PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 126, Number 2, February 1998, Pages 375–382 S 0002-9939(98)04428-1

A POINTWISE SPECTRUM AND REPRESENTATION OF OPERATORS

N. BERTOGLIO, SERVET MARTÍNEZ, AND JAIME SAN MARTÍN

(Communicated by Palle E. T. Jorgensen)

ABSTRACT. For a self-adjoint operator $A: H \to H$ commuting with an increasing family of projections $\mathcal{P} = (P_t)$ we study the multifunction $t \to \Gamma^{\mathcal{T}}(t) = \bigcap \{\sigma_I : I \text{ an open set of the topology } \mathcal{T} \text{ containing } t\}$, where σ_I is the spectrum of A on $P_I H$. Let $m_{\mathcal{P}}$ be the measure of maximal spectral type. We study the condition that $\Gamma^{\mathcal{T}}$ is essentially a singleton, $m_{\mathcal{P}}\{t:\Gamma^{\mathcal{T}}(t) \text{ is not a singleton}\} = 0$. We show that if \mathcal{T} is the density topology and if $m_{\mathcal{P}}$ satisfies the density theorem, in particular if it is absolutely continuous with respect to the Lebesgue measure, then this condition is equivalent to the fact that A is a Borel function of \mathcal{P} . If \mathcal{T} is the usual topology then the condition is equivalent to the fact that A is approched in norm by step functions $\sum_{n \in \mathbb{N}} \Gamma^{\mathcal{T}}(\alpha_n) \langle P_{I_n} f, f \rangle$,

where the set of intervals $\{I_n : n \in \mathbb{N}\}$ covers the set where $\Gamma^{\mathcal{T}}$ is a singleton.

1. INTRODUCTION

Let *H* be a real separable Hilbert space and $\mathcal{P} = (P_t : t \in \mathbb{R})$ be an increasing right continuous family of projections, with $P_{-\infty} = 0$, $P_{\infty} = I$ the identity. If *B* is a Borel real set we denote by P_B the projection $P_B = \int_B dP_t$.

For $f \in H$ denote by m_f the Borel measure induced by the spectral family \mathcal{P} :

$$m_f(B) = \langle P_B f, f \rangle$$
 for any Borel set B.

There exists a measure $m_{\mathcal{P}}$, associated to some element of H of maximal spectral type, i.e. $m_f \ll m_{\mathcal{P}}$ for all $f \in H$. We shall assume that $m_{\mathcal{P}}(\mathbb{R}) = 1$.

We shall denote by $\mathcal{L}_{\mathcal{P}}$ the completion of the Borel σ -field with respect to $m_{\mathcal{P}}$. If $G \in \mathcal{L}_{\mathcal{P}}$ there is a Borel set B such that $m_{\mathcal{P}}(G\Delta B) = 0$, and we define

$$P_G := P_B$$

This definition is consistent because if $B_1 = B_2 m_{\mathcal{P}}$ -a.e., then $P_{B_1} = P_{B_2}$; in fact

$$\|(P_{B_1} - P_{B_2})f\|^2 = \int_{B_1 \Delta B_2} d\langle P_t f, f \rangle = \int_{B_1 \Delta B_2} \frac{d\langle P_t f, f \rangle}{dm_{\mathcal{P}}(t)} dm_{\mathcal{P}}(t) = 0.$$

We shall denote by $F_{\mathcal{P}}$ the support of $m_{\mathcal{P}}$; that is, $F_{\mathcal{P}}$ is the smallest closed set of full measure.

©1998 American Mathematical Society

Received by the editors July 20, 1995 and, in revised form, April 30, 1996. 1991 Mathematics Subject Classification. Primary 47A11, 47D15.

Let A be a self-adjoint operator commuting with \mathcal{P} . Then A acts on the space $P_{\Lambda}H$ for any $\Lambda \in \mathcal{L}_{\mathcal{P}}$, i.e. $AP_{\Lambda}H \subset P_{\Lambda}H$. Denote

$$\sigma_{\Lambda} = \text{ spectrum of } AP_{\Lambda} \text{ on } P_{\Lambda}H$$

Then σ_{Λ} is a compact set included in $[-\|A\|, \|A\|]$. If $\Lambda_1 \supseteq \Lambda_2$ and $m_{\mathcal{P}}(\Lambda_2) > 0$, then $\sigma_{\Lambda_1} \supseteq \sigma_{\Lambda_2}$. In fact, if $\lambda \in \sigma_{\Lambda_2}$, then there is a sequence $(f_n) \subseteq P_{\Lambda_2}(H)$ with $\|f_n\| = 1$ such that $\langle AP_{\Lambda_2}f_n, f_n \rangle \to \lambda$, from which the property follows.

