
Dynamic Similarity Search in Multi-Metric Spaces

Benjamin Bustos
Department of Computer & Information Science

University of Konstanz, Germany

bustos@informatik.uni-konstanz.de

Tomáš Skopal
Department of Software Engineering, FMP

Charles University in Prague, Czech Republic

tomas.skopal@mff.cuni.cz

ABSTRACT
An important research issue in multimedia databases is the
retrieval of similar objects. For most applications in multi-
media databases, an exact search is not meaningful. Thus,
much effort has been devoted to develop efficient and effec-
tive similarity search techniques. A recent approach, that
has been shown to improve the effectiveness of similarity
search in multimedia databases, resorts to the usage of com-
binations of metrics where the desirable contribution (weight)
of each metric is chosen at query time. This paper presents
the Multi-Metric M-tree (M3-tree), a metric access method
that supports similarity queries with dynamic combinations
of metric functions. The M3-tree, an extension of the M-
tree, stores partial distances to better estimate the weighed
distances between routing/ground entries and each query,
where a single distance function is used to build the whole
index. An experimental evaluation shows that the M3-tree
may be as efficient as having multiple M-trees (one for each
combination of metrics).

Categories and Subject Descriptors
H.3.1 [Information Storage and Retrieval]: Content
analysis and indexing—indexing methods

General Terms
Algorithms, performance, design

Keywords
Content-based indexing and retrieval, combination of metric
functions, nearest neighbor queries

1. INTRODUCTION
Similarity search in multimedia database systems is be-

coming increasingly important, due to a rapidly growing
amount of available multimedia data like images, audio files,
video clips, 3D objects, time series, and text documents.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MIR’06, October 26–27, 2006, Santa Barbara, California, USA.
Copyright 2006 ACM 1-59593-495-2/06/0010 ...$5.00.

As we see progress in the fields of acquisition, storage, and
dissemination of various multimedia formats, the applica-
tion of effective and efficient database management systems
becomes indispensable in order to handle these formats.
The application domains for multimedia databases include
molecular biology, medicine, geographical information sys-
tems, Computer Aided Design/Computer Aided Manufac-
turing (CAD/CAM), virtual reality, and many others:

a) In medicine, the detection of similar organ deformations
can be used for diagnostic purposes [11].

b) Biometric devices (e.g., fingerprint scanners) read a
physical characteristic from an individual and then search
in a database to verify if the individual is registered or not.
The search cannot be exact, as the probability that two
fingerprint scans, even from the same person, are exactly
equal (bit-to-bit) is very low.

c) A 3D object database can be used to support CAD
tools. For example, standard parts in a manufacturing com-
pany can be modeled as 3D objects. When a new product
is designed, it can be composed of many small parts that fit
together to form the product. If some of these parts are sim-
ilar to one of the standard parts already designed, then the
possible replacement of the original part with the standard
part can lead to a reduction of production costs.

d) In text databases, a typical query consists of a set of
keywords or a whole document. The search system looks in
the database for documents that are relevant to the given
keywords or that are similar to the query document. A
certain tolerance on the search may be allowed in case, e.g.,
that some of the given keywords were mistyped or an optical
character recognition (OCR) system was used to scan the
documents (thus they may contain some misspelled words).

1.1 Preliminaries
Many of these practical applications have in common that

the objects of the database are modeled in a metric space [6,
15], i.e., it is possible to define a positive real-valued func-
tion δ among the objects, called metric, that satisfies the
properties of strict positiveness (δ(x, y) ≥ 0 and δ(x, y) =
0 ⇔ x = y), symmetry (δ(x, y) = δ(y, x)), and the triangle
inequality (δ(x, z) ≤ δ(x, y) + δ(y, z)). The main motiva-
tion for using metric spaces is the fact that they are easily
indexable by metric access methods (described later).

An important particular case of metric spaces are vector
spaces, where the objects are tuples of d real values, i.e., they
are vectors in Rd. There are many metric functions defined
on vector spaces, e.g., the Minkowski distances, defined as

Lp (x, y) =
“P

1≤i≤d |xi − yi|p
”1/p

, p ≥ 1, x, y ∈ Rd.

137

Figure 1: Improving effectiveness of 3D similarity
search by combining two 3D feature vectors.

1.2 Simple vs. Combined Metrics
A recent proposal to improve the effectiveness (i.e., the

quality of the retrieved answer) of similarity search resorts
to the use of combinations of metrics [2, 3]. Instead of us-
ing a single metric to compare two objects, the search sys-
tem uses a linear combination of metrics to compute the
(dis)similarity between two objects. Figure 1 shows an ex-
ample of the benefits obtained by using such a combined
metric. The first two rows show the similar objects retrieved
by a 3D similarity search system using two different single-
feature vectors (depth buffer or silhouette) – a single metric
works with the entire particular vector. In both queries, the
result includes some non-relevant objects (false hits). The
third row shows the result of the search when using both
features for each 3D object description (depth buffer and
silhouette). In this case a combination of the two metrics
is used on the double-feature vector, while only relevant ob-
jects are retrieved for this time.

The problem with a static combination of metrics (i.e.,
where the weights of the linear combination are fixed) is that
usually not all metrics are well-suited for performing simi-
larity search with all query objects. Moreover, a bad-suited
metric may “spoil” the final result of the query. Thus, to fur-
ther improve the effectiveness of the search system, methods
for dynamic combinations of metrics have been proposed,
where the query processor weighs the contribution of each
metric depending on the query object (i.e., big weights are
assigned to the “good” metrics for that query object, and
low weights are assigned to the “bad metrics”, according to
some quality criteria). This means that, instead of a single
metric, the system uses a dynamic metric function (multi-
metric), where a different metric is computed to perform
each similarity query.

