mP -measurable set.

Theorem 2. The following two conditions are equivalent:
a) mP{t : ΓT0 is not a singleton} = 0.
b) For any ε > 0 there exists a class of disjoint open intervals Iε = {In,ε : n ∈ N}

of full mP -measure, i.e. mP((
⋃
n∈N In,ε)

c) = 0, and a real sequence (cn,ε : n ∈ N)
such that

∀f ∈ H,
∣∣∣∣∣〈Af, f〉 −∑

n∈N
cn,ε〈PIn,εf, f〉

∣∣∣∣∣ ≤ ε‖f‖2.

Moreover, when these conditions hold we have that for any ε > 0 we can choose a
covering Iε of ST0

Γ such that each element of Iε intersects ST0

Γ , and cn,ε = ΓT0(αn,ε)

with αn,ε ∈ In,ε ∩ ST0

Γ . In particular, mP((ST0

Γ )c) = 0 implies A =
∫
S
T0
Γ

Γ(t)dPt.

Proof. As before, we shall not make explicit the dependence on T0. Assume b)
holds. Take D =

⋂
k≥1

⋃
n∈N In, 1k . Then mP(Dc) = 0. Fix t ∈ D. For any k ≥ 1

there exists some nk ∈ N such that t ∈ Ink, 1k . Denote I = Ink, 1k , c = cnk, 1k . Then

|〈APIf, f〉 − c〈PIf, f〉| ≤
1

k
‖PIf‖2 .

Hence σ(APJ ) ⊆ (c − 1
k , c + 1

k ) for any J ⊂ I, J ∈ It. Then the diameter of

Γ(t) satisfies δ(Γ(t)) ≤ 2
k . We deduce that Γ(t) is a singleton, so D ⊂ S(Γ) and

mP(S(Γ)c) ≤ mP(Dc) = 0.
Now assume condition a) holds, and fix ε > 0. For any t ∈ S(Γ) there exists

δ(t) > 0 such that for Jt = (t−δ(t), t+δ(t)) we have σ(APJt) ⊂ (Γ(t)− ε
2 ,Γ(t)+ ε

2 ).
At this point we notice that mP(Jt) > 0. Consider J = {Jt : t ∈ S(Γ)}. By
Lemma 5 there exists a countable class of disjoint open intervals I = {In : n ∈ N}
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subordinated to J and which mP -covers S(Γ). Since mP(S(Γ)c) = 0, we may
assume that mP(In ∩ S(Γ)) > 0 for any n ∈ N. Take αn ∈ In ∩ S(Γ); we have∣∣∣∣∣〈Af, f〉−∑

n∈N
Γ(αn)〈PInf, f〉

∣∣∣∣∣≤∑
n∈N

|〈APInf, f〉 − Γ(αn)〈PInf, f〉| .(1)

Since σ(APIn ) is the spectrum of APIn on PInH , we have

|〈APInf, f〉 − Γ(αn)〈PInf, f〉|
≤ sup {|λ− Γ(αn)| : λ ∈ σ(APIn )} 〈PInf, f〉.

(2)

For any n ∈ N we have In ⊂ Jt for some t ∈ S(Γ). Since αn ∈ In ⊂ Jt, we
have |Γ(αn) − Γ(t)| < ε

2 . On the other hand, for any interval J with mP(J) > 0
and J ⊂ Jt we have σJ ⊂ σJt ⊂ (Γ(t) − ε

2 ,Γ(t) + ε
2 ). Then the right hand

side of (2) is bounded by ε〈PInf, f〉 and the right hand side of (1) is bounded by
ε
∑
n∈N

〈PInf, f〉 = ε〈f, f〉, because mf (S(Γ)c) = 0. We have shown that∣∣∣∣∣〈Af, f〉 −∑
n∈N

Γ(αn)〈PInf, f〉
∣∣∣∣∣ ≤ ε〈f, f〉.

Let us show the last statement. We take αn,ε, In,ε instead of αn, In because these
quantities depend on ε > 0. Since Γ restricted to SΓ is T0/T0-continuous, we get∑

n∈N
Γ(αn,ε)1In,ε(t) −→

ε→0
Γ(t) mP-a.e. on SΓ.

On the other hand, |
∑
n∈N

Γ(αn,ε)1In,ε | ≤ ‖A‖, so by the dominated convergence

theorem we get ∑
n∈N

Γ(αn,ε)〈PIn,εf, f〉 −→
ε→0

∫
SΓ

Γ(t)d〈Ptf, f〉.