Our work is concerned with integral representation of a self-adjoint operator A commuting with \mathcal{P} . In this context a set of necessary and sufficient conditions is given in [1] and [5].

First let us reduce the problem to the case of continuous \mathcal{P} . If A commutes with \mathcal{P} then it commutes with any $\Delta P_t = P_t - P_{t-} \neq 0$. A necessary condition in order that the operator A can be written in the form $A = g(\int sdP_s)$ is that $A\Delta P_t = \lambda_t \Delta P_t$ for some real λ_t . Denote by L the Hilbert space generated by $\{\Delta P_t H : t \in \mathbb{R}\}$, and let $H' = H\Theta L$. The projections P_t and $P_{H'}$ commute, the family of projections $\mathcal{P}' = (P'_t = P_t P_{H'} : t \in \mathbb{R})$ is continuous, and the restriction $A' = AP_{H'}$ commutes with \mathcal{P}' . We have that $A = g(\int sdP_s)$ iff $A\Delta P_t = \lambda_t \Delta P_t$ for all t, and $A' = g'(\int sdP'_s)$. Then we can assume $\mathcal{P} = (P_t : t \in \mathbb{R})$ is continuous.

Since \mathcal{P} is continuous, the measure of maximal spectral type $m_{\mathcal{P}}$ is non-atomic. Following [6], a sequence $\{K_n\}$ of $\mathcal{L}_{\mathcal{P}}$ sets is said to converge to $t \in \mathbb{R}$ if: $t \in \bigcap_n K_n, m_{\mathcal{P}}(K_n) > 0$ and $m_{\mathcal{P}}(K_n) \xrightarrow{} 0$. Let \mathcal{K} be a collection of sequences in $\mathcal{L}_{\mathcal{P}}$. We denote by $\mathcal{K}(t)$ the family of sequences in \mathcal{K} converging to t. We assume that $\mathcal{K}(t) \neq \phi$ for every $t \in \mathbb{R}$.

The upper outer density of $E \subseteq \mathbb{R}$ at the point t is defined by

$$\bar{D}^*(E,t) = \sup\{\overline{\lim_n} \frac{m_{\mathcal{P}}^*(E \cap K_n)}{m_{\mathcal{P}}(K_n)} / \{K_n\} \in \mathcal{K}(t)\}.$$

The lower outer density $\underline{D}^*(I, t)$ is defined as

$$\underline{D}^*(E,t) = \inf\{\underline{\lim}_n \frac{m_{\mathcal{P}}^*(E \cap K_n)}{m_{\mathcal{P}}(K_n)} / \{K_n\} \in \mathcal{K}(t)\}.$$

If E is $\mathcal{L}_{\mathcal{P}}$ -measurable and $\underline{D}^*(E,t) = \overline{D}^*(E,t) = 1$, then we say that t is an (outer) density point for E. The density topology \mathcal{T}_D is the set of all $I \subseteq \mathbb{R}$ such that $\forall t \in I \quad \overline{D}^*(I^c, t) = 0$. In this context also see [3], [7] and [8].

We shall assume that $m_{\mathcal{P}}$ satisfies a density theorem; this means that there exists a collection \mathcal{K} such that, for every set $A \subseteq \mathbb{R}$, almost every point with respect to $m_{\mathcal{P}}$ of A is an outer density point for A. Under this condition every open set $I \in \mathcal{T}_D$ is $\mathcal{L}_{\mathcal{P}}$ -measurable, and every point $t \in I$ is a density point of I. Moreover a function $\varphi \in \mathcal{L}_{\mathcal{P}}$ is $\mathcal{T}_D/\mathcal{T}_0$ -continuous $m_{\mathcal{P}}$ -a.e., where \mathcal{T}_0 in the usual topology on \mathbb{R} . Therefore, if φ is a bounded $\mathcal{L}_{\mathcal{P}}$ -measurable function, then for $m_{\mathcal{P}}$ -a.a. t, if $\{\mathcal{K}_n\} \in \mathcal{K}(t)$

$$\lim_{n \to \infty} \frac{\int_{K_n} \varphi \, dm_{\mathcal{P}}}{m_{\mathcal{P}}(K_n)} = \varphi(t)$$

If $m_{\mathcal{P}}$ is absolutely continuous with respect to the Lebesgue measure, then $m_{\mathcal{P}}$ satisfies the density theorem with respect to $\mathcal{K}(t) = \text{class of all regular intervals}$ converging to t.