1.3 Paper Contributions
This paper presents the Multi-Metric M-tree (M3-tree),

a dynamic index structure that extends the M-tree [8] to
support multi-metric similarity queries. We first describe
how to adapt the search algorithms of the original M-tree
to directly support multi-metric queries. Then, we describe
the M3-tree data structure and the new similarity search
algorithms. We show experimentally that the M3-tree out-
performs the adapted M-tree for multi-metrics, and that its
efficiency is very close to having multiple M-trees, one for
each used multi-metric, which is the optimal achievable ef-
ficiency regarding to this index structure.

Note that in this paper we only deal with the efficiency
issues of similarity search in multi-metric spaces. For a dis-
cussion on the effectiveness of this approach, see [2, 3].

Table 1: Notation used in this paper.
Symbol Definition

U set of valid objects (the universe)
S ⊂ U database
n = |S| database size
δ(x, y) A metric function

M = 〈δi〉 vector of metric functions
W = 〈wi〉 vector of weights

|M| = |W| = m number of weights and metrics
∆W(x, y) linear multi-metric
∆1.0(x, y) linear multi-metric where wi = 1

rW ∆W-based covering radius
r1.0 ∆1.0-based covering radius

Q ∈ U query object
εW tolerance of a range query

(query radius, ∆W-based)

2. SIMILARITY SEARCH IN METRIC AND
MULTI-METRIC SPACES

Table 1 shows the notation used through this paper. Let
(U, δ) be a metric space and let S ⊂ U be a set of objects (i.e.,
an instance of a database). There are two typical similarity
queries in metric spaces:

• Range query. A range query (Q, ε), Q ∈ U, ε ∈ R+,
reports all database objects that are within a tolerance
distance ε to Q, that is (Q, ε) = {Oi ∈ S, δ(Oi, Q) ≤ ε}.
The subspace V ⊂ U defined by Q and ε (i.e., ∀v ∈ V
δ(v, Q) ≤ ε and ∀x ∈ U − V δ(x, Q) > ε) is called the
query ball.

• k nearest neighbors query (k-NN). It reports the k ob-
jects from S closest to Q. That is, it returns the set
C ⊆ S such that |C| = k and ∀Oi ∈ C, Oj ∈ S− C,
δ(Oi, Q) ≤ δ(Oj , Q).

Metric access methods (MAMs) [6] are index structures
designed to perform efficiently similarity queries in metric
spaces. They only use the metric properties of δ, especially
the triangle inequality, to filter out objects or entire regions
of the space during the search, thus avoiding the sequential
(or linear) scan over the database.

MAMs can be classified into two main groups: (1) Pivot-
based MAMs select from the database a number of pivot
objects, and classify all the other objects according to their
distance from the pivots (2) MAMs based on compact parti-
tions divide the space into regions as compact as possible.
Each region stores a representative point (local pivot) and
data that can be used to discard the entire region at query
time, without computing the actual distance from the region
objects to the query object. Each region can be partitioned
recursively into more regions, inducing a search hierarchy.

2.1 M-tree
The M-tree [8] is a dynamic (meaning easily updatable) in-

dex structure that provides good performance in secondary
memory. The M-tree is a hierarchical index, where some of
the data points are selected as centers (local pivots) of re-
gions and the rest of the objects are assigned to suitable re-
gions in order to build up a balanced and compact hierarchy
of data regions. Each region (branch of the tree) is indexed
recursively. The data is stored in the leaves of the M-tree,
where each leaf contains ground entries (grnd(Oi), Oi ∈ S).
The internal nodes store routing entries (rout(Oi), Oi ∈ S).

138

Figure 2: Example of an M-tree.

Starting at the root level, a new object Oi is recursively
inserted into the best subtree T (Oj), which is defined as the
one where the covering radius rOj must increase the least
in order to cover the new object. In case of ties, the subtree
whose center is closest to Oi is selected. The insertion al-
gorithm proceeds recursively until a leaf is reached and Oi

is inserted into that leaf, at each level storing the distance
to the routing object of its parent node (so-called to-parent
distance). Node overflows are managed in a similar way as
in the B-tree. If an insertion produces an overflow, two ob-
jects from the node are selected as new centers, the node is
split, and the two new centers are promoted to the parent
node. If the parent node overflows, the same split procedure
is applied. If the root overflows, it is split and a new root is
created. Thus, the M-tree is a balanced tree (see Figure 2).

Range queries are implemented by traversing the tree,
starting from the root. The nodes which parent region (de-
scribed by the routing entry) is overlapped by the query ball
are accessed (this requires a distance computation). As each
node in the tree (except for the root) contains the distances
from the routing/ground entries to the center of its par-
ent node (the to-parent distances), some of the non-relevant
branches can be further filtered out, without the need of a
distance computation, thus avoiding the “more expensive”
basic overlap check.

2.2 Searching in Multi-Metric Spaces
Usually, a single metric function is used to compute the

similarity between two objects in the metric space. How-
ever, a recent trend to improve the effectiveness of the sim-
ilarity search resorts to use several metric functions. The
(dis)similarity function is computed as a linear combination
of some selected metrics. It follows (from metric spaces the-
ory) that the combined distance function is also a metric.

Definition 1. (linear multi-metric)

Let M = 〈δi〉 be a vector of metric functions, and let W = 〈wi〉
be a vector of weights, with |M| = |W| = m and ∀i wi ∈ [0, 1].
The linear multi-metric (or linear combined metric function)
is defined as

∆W(O1, O2) =

mX
i=1

wi · δi(O1, O2).

A linear multi-metric space is defined as MM = (U, ∆W).
2

Some notes:

• The multi-metric (space) is denoted as “linear” (in the
rest of the paper implicitly assumed), but some other
combinations of metrics can be considered in the fu-
ture, e.g., maximal, multiplicative, etc.