Example. Let A be a self-adjoint operator commuting with P . It is said that P
separates the spectrum (see [4]) of A if there exists an increasing function g(t) such
that

σ(−∞,t] ⊂ (−∞, g(t)], σ[t,∞) ⊂ [g(t),∞).

In this case we have σ[s,t] ⊆ [g(s), g(t)]. We deduce that ΓT0(t) ⊆ [g(t−), g(t+)].
As g is increasing and the maximal spectral type measure mP is non-atomic, we
get

mP{t : ΓT0(t) is not a singleton} = 0

Moreover, ΓT0(t) = {g(t)} mP -a.e.

Complement to this paper

In what follows we describe, using the pointwise spectrum, the least upper bound
of A in AP : the closed algebra of symmetric operators generated by P . Notice that
there is a unique symmetric operator A+ ∈ AP , which satisfies

1) A+ ≥ A;
2) ∀B ∈ AP , if B ≥ A, then B ≥ A+.
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In fact since AP is a closed lattice it is easy to prove that

A+ =

∫
αA(t)dPt

where

αA = ess inf{h/h ∈ LP and

∫
h(t)dPt ≥ A}.

Here the essinf is computed with respect to mP .
The following result characterizes αA in terms of ΓTDA .

Theorem. If mP satisfies a density theorem, then

αA = maxΓTDA mP -a.e.

Proof. We denote ψ = maxΓTDA (t) which is LP -measurable by Lemma 3. From

Theorem 1 we have ΓTDA+(t) = {αA(t)} mP -a.e. In that way for any point t ∈ FP of
continuity for αA we get

∀ε > 0 ∃I ∈ ITD (t)∀s ∈ I αA(s) ≤ αA(t) + ε.

Since

〈APIf, f〉 ≤ 〈A+PIf, f〉 =

∫
I

αA(s)d〈Psf, f〉

≤ (αA(t) + ε)〈PIf, f〉,

we conclude ΓTDA (t) ⊆ (−∞, αA(t) + ε], and therefore ψ(t) ≤ αA(t). Almost all
points in FP are continuity points for αA (due to the density theorem) from which
we conclude

ψ ≤ αA mP -a.e.

In order to prove the opposite inequality it is enough to show that
∫
ψ(t)dPt ≥ A.

For that purpose consider f 6= 0, a fixed element in H , and introduce the following
signed measure on LP , νf (Λ) = 〈APΛf, f〉. We have νf << mf and moreover

| dνfdmf
| ≤ ‖A‖. Consider also η =

dmf

dmP
.

We have that η is TD/T0-continuous mP-a.e. Let G = {t ∈ FP/η(t) > 0 and η is
continuous on t}; then mf (G

c) = 0. Now if I ∈ TD and I∩G 6= ∅, then mf (I) > 0.
In fact let t ∈ I ∩G; since η is continuous on t, there exists an open neighbourhood
J ⊆ I of t such that η(s) > 0 for all s ∈ J . Therefore, since mP(J) > 0,

νf (I) ≥ νf (J) =

∫
J

η(s)dmP (s) > 0.

Almost all points t ∈ G (with respect to mf or mP) are continuity points for
dνf
dmf

. Fix one such t ∈ G; from Lemma 2 we conclude that

∀ε > 0∃I ∈ ITD(t) such that

σ(API) ⊆ (−∞, ψ(t) + ε) and

∀s ∈ I
∣∣∣∣dνf (s)dmf

− dνf (t)

dmf

∣∣∣∣ ≤ ε.

Hence, ∀g ∈ H 〈API , g〉 ≤ (ψ(t) + ε)〈PIg, g〉. In particular, if g = PΛf , where
Λ ⊆ I, we have

νf (Λ) = 〈APΛf, f〉 ≤ (ψ(t) + ε)〈PΛf, f〉 = (ψ(t) + ε)mf(Λ)
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and therefore
dνf (s)
dmf

≤ (ψ(t) + ε) mf -a.e. on s ∈ I. Since mf (I) > 0 we get that
dνf (t)
dmf

≤ ψ(t) + 2ε. We have proved that
dνf
dmf

≤ ψ mf -a.e.

Finally,

〈Af, f〉 =

∫
dνf (t)

dmf
dmf (t) ≤

∫
ψ(t)d〈Ptf, f〉

as we wanted to prove.

In a similar way the operator A− =
∫
φ(t)dPt with φ(t) = min ΓTDA (t) is the

greatest lower bound of A in AP .
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