In the next four lemmas we shall consider a topology \mathcal{T} on $F_{\mathcal{P}}$. Mainly we are interested in the traces of \mathcal{T}_D and \mathcal{T}_0 over $F_{\mathcal{P}}$, which we still denote by \mathcal{T}_D and \mathcal{T}_0 . We shall assume that \mathcal{T} fulfills the following two conditions:

(i) $\mathcal{T} \subseteq \mathcal{L}_{\mathcal{P}}$;

(ii) $\forall \phi \neq I \in \mathcal{T} \quad m_{\mathcal{P}}(I) > 0.$

These two conditions are satisfied by \mathcal{T}_D and \mathcal{T}_0 . For \mathcal{T}_D they follow respectively from Corollary 4.4 and Corollaries 4.12 and 4.13 of [6]. As for \mathcal{T}_0 , (i) is immediate and (ii) follows from the definition of $F_{\mathcal{P}}$.

We denote by $\mathcal{I}^{\mathcal{T}}(t) = \{I \in \mathcal{T} : t \in I\}$ the set of open neighbourhoods of $t \in F_{\mathcal{P}}$. Define the pointwise spectrum of A with respect to \mathcal{P} and the topology \mathcal{T} by

$$\Gamma^{\mathcal{T}}(t) = \bigcap_{I \in \mathcal{I}^{\mathcal{T}}(t)} \sigma_{I},$$

for $t \in F_{\mathcal{P}}$.

In the proof of the lemmas we abbreviate $\Gamma(t) = \Gamma^{\mathcal{T}}(t)$ and $\mathcal{I}^{\mathcal{T}}(t) = \mathcal{I}(t)$

Lemma 1. $\Gamma^{\mathcal{T}}(t)$ is a non-empty \mathcal{T}_0 -compact set included in $[-\|A\|, \|A\|]$.

Proof. The sets σ_I are non-empty and compact, so it suffices to show that the family $(\sigma_I)_{I \in \mathcal{I}(t)}$ has the finite intersection property. This holds because this family is a net with respect to the order induced by inclusion; in fact if $I_1, ..., I_n$ belong to $\mathcal{I}(t)$ the open set $\bigcap_{i=1}^n I_i$ also belongs to $\mathcal{I}(t)$, and $\bigcap_{i=1}^n \sigma_{I_i}$ contains $\sigma_{\bigcap_{i=1}^n I_i}$.

The mapping $\Gamma : F_{\mathcal{P}} \to \text{Subsets } \mathbb{R}$ is a multifunction with compact values. We recall that for X and Y topological spaces, a multifunction $G : X \to \text{Subsets } Y$, is said to be upper semi-continuous if for all $t \in X$ and for all open set V containing G(t), there exists a neighbourhood U of t such that $G(s) \subset V$ for all $s \in U$ (see [2]). Now, set

 $S(G) = \{t \in F_{\mathcal{P}} : G(t) \text{ is a singleton}\}\$

and assume $S(G) \neq \emptyset$. When $t \in S(G)$ we identify the singleton G(t) with its unique element. If G is an upper semi-continuous multifunction, then $G : S(G) \to Y$ is a continuous function.

Lemma 2. $\Gamma^{\mathcal{T}}$ is a $\mathcal{T}/\mathcal{T}_0$ upper semi-continuous multifunction.

Proof. Let $V \in \mathcal{T}_0$ be an open set such that $\Gamma(t) \subset V$. Since the family of \mathcal{T}_0 compact sets $\{\sigma_I\}_{I \in \mathcal{I}(t)}$ is a net with the order induced by inclusion, it is easy to
prove that there exists $I \in \mathcal{I}(t)$ with $\sigma_I \subseteq V$. In particular, for all $s \in I$ we have $\Gamma(s) \subseteq \sigma_I \subseteq V$.

This result implies that there exist measurable selections $\gamma \in \Gamma$, i.e. an $\mathcal{L}_{\mathcal{P}}$ measurable function $\gamma : F_{\mathcal{P}} \to \mathbb{R}$ such that $\gamma(t) \in \Gamma^{\mathcal{T}}(t)$ for all $t \in F_{\mathcal{P}}$. Moreover,
the functions below are two measurable selections:

$$\psi_{\Gamma^{\mathcal{T}}}(t) = \max\{u \in \Gamma^{\mathcal{T}}(t)\}, \quad \phi_{\Gamma^{\mathcal{T}}}(t) = \min\{u \in \Gamma^{\mathcal{T}}(t)\}.$$

More precisely:

Lemma 3. $\psi_{\Gamma^{\mathcal{T}}}$ is $\mathcal{T}/\mathcal{T}_0$ upper semi-continuous and $\phi_{\Gamma^{\mathcal{T}}}$ is $\mathcal{T}/\mathcal{T}_0$ lower semicontinuous.

Proof. This follows from Lemma 2. In fact, if $t \in \psi_{\Gamma}^{-1}(-\infty, r)$, then $\Gamma(t) \subset (-\infty, r) = V$ and there exists a neighbourhood U of t such that $\Gamma(s) \subset (-\infty, r)$

for all $s \in U$, so $U \subset \psi_{\Gamma}^{-1}(-\infty, r)$. Hence $\psi_{\Gamma}^{-1}(-\infty, r) \in \mathcal{T}$ and ψ_{Γ} is upper semi-continuous. The proof is analogous for ϕ_{Γ} .