• ∆1.0(·) = ∆W(·) where ∀i wi = 1.

• As a consequence, ∆1.0(·) is an upper-bounding metric
to ∆W(·) (considering shared M and any W).

• The vector of weights W is not included in the defini-
tion of multi-metric (space), in fact, it is a parameter
of ∆. Consequently, we can view a single multi-metric
space as a space covering an infinite number of met-
ric spaces Mi = (U, ∆Wi), where M is fixed for all the
spaces but Wi is unique for each metric defined onMi.

• The structure of the universe U can be either a carte-
sian product of various domains (even a mix of vec-
tor/metric space domains) where each domain is as-
signed to the respective partial metric δi, or a single
“flat” domain allowing the δis to share some portions
of U (even all being defined on entire U). Nevertheless,
in the following we do not need to specify the struc-
ture of U and we assume each partial metric function
δi “knows” its sub-domain within U.

If the weights of the combination are fixed, the multi-
metric space becomes an ordinary metric space and we can
use any standard MAM as an index structure. In our frame-
work, however, the weights are dynamic – computed at
query time – and therefore the metric function is dynamic
and depends on the query objects. This has been shown to
provide the best effectiveness results [2, 3]. Thus, our prob-
lem is to develop a metric index structure that returns the
correct answer to the similarity query, even if the query dis-
tance function is not the same as the distance function used
to build the index (index distance function). The optimal
solution would be to have an index structure for each “fixed
multi-metric”, but this is not practical because it would im-
ply to build an index for each query, which would be more
expensive than performing a sequential scan of the database.

In Section 3, we will describe modifications to the search
algorithms of the standard M-tree, that allow us to use it
with multi-metrics. Then, in Section 4 we will present our
proposed index structure, the M3-tree, which stores par-
tial distances to dynamically estimate an upper bound of
the covering radius with respect to a query-specified metric
function, and to estimate the to-parent distances between
routing objects and child nodes. These estimations will be
used to improve the filtering capability of the index struc-
ture, thus improving the efficiency of the similarity search.

2.3 Related Work
Many indexing methods and algorithms have been pro-

posed for implementing similarity queries in metric and vec-
tor spaces [6, 1]. However, basically all these index struc-
tures have been designed for single metrics, and they do
not support dynamic combinations of metrics at query time.
One exception is the branch-and-bound on decomposed data
(BOND) technique [9], which is a spatial access method

139

(SAM) that can support queries with combinations of fea-
ture vectors. The BOND index maintains tables with the
coefficients of each dimension for all vectors of the database.
These tables are scanned sequentially at query time, com-
puting lower and upper bounds to the distance from the
query to the stored vectors and discarding those that can-
not belong to the k-NN. The efficiency of the search is im-
proved by scanning on each iteration only the non-discarded
objects, thus at the last stages of the algorithm only a small
part of the database has to be checked. To compute the
lower and upper bound distances, it is necessary to store
an auxiliary table with the partial results. In the worst
case, the auxiliary table has size O(n), thus the scalabil-
ity in database size of this technique is limited. Drawbacks
of this technique are that the similarity measure must be
bounded and it only works in vector spaces.

A MAM specially designed for dynamically weighed com-
binations of metrics is presented in [5]. This index consists
of a set of pivot-based indices, one for each metric, which
can be used to compute the combined pivot table (i.e., the
pivot-based index for the combination of metrics) at query
time, when the weights for the dynamic combination are
known. The main disadvantage of this index is that it is a
main-memory index, and it is not clear how to implement it
efficiently in secondary storage.

The QIC-M-tree [7] is a MAM designed to support user-
defined distance functions. The index is built like a normal
M-tree using an index distance, and queries may be per-
formed using any distance function that is lower bounded
by the index distance. While this index structure may be
used to perform similarity queries in multi-metric spaces, it
is a different approach compared with our proposed index:

• The index distance is an “underscaled” (i.e. not very
tight) lower-bounding distance function of the query
distance in the QIC-M-tree. In our case, the query
distance is a non-scaled lower-bounding distance of the
index distance.

• The QIC-M-tree uses lower bounds of the query dis-
tance to filter out branches of the tree. The M3-tree
computes a tight approximation of the real query dis-
tance (at the cost of a little higher index size), thus
providing a better filtering of the space.

3. ADAPTING M-TREE FOR SEARCH IN
MULTI-METRIC SPACES

The original M-tree needs to be adapted in order to pro-
vide support for multi-metric spaces. The key idea for adapt-
ing the M-tree is the use of ∆1.0 for indexing all objects in
the index (see Figure 3a). Since ∆1.0 is an upper-bound
to any ∆W, the covering radii r1.0 as well as the distances
∆1.0(R, P) (distance from a routing object to its parent,
the to-parent distance) stored in the M-tree nodes can be
viewed as upper bounds to the appropriate radii rW (dis-
tances ∆W(R, P), respectively), considering any other “in-
dex distance” ∆W. We start proving some lemmas for the
adapted discarding criteria.

Lemma 1. (basic filtering)

Let (Q, εW) be a range query, where εW is a weighed query
radius. Let (R, r1.0) represents a routing entry in M-tree,
i.e., a data region (note that for ∆W we have defined the

Figure 3: (a) Non-leaf node entries in M-tree. (b)
Basic filtering in M-tree.

“real” covering radius as rW = maxOi∈T (R){∆W(Oi, R)}).
If ∆W(R, Q) > εW + r1.0, the data region is not relevant to
the query and can be filtered out.

Proof: For rW = r1.0 it follows (by triangle inequality)
that no object from (R, rW) can be located in (Q, εW). This
property can be extended to all rW < r1.0, since ∆W is
lower-bounding to ∆1.0, thus objects in (R, rW) are always
more (or equally) distant to Q that in case of ∆1.0 (see Fig-
ure 3b). �

Lemma 1 can be used for basic filtering in M-tree, when
a data region (covering some subtree) is needed to check
against a range query. For this check, the ∆W(R, Q) distance
must be computed.