Lemma 4. $S(\Gamma^{\mathcal{T}}) = \{t : \Gamma^{\mathcal{T}}(t) \text{ is a singleton}\}\$ is $\mathcal{L}_{\mathcal{P}}$ -measurable.

Proof. This follows inmediately from the equality $S(\Gamma) = \{t : \psi_{\Gamma}(t) = \phi_{\Gamma}(t)\}$. \Box

Lemma 5. Assume *m* is a non-atomic Borel measure and $\mathcal{J} = \{J\}$ is a family of open intervals covering a Borel set *E*. Then there exists a countable class of disjoint open intervals $\mathcal{I} = \{I\}$ subordinated to \mathcal{J} (i.e. for any $I \in \mathcal{I}$ there exists $J \in \mathcal{J}$ such that $I \subset J$) satisfying $m(E \setminus \bigcup_{I \in \mathcal{I}} I) = 0$.

Proof. By Lindelöf's theorem there exists a countable class $\{J_n : n \in \mathbb{N}\} \subset \mathcal{J}$ such that $E \subset \bigcup_{n \in \mathbb{N}} J_n$. Now define $I'_1 = J_1, I'_k = J_k \setminus \bigcup_{i < k} J_i$ for k > 1. It is easily shown that each set I'_k is a finite union of disjoint intervals $\{I''_{i,k} : i = 1, \ldots, N_k\}$. Set $I_{i,k}$ = Interior $I''_{i,k}$; since m is non-atomic the class of sets $\mathcal{I} = \{I_{i,k} : i = 1, \ldots, N_k\}$. \square 1, ..., $N_k, k \in \mathbb{N}\}$ has the desired property.

2. Main results

Theorem 1. Assume $m_{\mathcal{P}}$ satisfies the density theorem (in particular, if it is absolutely continuous with respect to the Lebesgue measure). Then the following conditions are equivalent:

a) $m_{\mathcal{P}}\{t: \Gamma^{\mathcal{T}_{\mathcal{D}}} \text{ is not a singleton}\} = 0.$ b) $A = \int \psi(t) dP_t$ for ψ a Borel function.

If these conditions hold, then $\psi = \psi_{\Gamma^{\mathcal{T}_D}} m_{\mathcal{P}}$ -a.e.

Proof. a) \Rightarrow b). To avoid overburdened notation, we shall not make explicit the dependence on \mathcal{T}_D . First observe that $\psi_{\Gamma} = \phi_{\Gamma}$ on $S(\Gamma)$, so the restriction $\psi_{\Gamma} : S(\Gamma) \to \mathbb{R}$ is $\mathcal{T}_D/\mathcal{T}_0$ -continuous. Using Lemma 2, we get that $\forall \varepsilon > 0$ and $\forall t \in S(\Gamma)$ there exists a \mathcal{T}_D open set $I_t \in \mathcal{I}(t)$ such that

$$\sigma(AP_{I_t}) \subset (\psi_{\Gamma}(t) - \varepsilon, \psi_{\Gamma}(t) + \varepsilon);$$

hence, $\forall s \in I_t \cap S(\Gamma) : \psi_{\Gamma}(s) \in (\psi_{\Gamma}(t) - \varepsilon, \psi_{\Gamma}(t) + \varepsilon).$

Let \mathcal{K} be the class of sets with respect to which $m_{\mathcal{P}}$ satisfies the density theorem. Take $\{K_n\} \in \mathcal{K}(t)$. There exists $n(\varepsilon)$ such that

$$\forall n \ge n(\varepsilon): \qquad \frac{m_{\mathcal{P}}(K_n \cap I_t)}{m_{\mathcal{P}}(K_n)} \ge 1 - \varepsilon.$$

We denote by ψ any $\mathcal{L}_{\mathcal{P}}$ -measurable extension of ψ_{Γ} to \mathbb{R} bounded by ||A||. Let us take $f \in H$ such that $|\frac{dm_f}{dm_{\mathcal{P}}}| \leq c$. We have

$$|\langle AP_{K_n}f,f\rangle - \psi_{\Gamma}(t)\langle P_{K_n}f,f\rangle|$$

$$\leq |\langle AP_{K_n \cap I_t} f, f \rangle - \psi_{\Gamma}(t) \langle P_{K_n \cap I_t} f, f \rangle| + 2||A|| ||P_{K_n \setminus I_t} f||^2$$

$$\leq \varepsilon \int\limits_{K_n \cap I_t} \frac{dm_f}{dm_{\mathcal{P}}} dm_{\mathcal{P}} + 2\|A\| \int\limits_{K_n \setminus I_t} \frac{dm_f}{dm_{\mathcal{P}}} dm_{\mathcal{P}}$$

$$\leq \varepsilon cm_{\mathcal{P}}(K_n) + 2\|A\|c\varepsilon m_{\mathcal{P}}(K_n) = c\varepsilon(2\|A\| + 1)m_{\mathcal{P}}(K_n).$$

Hence:

$$\frac{1}{n_{\mathcal{P}}(K_n)} \langle AP_{K_n}f, f \rangle - \psi_{\Gamma}(t) \frac{1}{m_{\mathcal{P}}(K_n)} \langle P_{K_n}f, f \rangle \bigg| \le c(2\|A\| + 1)\varepsilon.$$

From the density theorem, we get

$$\left|\frac{d}{dm_f}\langle AP_t f, f\rangle - \psi_{\Gamma}(t)\frac{d}{dm_f}\langle P_t f, f\rangle\right| \le c(2\|A\| + 1)\varepsilon \quad m_{\mathcal{P}}\text{-a.e in } t.$$

We conclude that

$$\frac{d}{dm_f}\langle AP_t f, f \rangle = \psi_{\Gamma}(t) \frac{d}{dm_f} \langle P_t f, f \rangle \quad m_{\mathcal{P}}\text{-a.e. on } S(\Gamma).$$

Since $m_{\mathcal{P}}(S(\Gamma)^c) = 0$, for any f with $\left(\frac{dm_f}{dm_{\mathcal{P}}}\right)$ bounded we deduce that

$$\langle Af, f \rangle = \int \psi_{\Gamma}(t) d \langle P_t f, f \rangle$$

By standard density arguments we obtain this last equality for any $f \in H$.

b) \Rightarrow a). Let $A = \int \psi(t) dP_t$ with ψ Borel measurable. ψ is $\mathcal{T}/\mathcal{T}_0$ -continuous $m_{\mathcal{P}}$ -a.e.; that is, there exists a full $m_{\mathcal{P}}$ -measurable set $E \subseteq F_{\mathcal{P}}$ such that for any $t \in E, \varepsilon > 0$ there exists $I_t \in \mathcal{I}(t)$ such that $\forall s \in I_t, |\psi(s) - \psi(t)| \leq \varepsilon$. It is easily obtained that:

$$\sigma(AP_{I_t}) \subset [\psi(t) - \varepsilon, \psi(t) + \varepsilon].$$

As this happens for any $\varepsilon > 0$, we deduce that for any $t \in E$, $\Gamma(t) = \{\psi(t)\}$. Then $S(\Gamma^{\mathcal{T}_D}) \supset E$, and it is a full $m_{\mathcal{P}}$ -measurable set.

Theorem 2. The following two conditions are equivalent:

a) $m_{\mathcal{P}}\{t: \Gamma^{\mathcal{T}_0} \text{ is not a singleton}\} = 0.$

b) For any $\varepsilon > 0$ there exists a class of disjoint open intervals $\mathcal{I}_{\varepsilon} = \{I_{n,\varepsilon} : n \in \mathbb{N}\}\$ of full $m_{\mathcal{P}}$ -measure, i.e. $m_{\mathcal{P}}((\bigcup_{n \in \mathbb{N}} I_{n,\varepsilon})^c) = 0$, and a real sequence $(c_{n,\varepsilon} : n \in \mathbb{N})$ such that

$$\forall f \in H, \quad \left| \langle Af, f \rangle - \sum_{n \in \mathbb{N}} c_{n,\varepsilon} \langle P_{I_{n,\varepsilon}} f, f \rangle \right| \leq \varepsilon \|f\|^2.$$

Moreover, when these conditions hold we have that for any $\varepsilon > 0$ we can choose a covering $\mathcal{I}_{\varepsilon}$ of $S_{\Gamma}^{\mathcal{I}_0}$ such that each element of $\mathcal{I}_{\varepsilon}$ intersects $S_{\Gamma}^{\mathcal{I}_0}$, and $c_{n,\varepsilon} = \Gamma^{\mathcal{I}_0}(\alpha_{n,\varepsilon})$ with $\alpha_{n,\varepsilon} \in I_{n,\varepsilon} \cap S_{\Gamma}^{\mathcal{I}_0}$. In particular, $m_{\mathcal{P}}((S_{\Gamma}^{\mathcal{I}_0})^c) = 0$ implies $A = \int_{S_{\Gamma}^{\mathcal{I}_0}} \Gamma(t) dP_t$.