Lemma 2. (outer parent filtering)

Let P be the parent object of a data region (R, r1.0). If

∆W(P, Q)−∆1.0(R, P) > r1.0 + εW

the data region is not relevant to the query and can be fil-
tered out.

Proof: The query object is outside the sphere defined by
parent object and radius ∆1.0(R, P) + r1.0 (see Figure 4a).
This sphere can be directly used for check with the query
(by means of Lemma 1), because the sphere surely covers
the data region (R, r1.0). This property is guaranteed by
the use of the upper bound distance from P to R and by
R’s covering radius upper bound r1.0 , so the sphere is al-
ways more (or equally) distant to the query than any object
in (R, rW). �

Lemma 3. (inner parent filtering)

Let P be the parent object of a data region (R, r1.0). Let
∆lb

W(·) be a lower-bounding distance to ∆W(·). If

∆lb
W(R, P)−∆W(P, Q) > r1.0 + εW

the data region is not relevant to the query and can be fil-
tered.

Proof: The query is entirely inside the sphere defined by
parent object and radius ∆lb

1.0(R, P) − r1.0 (see Figure 4b).
Because the actual ∆1.0(R, P) is upper bound of ∆W(R, P),
the object R is “artificially shifted” from the parent (i.e.,
more than by using ∆W), so we cannot check whether the
query does not overlap (R, rW) by directly using ∆1.0(R, P).
However, if we use some distance ∆lb

W lower-bounding ∆W
(instead of ∆1.0), we are sure that the “inner border” sep-
arating query and the data region is a lower bound of the
actual border. �

140

Figure 4: (a) Outer parent filtering in M-tree. (b)
Inner parent filtering.

Lemmas 2 and 3 can be used to avoid the basic check
(provided by Lemma 1). The advantage is that no extra
computation is needed to evaluate the condition in the lem-
mas, so in many cases the data region is filtered out even
without the need of using Lemma 1 (and so without any
distance computation).

Up to now, the approach is generally applicable for any
index distance ∆1.0 and any lower-bounding query distance
∆W (regardless of what the metrics ∆1.0 and ∆W really
mean), in a similar way as in the QIC-M-tree [7].

However, to construct the lower bound to ∆W (needed in
Lemma 3), we can exploit the definition of ∆W (see Section
2.2). To efficiently compute the lower bound, it is preferable
to use some distance already precomputed during the query
evaluation, so that no additional distance computation or an
explicitly specified lower bound distance (passed as a query
parameter) is needed. In the following, we construct such a
lower bound just by using the weights vector W.

Lemma 4. (lower bound to ∆W, optimal scaling constant)

(a) ∆lb(·) = minm
i=1(wi) ·∆1.0(·) is lower bound to ∆W(·).

(b) The scaling constant s = minm
i=1(wi) is the maximal

factor for which ∆lb(·) is still a lower bound of ∆W(·) (i.e.,
such ∆lb is the tightest lower bound of ∆W(·) when used
s ·∆1.0(·)).
Proof: (a) Obviously,

s1δ1(O1, O2) + s2δ2(O1, O2) + · · ·+ smδm(O1, O2)

≤ w1δ1(O1, O2) + w2δ2(O1, O2) + · · ·+ wmδm(O1, O2),

where si ≤ wi,∀wi ∈ W. Since minm
j=1(wj) ≤ wi,∀wi ∈ W,

we get

mX
i=1

m

min
j=1

(wj)δi(·) ≤
mX

i=1

wiδi(·),

hence minm
j=1(wj)

Pm
i=1 δi(·) ≤

Pm
i=1 wiδi(·).

(b) Consider a greater scaling constant s, i.e., ∃wi1 , s > wi1 .
However, there can arise a situation where δi1(O1, O2) �
δij (O1, O2), δij 6= δi1 ,∀j, so multiplying by s could violate
the lower-bounding property even if s � wij ,∀wij 6= wi1 .

�

It is possible that tighter lower bounds may be found, but,
on the other side, this one can be easily computed just by
multiplying a (precomputed) distance ∆1.0(·) by s, so we
avoid an evaluation of an expensive (even though possibly
better) lower bound distance. Moreover, this would lost
its meaning because in such case we can apply directly the

basic filtering, since the parent filtering (which is always less
effective) becomes equally (or more) expensive.

3.1 Similarity Queries
Lemmas 1 to 4 are directly applicable to range queries in

M-tree, because the range query processing is provided by
all the distances needed in conditions of the lemmas. In case
of k-NN queries, the M-tree’s branch-and-bound algorithm
uses a heuristics which treats the k-NN search as a range
search with the extension that the unknown query radius is
determined dynamically during the query processing (it is
continuously decreasing, such that it is in every moment an
upper bound of the distance to the k-th neighbor). Thus,
also in k-NN processing the lemmas are directly applicable.

Due to the lack of space we present just the modified
range query algorithm (see Listing 1), however, the k-NN
algorithm can be modified the same way (for both original
query algorithms on M-tree we refer to [8]).