Proof. As before, we shall not make explicit the dependence on \mathcal{T}_0 . Assume b) holds. Take $D = \bigcap_{k \ge 1} \bigcup_{n \in \mathbb{N}} I_{n, \frac{1}{k}}$. Then $m_{\mathcal{P}}(D^c) = 0$. Fix $t \in D$. For any $k \ge 1$ there exists some $n_k \in \mathbb{N}$ such that $t \in I_{n_k, \frac{1}{k}}$. Denote $I = I_{n_k, \frac{1}{k}}, c = c_{n_k, \frac{1}{k}}$. Then

$$|\langle AP_I f, f \rangle - c \langle P_I f, f \rangle| \le \frac{1}{k} ||P_I f||^2.$$

Hence $\sigma(AP_J) \subseteq (c - \frac{1}{k}, c + \frac{1}{k})$ for any $J \subset I, J \in \mathcal{I}_t$. Then the diameter of $\Gamma(t)$ satisfies $\delta(\Gamma(t)) \leq \frac{2}{k}$. We deduce that $\Gamma(t)$ is a singleton, so $D \subset S(\Gamma)$ and $m_{\mathcal{P}}(S(\Gamma)^c) \leq m_{\mathcal{P}}(D^c) = 0$.

Now assume condition a) holds, and fix $\varepsilon > 0$. For any $t \in S(\Gamma)$ there exists $\delta(t) > 0$ such that for $J_t = (t - \delta(t), t + \delta(t))$ we have $\sigma(AP_{J_t}) \subset (\Gamma(t) - \frac{\varepsilon}{2}, \Gamma(t) + \frac{\varepsilon}{2})$. At this point we notice that $m_{\mathcal{P}}(J_t) > 0$. Consider $\mathcal{J} = \{J_t : t \in S(\Gamma)\}$. By Lemma 5 there exists a countable class of disjoint open intervals $\mathcal{I} = \{I_n : n \in \mathbb{N}\}$

subordinated to \mathcal{J} and which $m_{\mathcal{P}}$ -covers $S(\Gamma)$. Since $m_{\mathcal{P}}(S(\Gamma)^c) = 0$, we may assume that $m_{\mathcal{P}}(I_n \cap S(\Gamma)) > 0$ for any $n \in \mathbb{N}$. Take $\alpha_n \in I_n \cap S(\Gamma)$; we have

(1)
$$\left| \langle Af, f \rangle - \sum_{n \in \mathbb{N}} \Gamma(\alpha_n) \langle P_{I_n} f, f \rangle \right| \leq \sum_{n \in \mathbb{N}} \left| \langle AP_{I_n} f, f \rangle - \Gamma(\alpha_n) \langle P_{I_n} f, f \rangle \right|.$$

Since $\sigma(AP_{I_n})$ is the spectrum of AP_{I_n} on $P_{I_n}H$, we have

(2)
$$\begin{aligned} |\langle AP_{I_n}f,f\rangle - \Gamma(\alpha_n)\langle P_{I_n}f,f\rangle| \\ \leq \sup \{|\lambda - \Gamma(\alpha_n)| : \lambda \in \sigma(AP_{I_n})\} \langle P_{I_n}f,f\rangle. \end{aligned}$$

For any $n \in \mathbb{N}$ we have $I_n \subset J_t$ for some $t \in S(\Gamma)$. Since $\alpha_n \in I_n \subset J_t$, we have $|\Gamma(\alpha_n) - \Gamma(t)| < \frac{\varepsilon}{2}$. On the other hand, for any interval J with $m_{\mathcal{P}}(J) > 0$ and $J \subset J_t$ we have $\sigma_J \subset \sigma_{J_t} \subset (\Gamma(t) - \frac{\varepsilon}{2}, \Gamma(t) + \frac{\varepsilon}{2})$. Then the right hand side of (2) is bounded by $\varepsilon \langle P_{I_n} f, f \rangle$ and the right hand side of (1) is bounded by $\varepsilon \sum_{n \in \mathbb{N}} \langle P_{I_n} f, f \rangle = \varepsilon \langle f, f \rangle$, because $m_f(S(\Gamma)^c) = 0$. We have shown that

$$\left| \langle Af, f \rangle - \sum_{n \in \mathbb{N}} \Gamma(\alpha_n) \langle P_{I_n} f, f \rangle \right| \le \varepsilon \langle f, f \rangle.$$

Let us show the last statement. We take $\alpha_{n,\varepsilon}$, $I_{n,\varepsilon}$ instead of α_n , I_n because these quantities depend on $\varepsilon > 0$. Since Γ restricted to S_{Γ} is $\mathcal{T}_0/\mathcal{T}_0$ -continuous, we get

$$\sum_{n \in \mathbb{N}} \Gamma(\alpha_{n,\varepsilon}) \mathbb{1}_{I_{n,\varepsilon}}(t) \underset{\varepsilon \to 0}{\longrightarrow} \Gamma(t) \quad m_{\mathcal{P}}\text{-a.e. on } S_{\Gamma}.$$

On the other hand, $|\sum_{n \in \mathbb{N}} \Gamma(\alpha_{n,\varepsilon}) \mathbb{1}_{I_{n,\varepsilon}}| \leq ||A||$, so by the dominated convergence theorem we get

$$\sum_{n \in \mathbb{N}} \Gamma(\alpha_{n,\varepsilon}) \langle P_{I_{n,\varepsilon}} f, f \rangle \underset{\varepsilon \to 0}{\longrightarrow} \int_{S_{\Gamma}} \Gamma(t) d \langle P_t f, f \rangle. \quad \Box$$

Example. Let A be a self-adjoint operator commuting with \mathcal{P} . It is said that \mathcal{P} separates the spectrum (see [4]) of A if there exists an increasing function g(t) such that

$$\sigma_{(-\infty,t]} \subset (-\infty, g(t)], \ \ \sigma_{[t,\infty)} \subset [g(t),\infty).$$

In this case we have $\sigma_{[s,t]} \subseteq [g(s), g(t)]$. We deduce that $\Gamma^{T_0}(t) \subseteq [g(t-), g(t+)]$. As g is increasing and the maximal spectral type measure $m_{\mathcal{P}}$ is non-atomic, we get

$$m_{\mathcal{P}}\{t: \Gamma^{T_0}(t) \text{ is not a singleton}\} = 0$$

Moreover, $\Gamma^{\mathcal{T}_0}(t) = \{g(t)\} m_{\mathcal{P}}$ -a.e.

Complement to this paper

In what follows we describe, using the pointwise spectrum, the least upper bound of A in $\mathcal{A}_{\mathcal{P}}$: the closed algebra of symmetric operators generated by \mathcal{P} . Notice that there is a unique symmetric operator $A^+ \in \mathcal{A}_{\mathcal{P}}$, which satisfies

- 1) $A^+ \ge A;$
- 2) $\forall B \in \mathcal{A}_{\mathcal{P}}, \text{ if } B \geq A, \text{ then } B \geq A^+.$

In fact since $\mathcal{A}_{\mathcal{P}}$ is a closed lattice it is easy to prove that

$$A^+ = \int \alpha_A(t) dP_t$$

where

$$\alpha_A = \operatorname{ess\,inf}\{h/h \in \mathcal{L}_P \text{ and } \int h(t)dP_t \ge A\}.$$

Here the essinf is computed with respect to $m_{\mathcal{P}}$.

The following result characterizes α_A in terms of $\Gamma_A^{\mathcal{T}_D}$.

Theorem. If $m_{\mathcal{P}}$ satisfies a density theorem, then

$$\alpha_A = \max \Gamma_A^{T_D} \quad m_{\mathcal{P}} \text{-}a.e.$$

Proof. We denote $\psi = \max \Gamma_A^{\mathcal{T}_D}(t)$ which is $\mathcal{L}_{\mathcal{P}}$ -measurable by Lemma 3. From Theorem 1 we have $\Gamma_{A^+}^{\mathcal{T}_D}(t) = \{\alpha_A(t)\} m_{\mathcal{P}}$ -a.e. In that way for any point $t \in F_{\mathcal{P}}$ of continuity for α_A we get

$$\forall \varepsilon > 0 \,\exists I \in \mathcal{I}^{\mathcal{T}_D}(t) \,\forall s \in I \,\, \alpha_A(s) \le \alpha_A(t) + \varepsilon.$$

Since

$$\begin{aligned} \langle AP_I f, f \rangle &\leq \langle A^+ P_I f, f \rangle = \int_I \alpha_A(s) d \langle P_s f, f \rangle \\ &\leq (\alpha_A(t) + \varepsilon) \langle P_I f, f \rangle, \end{aligned}$$

we conclude $\Gamma_A^{\mathcal{T}_D}(t) \subseteq (-\infty, \alpha_A(t) + \varepsilon]$, and therefore $\psi(t) \leq \alpha_A(t)$. Almost all points in $F_{\mathcal{P}}$ are continuity points for α_A (due to the density theorem) from which we conclude

$$\psi \leq \alpha_A \quad m_{\mathcal{P}}\text{-a.e.}$$

In order to prove the opposite inequality it is enough to show that $\int \psi(t) dP_t \ge A$. For that purpose consider $f \ne 0$, a fixed element in H, and introduce the following signed measure on $\mathcal{L}_{\mathcal{P}}, \nu_f(\Lambda) = \langle AP_\Lambda f, f \rangle$. We have $\nu_f \ll m_f$ and moreover $|\frac{d\nu_f}{dm_f}| \le ||A||$. Consider also $\eta = \frac{dm_f}{dm_{\mathcal{P}}}$.