Listing 1. (modified range query algorithm in M-tree)

QueryResult RangeQuery(Node N , RQuery (Q, εW), W)
{

// if N is root then ∆x(R, P)=∆x(P, Q)=0
let P be the parent routing object of N
let’s denote ∆lb

W(R, P) = min{W} ·∆1.0(R, P) // lemma 4

if N is not a leaf then {
for each rout(R) in N do {

if ∆W(P, Q)−∆1.0(R, P) ≤ r1.0 + εW And // lemma 2

∆lb
W(R, P)−∆W(P, Q) ≤ r1.0 + εW then { // lemma 3

compute ∆W(R, Q)
if ∆W(R, Q) ≤ εW + r1.0 then // lemma 1

RangeQuery(ptr(T (R)), (Q, εW), W)
}

} /* for each ... */
} else {

for each grnd(R) in N do {
if ∆W(P, Q)−∆1.0(R, P) ≤ εW And // lemma 2

∆lb
W(R, P)−∆W(P, Q) ≤ εW then { // lemma 3

compute ∆W(R, Q)
if ∆W(R, Q) ≤ εW then

add R to the query result
}

} /* for each ... */
}

} /* RangeQuery */

4. M3-TREE
The tightness of upper/lower bounds of data region radii

(and also to-parent distances) stored in the M-tree is heavily
dependent on the actual weights vector W. Obviously, if the
weights are far from 1.0, the upper/lower bounds will be not
very tight, reflecting in larger “volume” of data regions and
leading to worse query performance.

In order to keep the search efficiency weight-independent,
we introduce the Multi-Metric M-tree (M3-tree). The M3-tree
extends the M-tree structure by storing the components of
∆1.0, i.e., the δi-based components of radii as well as of the
to-parent distances are stored separately.

Definition 2. (component-based distance notation)

Let ∆1.0(·, ·).comp(j) stands for the δj partial distance ag-
gregated in ∆1.0(·, ·). Similarly, r1.0.comp(j) stands for the
δj partial distance aggregated in r1.0. When making arith-
metic operations with component-based distances or radii,

141

the components are treated separately (for example, 9〈2,3,4〉+
21〈6,7,8〉 = 30〈8,10,12〉). 2

Having stored the individual distance components, we can
construct a tighter covering radius upper bound to rW, and
so reduce the volume of regions which delimit the data ob-
jects stored in subtrees of the M3-tree. The following two
lemmas show how the tighter radius upper bound can be
constructed using the distance components.

Lemma 5. (component-based covering radius upper bound)

Let Oi ∈ N be a set of objects, R be a center object. Then
rcub is an upper bound to rW, i.e.,

|N|
max
i=1

{∆W(Oi, R)} ≤
mX

j=1

wj ·
|N|

max
i=1

{∆1.0(Oi, R).comp(j)} .

(= rW over N) (= rcub over N)

Proof: By expanding the statement of covering radius rW,
together with propagating the wj in rcub, we obtain

|N|
max
i=1

(
mX

j=1

wj ·∆1.0(Oi, R).comp(j)

)
≤

≤
mX

j=1

|N|
max
i=1

{wj ·∆1.0(Oi, R).comp(j)}

If we denote wj ·∆1.0(Oi, R).comp(j) as f(i, j), we get

|N|
max
i=1

(
mX

j=1

f(i, j)

)
≤

mX
j=1

|N|
max
i=1

{f(i, j)} ,

which holds for any f , thus the proof is complete. �

Note that a set N of objects Oi ∈ S is considered in Lemma 5
(objects in leaf nodes of M3-tree). However, the lemma can
be generalized also for set of regions (routing entries in non-
leaf nodes) as follows.

Lemma 6. (recursive comp.-based covering radius upper bound)

Let (Ri, r
i
1.0) ∈ N be a set of regions (where ri

1.0 is a cover-
ing radius upper bound of region centered in Ri), and P be
a center object (of a super-region covering N). Then

|N|
max
i=1

n
∆W(Ri, P) + ri

W

o
≤

≤
mX

j=1

wj ·
|N|
max
i=1

n
∆1.0(Ri, P).comp(j) + ri

1.0.comp(j)
o

(= rW over N) (= rcub over N)

Proof: Follows from Lemma 5 and from the fact that ri
1.0

is an upper bound to ri
W. �

In most cases, rcub is a tighter upper bound to rW than

r1.0 = max
|N|
i=1{∆1.0(Oi, R)} (see Figure 5a). However, in

some cases r1.0 may be tighter than rcub (see Figure 5b),
and so we will use the smaller one, as defined below.

Definition 3. (minimum comp.-based cov. rad. upper bound)

The upper bound of the covering radius is defined as

ru = min{rcub, r1.0},

which is always a tighter upper bound than r1.0. 2

Figure 5: (a) rW < rcub < r1.0 (b) rW < r1.0 < rcub.

With the covering radii upper bound ru, we can reformu-
late the basic filtering into the context of M3-tree.

Lemma 7. (component-wise basic filtering)

Let (Q, εW) be a range query, where εW is a weighed query ra-
dius. Let (R, ru) represents a data region (for ru see Def. 3).
If ∆W(R, Q) > εW + ru, the data region is not relevant to
the query and can be filtered out.

Proof: Follows immediately from Lemma 1 and the defini-
tion of ru. �

Like the covering radii upper bound, we can use the to-
parent distance components to improve the parent filtering.

Definition 4. (comp.-based to-parent dist. lower/upper bound)

Let any dub
P ≥ ∆W(R, P) =

Pm
i=1 wi · δi(R, P) be called a

component-based to-parent distance upper bound. Similarly,
let any dlb

P ≤ ∆W(R, P) = . . . be called a component-based
to-parent distance lower bound. 2

Definition 4 is not required for the following lemma (we
can think about ∆W(R, P) instead of dub

P or dlb
P), but we will

find it useful in the subsequent structural description of the
M3-tree.

Lemma 8. (component-wise parent outer/inner filtering)

Let P be the parent object of a region (R, ru). Then if

∆W(P, Q)− dub
P > ru + εW ∨ dlb

P −∆W(P, Q) > ru + εW

the region can be filtered out as non-relevant to the query
(Q, εW).

Proof: The proof is similar as in Lemmas 2, 3 – the only
difference is the usage of ru instead of r1.0, but this is correct
since ru is (tighter but still) an upper bound to rW. �

4.1 M3-tree Structure
The structure of leaf/non-leaf node in M3-tree is presented

in Figure 6. In addition to the standard M-tree content
of routing/ground entries, in entries of M3-tree there are
stored the components of covering radii and of the to-parent
distances.