We have that η is $\mathcal{T}_D/\mathcal{T}_0$ -continuous $m_{\mathcal{P}}$ -a.e. Let $G = \{t \in F_{\mathcal{P}}/\eta(t) > 0 \text{ and } \eta \text{ is continuous on } t\}$; then $m_f(G^c) = 0$. Now if $I \in \mathcal{T}_D$ and $I \cap G \neq \emptyset$, then $m_f(I) > 0$. In fact let $t \in I \cap G$; since η is continuous on t, there exists an open neighbourhood $J \subseteq I$ of t such that $\eta(s) > 0$ for all $s \in J$. Therefore, since $m_{\mathcal{P}}(J) > 0$,

$$\nu_f(I) \ge \nu_f(J) = \int_J \eta(s) dm_{\mathcal{P}}(s) > 0.$$

Almost all points $t \in G$ (with respect to m_f or $m_{\mathcal{P}}$) are continuity points for $\frac{d\nu_f}{dm_f}$. Fix one such $t \in G$; from Lemma 2 we conclude that

$$\forall \varepsilon > 0 \,\exists I \in \mathcal{I}^{\mathcal{T}_D}(t) \text{ such that} \\ \sigma(AP_I) \subseteq (-\infty, \psi(t) + \varepsilon) \text{ and} \\ \forall s \in I \left| \frac{d\nu_f(s)}{dm_f} - \frac{d\nu_f(t)}{dm_f} \right| \le \varepsilon.$$

Hence, $\forall g \in H \langle AP_I, g \rangle \leq (\psi(t) + \varepsilon) \langle P_I g, g \rangle$. In particular, if $g = P_{\Lambda} f$, where $\Lambda \subseteq I$, we have

$$\nu_f(\Lambda) = \langle AP_{\Lambda}f, f \rangle \le (\psi(t) + \varepsilon) \langle P_{\Lambda}f, f \rangle = (\psi(t) + \varepsilon)m_f(\Lambda)$$

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use

and therefore $\frac{d\nu_f(s)}{dm_f} \leq (\psi(t) + \varepsilon) m_f$ -a.e. on $s \in I$. Since $m_f(I) > 0$ we get that $\frac{d\nu_f(t)}{dm_f} \leq \psi(t) + 2\varepsilon$. We have proved that $\frac{d\nu_f}{dm_f} \leq \psi m_f$ -a.e. Finally,

$$\langle Af, f \rangle = \int \frac{d\nu_f(t)}{dm_f} dm_f(t) \le \int \psi(t) d\langle P_t f, f \rangle$$

as we wanted to prove.

In a similar way the operator $A^- = \int \phi(t) dP_t$ with $\phi(t) = \min \Gamma_A^{\mathcal{T}_D}(t)$ is the greatest lower bound of A in $\mathcal{A}_{\mathcal{P}}$.

Acknowledgments

This work was partially supported by FONDECYT.

References

- N.I. Akhiezer and I.M. Glazman. (1961). Theory of Linear Operators in Hilbert Space, Vol. I, II, Frederick Ungar Publ. Co., New York. MR 41:9015
- J.P. Aubin and A. Cellina. (1984). Differential Inclusions, Springer-Verlag, Berlin. MR 85j:49010
- C. Goffman, C.J. Nengebauer and T. Nishiura (1961). Density topology and approximate continuity. Duke Math. J., 28, 497-506. MR 25:1254
- I.T. Gohberg and M.G. Krein. (1967). Description of contraction operators which are similar to unitary operators. Func. Anal. Appl. 1, 33-52. MR 35:4761
- P. Masani and M. Rosenberg. (1976). When is an operator the integral of a given spectral measure? J. of Functional Analysis 21, 88-121. MR 53:6347
- N. Martin. A topology for certain measure spaces (1964). Transactions Amer. Math. Soc., 112, 1-18; 114 (1965), 280. MR 28:5151; MR 30:2113
- S. Scheinberg. (1971). Topologies which generate a complete measure algebra. Adv. in Math. 7, 231-239. MR 44:4172
- E. Stein. (1970). Singular Integrals and Differentiability Properties of Functions. Princeton Univ. Press. MR 44:7280

(N. Bertoglio) FACULTAD DE MATEMÁTICA, PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE, CASILLA 306, CORREO 22, SANTIAGO, CHILE

E-mail address: nbertogl@riemann.mat.puc.cl

(S. Martínez and J. San Martín) UNIVERSIDAD DE CHILE, FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS, DEPARTAMENTO DE INGENIERÍA MATEMÁTICA, CASILLA 170-3, CORREO 3, SANTI-AGO, CHILE

E-mail address: smartine@dim.uchile.cl

E-mail address: jsanmart@dim.uchile.cl