To keep the storage of radii/to-parent components as small
as possible, these are not stored as floats, but as signatures
(bitstrings of user-defined size). The value of each signature
is interpreted as a scalar proportion of the respective par-
tial radius (to-parent distance) with respect to the aggregate
radius r1.0 (∆1.0(R, P), resp.). In such a way, we can store
each component by, e.g., 4, 8, 16, or another number of bits.

142

Figure 6: Structure of M3-tree nodes.

The compact signature representation of radius/to-parent
components is imprecise. Thus, in order to keep the query
evaluation correct when using upper bound of a radius, we
have to overestimate the value by usage of the largest pos-
sible float value represented by the respective partial sig-
nature. Similarly, in case of to-parent distances, the up-
per/lower bound is constructed by over/under-estimating
the value (considering the largest/smallest possible value
represented by signature).

In Lemma 8, we have distinguished between the upper
bound dub

P and lower bound dlb
P to ∆W(R, P), these were

assumed ahead just with respect to the signature represen-
tation of ∆W(R, P).

4.2 M3-tree Construction
The M3-tree is constructed the same way as M-tree is, i.e.,

no weights are considered and the ∆1.0 is used for indexing
as an ordinary metric. In addition, along with the aggregate
value ∆1.0(·), the distance components ∆1.0(·).comp(i) are
used to update the radii/to-parent distance representations.

When inserting an object, the covering radii components
in routing entries must be updated after the aggregate cov-
ering radius r1.0 is updated. When splitting a node (or
inserting a ground entry into a leaf), the to-parent com-
ponents are stored along with the aggregate to-parent dis-
tance ∆1.0(R, P). When splitting, covering radii compo-
nents of the two new routing entries are assembled by taking
the maximum of covering radii components + the to-parent
components of the entries being split.

It should be emphasized that no extra distance compu-
tations are needed for M3-tree construction, the distance
components are obtained as a “by-product” when comput-
ing ∆1.0. There is just a space overhead needed for storage
of the component signatures.

4.3 Similarity Queries in M3-tree
The M3-tree-specific lemmas are used (in addition to the

“old” lemmas) to discard more non-relevant subtrees when
searching. In Listing 2 see the modified algorithm for range
query processing. The k-NN algorithm can be adjusted in a
similar way.

Listing 2. (range query algorithm in M3-tree)

QueryResult RangeQuery(Node N , RQuery (Q, εW), W)
{

// if N is root then ∆x(R, P)=∆x(P, Q)=0
let P be the parent routing object of N
let’s denote ∆lb

W(R, P) = min{W} ·∆1.0(R, P) // lemma 4

if N is not a leaf then {
for each rout(R) in N do {

if ∆W(P, Q)−∆1.0(R, P) ≤ r1.0 + εW And // lemma 2

∆lb
W(R, P)−∆W(P, Q) ≤ r1.0 + εW then { // lemma 3

if ∆W(P, Q)− dub
P ≤ ru + εW And

dlb
P −∆W(P, Q) ≤ ru + εW then { // lemma 8

compute ∆W(R, Q)
if ∆W(R, Q) ≤ εW + ru then // lemma 7

RangeQuery(ptr(T (R)), (Q, εW), W)
}

}
} /* for each ... */

} else {
for each grnd(R) in N do {

if ∆W(P, Q)−∆1.0(R, P) ≤ εW And // lemma 2

∆lb
W(R, P)−∆W(P, Q) ≤ εW then { // lemma 3

if ∆W(P, Q)− dub
P ≤ εW And

dlb
P −∆W(P, Q) ≤ εW then { // lemma 8

compute ∆W(R, Q)
if ∆W(R, Q) ≤ εW then

add R to the query result
}

}
} /* for each ... */

}
} /* RangeQuery */

5. EXPERIMENTAL EVALUATION
We performed an experimental evaluation of the efficiency

of the M3-tree using two real datasets.

5.1 The Testbed
The first dataset is the Corel image features, available at

the UCI KDD Archive [10]. This database consists of 89-D
feature vectors representing 65,615 Corel images and 1,000
query images (not included in the dataset). Each feature
vector consisted of 4 subvectors (of dimensions 32, 9, 16,
32), representing color histogram, color moments, texture,
and layout histogram. As partial distances aggregated in
∆W, the L1 distance was used, i.e., δi = L1, i ∈ {1, 2, 3, 4}.

A set of query weight vectors (weights interval) was in-
dependently constructed as vectors of random values from
0.2-wide intervals, starting at w = 0.1, increasing by 0.1.
Only one such set of query weight vectors was constructed:

{W0.1 = 〈0.21, 0.21, 0.27, 0.11〉, W0.2 = 〈0.40, 0.33, 0.40, 0.39〉,
W0.3 = 〈0.46, 0.40, 0.40, 0.42〉, W0.4 = 〈0.53, 0.42, 0.58, 0.45〉,
W0.5 = 〈0.55, 0.53, 0.67, 0.60〉, W0.6 = 〈0.75, 0.76, 0.66, 0.61〉,
W0.7 = 〈0.88, 0.86, 0.70, 0.83〉, W0.8 = 〈0.85, 0.82, 0.95, 0.88〉}.

Another set of query weight vectors (weights group) was
created, consisting of 20 generated weight vectors such that:
(a) one of the weights is always 1.0 (b) the lowest weight is
a random number in [w, w +0.1] (c) the rest of weights (i.e.,
the last two) are random numbers in [w, 1.0].

The second dataset is a 3D models database, which con-
tains 1,838 3D objects that we collected from the Internet1.
1Konstanz 3D model search engine.
http://merkur01.inf.uni-konstanz.de/CCCC/

143

Figure 7: Corel image features: Range queries vary-
ing weights interval.

From this set, 472 objects were used as a query objects and
the rest of 1,366 objects were indexed.

For this dataset, we computed 8 different feature vectors
for 3D models, which include volumetric descriptors (16-
D voxel, 8-D 3DDFT) and image-based descriptors (16-D
depth buffer, 12-D complex, 12-D rays with spherical har-
monics, 8-D silhouette, 6-D shading, and 6-D ray-based).
For a detailed explanation of the implemented 3D feature
vectors, see [4]. We performed a PCA-based dimensional-
ity reduction of the original 3D feature vectors [4] and we
kept between 6 and 16 principal axes for each feature vec-
tor, resulting in an aggregate dimensionality of 84-D. For
this dataset, we also used the L1 distance as metric func-
tion for all 3D feature vectors.

5.1.1 Weights for 3D Models
We implemented a query processor based on the entropy

impurity method [3] to compute the dynamic weights for
each 3D feature vector. This method uses a reference dataset
that is classified in object classes (in our case, we used the
classified subset of the 3D models database). For each fea-
ture vector, a similarity query is performed on the reference
dataset. Then, the entropy impurity is computed looking at
the model classes of the first t retrieved objects: It is equal
to zero if all the first t retrieved objects belong to the same
model class, and it has a maximum value if each of the t
object belongs to a different model class. Let Pωj denote
the fraction of the first t retrieved objects that belong to
model class ωj . The entropy impurity of feature vector i

impurity(i) = −
|#classes|X

j=1

Pωj · log2(Pωj) if Pωj > 0
0 otherwise

The weight value for feature vector i (i.e., the weight for
the ith metric in the combination) is computed as the in-
verse of the entropy impurity plus one (to avoid dividing by
zero), i.e., wi = 1

1+entropyImpurity(i)
. (We used t = 3 for our

experiments [3].)

Figure 8: Corel image features: 10-NN queries vary-
ing signature size.

5.1.2 Indexing
Besides the adapted M-tree index and the M3-tree used in

all experiments (which were the subjects of evaluation), we
have used the sequential search as the upper baseline. We
have also created multiple M-tree indexes using the query
distance as the index distance, i.e., for each particular W a
standard M-tree was created using the query distance ∆W.
These W-dependent M-trees served us as a lower baseline,
i.e., they show the most efficient query processing (related
to M-trees).

In the figures, we use “M3(x,y)-tree” to denote a single
M3-tree index, where the routing entries consist of m x-bit
signatures for covering radii components and m x-bit sig-
natures for the to-parent distance components (i.e., 2m · x
bits in each routing entry), and the ground entry consists of
m y-bit signatures for the to-parent distance components
(i.e., m · y bits on each ground entry). It follows that
“M3(0,0)-tree” is an ordinary (but adapted) M-tree index.

5.2 Experimental Results
Figure 7 presents range query processing on the Corel im-

age features, where the M3-tree and M-tree indices were
slimmed [13] (the rest of Corel experiments was performed
on non-slimmed indices). The figure shows the number
of distance computations needed to perform range queries
(query radius calculated to have an average selectivity of 10
objects) for the different weight intervals. It clearly shows
that the M3-tree outperforms the adapted M-tree in the
whole range of weight intervals, especially if the weights are
low. This indicates that the lower bound to ∆W proposed in
Lemma 4 is too loose if there is a weight with a value close
to 0.

Figure 8 shows the influence of the signature size (mean-
ing size of distance/radius components) of the M3-tree on
the efficiency of 10-NN queries. The curve denoted as “size
of M3-index” belongs to the right-hand y-axis, and shows
the increase of M3-index filesize with growing signature size
(for a comparison, the sequential file size was 22.3 MB). We
found that, even by using a small amount of bits per partial

144

Figure 9: Corel image features: 10-NN queries vary-
ing weights group.

distance, the proposed index structure can achieve a very
good efficiency performance. Indeed, the efficiency of the
M3-tree quickly approaches the efficiency of having multi-
ples M-trees, one for each possible combination of metrics.

Figure 9 presents distance computations needed to per-
form 10-NN queries, but now using the weights groups. Fig-
ure 10 shows the I/O cost (the unit of I/O was a single 8kB
page read) while performing k-NN queries (1 ≤ k ≤ 50) with
a single fixed weights group. The results are similar to those
previously presented (M3-tree outperforms the adapted M-
tree in distance computations and disk page accesses).

Figure 11 presents the efficiency of k-NN querying (vary-
ing k) for the 3D models database (we have used slimmed
indices for all “3D experiments”). In Figure 12 see the effect
of increasing signature size with 10-NN queries on retrieval
efficiency as well as on the index size (the sequential file
size was 450kB). With this database, the experimental re-
sults also show that the M3-tree is more close in efficiency
to the lower baseline than the adapted M-tree. Moreover,
the adapted M-tree turned out to be slower than a sequen-
tial scan. On the other side, we must realize the available
3D database was very small – we expect that by using a
larger database the M3-tree as well as the adapted M-tree
will achieve a considerably better efficiency.

6. CONCLUSIONS
In this paper, we presented two index structures specially

designed for dynamic multi-metric spaces. In these spaces,
the metric function used to perform the similarity query (the
so-called query distance) corresponds to a dynamic combi-
nation of metrics, thus the metric function may change on
each performed query. The index is built using a fixed com-
bined metric (the index distance) that is an upper-bounding
distance function of the query distance.

Firstly, we described an adapted M-tree for multi-metric
spaces. We formally proved that the usual filtering crite-
ria holds on the adapted M-tree, independently of the used
query distance. Secondly, we depicted the M3-tree, a further
adaption of the original M-tree with considerably better per-

Figure 10: Corel image features: k-NN queries with
fixed weights group.

formance than the adapted M-tree. The M3-tree store par-
tial distances (one for each metric function belonging to the
combination) to dynamically estimate, for each performed
query, the new covering radius of the space regions and the
new distances from parent to children nodes.

Our work differs to previous related work in the sense
that: (a) We provide a dynamic index structure for multi-
metric spaces (b) The adapted M-tree use a lower bound of
the query distance to apply some of the discarding criteria.
The M3-tree computes a tight approximation of this distance
(using the stored partial distances), thus providing a better
filtering.

The experimental results clearly show that a single M3-tree
index is almost as good as if we have infinitely many M-trees
indexes at our disposal (M-trees built for every possible vec-
tor of query weights).

6.1 Future Work
We plan to adapt the PM-tree [14], a MAM that combines

the M-tree with the pivot-based approach, for the multi-
metric space case. For this purpose, we will merge the tech-
niques presented in this paper and the ones described in [5]
(pivot-based index for multi-metrics). We expect that, by
combining all these technique in one index structure, we will
be able to further improve the efficiency of the M3-tree.

Although we do not expect that the QIC-M-tree outper-
forms the M3-tree, considering that the experimental per-
formance of our proposed index was very close to the lower
baseline (multiple standard M-trees), we also plan to per-
form an experimental comparison of the efficiency of both
index structures.

An important subject for future research is the “number
of metrics curse” (in comparison with the “dimensionality
curse” in multi-dimensional spaces [1]). We do not know
at the moment whether it is a curse or not, but we expect
that with increasing number of metrics the efficiency of the
M3-tree will decrease.

We would also like to compare the effectiveness of multi-
metric approach with various non-metric approaches [12].

145

Figure 11: 3D models: k-NN queries.

Because the multi-metrics allow dynamic weights at query
time, there is a possibility of much rich similarity measur-
ing and retrieval, which is currently provided by non-metric
measures (especially in multimedia retrieval).

Acknowledgments
This research has been partially supported by Czech grants
GAČR 201/05/P036 and Information Society 1ET100300419
(second author). The first author is on leave from the De-
partment of Computer Science, University of Chile.

7. REFERENCES
[1] C. Böhm, S. Berchtold, and D. Keim. Searching in

high-dimensional spaces: Index structures for
improving the performance of multimedia databases.
ACM Computing Surveys, 33(3):322–373, 2001.

[2] B. Bustos, D. Keim, D. Saupe, T. Schreck, and
D. Vranić. Automatic selection and combination of
descriptors for effective 3D similarity search. In Proc.
IEEE International Workshop on Multimedia
Content-based Analysis and Retrieval (MCBAR’04),
pages 514–521. IEEE Computer Society, 2004.

[3] B. Bustos, D. Keim, D. Saupe, T. Schreck, and
D. Vranić. Using entropy impurity for improved 3D
object similarity search. In Proc. IEEE International
Conference on Multimedia and Expo (ICME’04),
pages 1303–1306. IEEE, 2004.

[4] B. Bustos, D. Keim, D. Saupe, T. Schreck, and
D. Vranić. An experimental effectiveness comparison
of methods for 3D similarity search. Intl. Journal on
Digital Libraries, 6(1):39–54, 2006.

[5] B. Bustos, D. Keim, and T. Schreck. A pivot-based
index structure for combination of feature vectors. In
Proc. 20th Annual ACM Symposium on Applied
Computing, Multimedia and Visualization Track
(SAC-MV’05), pages 1180–1184. ACM Press, 2005.

[6] E. Chávez, G. Navarro, R. Baeza-Yates, and
J. Marroqúın. Searching in metric spaces. ACM
Computing Surveys, 33(3):273–321, 2001.

Figure 12: 3D models: 10-NN varying signature
size.

[7] P. Ciaccia and M. Patella. Searching in metric spaces
with user-defined and approximate distances. ACM
Transactions on Database Systems, 27(4):398–437,
2002.

[8] P. Ciaccia, M. Patella, and P. Zezula. M-tree: An
efficient access method for similarity search in metric
spaces. In Proc. 23rd Conference on Very Large
Databases (VLDB’97), pages 426–435. Morgan
Kaufmann, 1997.

[9] A. de Vries, N. Mamoulis, N. Nes, and M. Kersten.
Efficient k-NN search on vertically decomposed data.
In Proc. ACM International Conference on
Management of Data (SIGMOD’02), pages 322–333.
ACM Press, 2002.

[10] S. Hettich and S. Bay. The UCI KDD archive
[http://kdd.ics.uci.edu], 1999.

[11] D. Keim. Efficient geometry-based similarity search of
3D spatial databases. In Proc. ACM International
Conference on Management of Data (SIGMOD’99),
pages 419–430. ACM Press, 1999.

[12] T. Skopal. On fast non-metric similarity search by
metric access methods. In Proc. 10th International
Conference on Extending Database Technology
(EDBT’06), LNCS 3896, pages 718–736. Springer,
2006.

[13] T. Skopal, J. Pokorný, M. Krátký, and V. Snášel.
Revisiting M-tree building principles. In Proc. 7th
East European Conference on Advances in Databases
and Information Systems (ADBIS’03), LNCS 2798,
pages 148–162. Springer, 2003.

[14] T. Skopal, J. Pokorný, and V. Snášel. Nearest
neighbours search using the PM-tree. In Proc. 10th
International Conference on Database Systems for
Advanced Applications (DASFAA’05), LNCS 3453,
pages 803–815. Springer, 2005.

[15] P. Zezula, G. Amato, V. Dohnal, and M. Batko.
Similarity Search: The Metric Space Approach
(Advances in Database Systems). Springer-Verlag New
York, Inc., Secaucus, NJ, USA, 2005.

146

